
WEIGHT FUNCTIONS AND ESSENTIAL SKELETA

MIRCEA MUSTAŢĂ

These are notes based on the author’s talk at the Simons Symposium on Non-
Archimedean and Tropical Geometry, Puerto Rico, February 1-7, 2015. The goal is to
describe certain functions defined on analytifications of complete varieties over k((t)) and
the skeleta that are defined using these functions, following the author’s joint work with
Johannes Nicaise [MN]. The notions that we discuss parallel familiar ones in the study of
singularities in birational geometry.

1. The birational geometry setting

Almost everything here is classical and well-known to people studying singularities in
birational geometry. However, the point of view that is taken, based on non-Archimedean
geometry, is due to Boucksom, Favre, and Jonsson [BFJ] (see also [JM]).

Let X be a smooth variety over an algebraically closed field k, with char(k) = 0.
In general, one wants to allow X to have mild singularities, but we do not need here this
more general framework.

We want to study the singularities of a given hypersurface H in X. This is done by
comparing two invariants, for all

v ∈ ValX := {nonzero real valuations of k(X) with center onX}, namely

• The first invariant is v(H);

• The second invariant is the log discrepancy AX(v), defined below. This only depends
on v and it is used in order to normalize v(H) (which can be arbitrarily large).

Remark. The classical point of view is to only consider divisorial valuations, that is,
valuations of the form v = ordE, where E is a prime divisor on some normal variety Y , that
has a proper birational morphism Y −→ X. It was noticed in [BFJ] that one can look at all
valuations and not just at divisorial ones. This does not add anything when one studies the
singularities of a hypersurface, but it is very useful when studying singularities of graded
sequences of ideals or plurisubharmonic functions (see [BFJ] and [JM]). The advantage is
that by considering all valuations, one can make use of compactness arguments.

We now recall the definition of the log discrepancy functionAX : ValX −→ R≥0∪{∞}.

Step 1. If v is a divisorial valuation, then we can find a proper birational morphism
f : Y −→ X, with Y normal, and a prime divisor E on Y such that v = ordE. In this case,
we take

AX(v) = 1 + ordE(KY/X),
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where KY/X is the effective divisor on Y locally defined by the Jacobian of f .

Step 2. Suppose now that v is a quasi-monomial valuation. This means that we can find
a proper, birational morphism f : Y −→ X, with Y smooth, a not-necessarily-closed point
p ∈ Y , a system of coordinates y1, . . . , yr at p, and a1, . . . , ar ∈ R≥0 (not all 0) such that v
is the monomial valuation, in this system of coordinates, with v(yi) = ai. More precisely,
v is the unique valuation such that for every f =

∑
u∈Nr cuy

u, with cu ∈ k, we have

v(f) = min

{
r∑
i=1

ciai | cu 6= 0

}
.

In this case, we put

AX(v) =
r∑
i=1

ai · AX(ordEi
),

where Ei is the divisor defined by (yi). Note that the ai are all rational numbers if and
only if we can write v = q · ordE for some divisorial valuation ordE and in this case the
definition gives AX(v) = q · AX(ordE).

Step 3. Suppose now that v ∈ ValX is arbitrary. For every f : Y −→ X proper, birational,
with Y smooth, if y is the center cY (v) of v, and y1, . . . , yr is a system of coordinates at p,
we define the valuation ρY (v) to be the quasi-monomial valuation corresponding to this
data and such that ρY (v) = v on each yi. One defines

AX(v) := sup
Y/X

A(ρY (v)) ∈ R≥0 ∪ {∞},

where the supremum is over all choices of Y −→ X and over all possible systems of
coordinates at cY (v).

We have the following basic properties (see [JM] for proofs):

• If v is a quasi-monomial valuation, then the general definition of AX(v) agrees with the
one in Step 2.

• In fact, given f : Y −→ X and a system of coordinates as above, we have AX(v) ≥
AX(ρY (v)), with equality if and only if v is quasi-monomial with respect to f and this
system of coordinates.

• The function AX : ValX −→ R≥0 ∪ {∞} is lower semicontinuous.

Suppose that f : Y −→ X is a morphism as above and D is a simple normal crossing divisor
on X. If QM(Y,D) ⊆ ValX is the set of all quasi-monomial valuations with respect to the
systems of coordinates given by the components of D, then QM(Y,D) has an “integral
cone complex” structure. By definition, AX is piecewise linear, continuous, and integeral
on QM(Y,D).

Remark. It is sometimes convenient to take the quotient of QM(Y,D) by the obvious
R>0-action, in order to get a simplicial complex (see [BFJ]).
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We now return to the hypersurface H in X. The log canonical threshold of (X,H)
is

lct(X,H) = inf
v∈ValX

AX(v)

v(H)
.

It is a basic fact that if f : Y −→ X is a log resolution of (X,H) (that is, f is proper
and birational, X is smooth, and f ∗(H) + KY/X has simple normal crossings, then the
infimum in the definition of lct(X,H) is achieved by some v = ordE, where E is a prime
divisor on X. This follows from the fact that if w is any valuation and w′ = ρY (w) (with
respect to the simple normal crossing divisor D = f ∗(H) + KY/X), then w′(H) = w(H)
and AX(w) ≥ AX(w′). In fact, this shows more: for every w ∈ ValX that achieves the
minimum in the definition of lct(X,H), we see that w ∈ QM(Y,D).

The divisors that compute lct(X,H) (that is, the ones that achieve the minimum
in the definition of lct(X,H)) play an important role in birational geometry. The union
of their images in X is the non-klt locus Nklt(X, cH), where c = lct(X,H). The following
theorem is a very useful result in birational geometry, that can be used to study the
properties of this locus.

Theorem (Kollár, Shokurov). Given any log resolution f : Y −→ X of (X,H), the union⋃
E E, where the union is over the primes divisors E on Y that compute lct(X,H), is

connected in the neighborhood of any fiber of f .

Remark. One can also reformulate this result in terms of a suitable subcomplex of the
intersection complex of the simple normal crossing divisor f ∗(H) +KY/X .

2. The non-Archimedean setting

All new results here are based on the joint paper [MN] with Johannes Nicaise. Let
K = k((t)), where k is an algebraically closed field of characteristic 0, and let R = k[[t]].
Certain results carry over to positive characteristic if we work with varieties whose models
are known to admit log resolutions (for example, curves), but we will not add here this
extra level of complexity.

Let X be a smooth, projective, geometrically connected variety over K. The first
goal is to define in this setting an analogue of the log discrepancy function. This will be
a function Xan −→ R≥0 ∪ {∞}, where Xan is the Berkovich analytification of X. This
function will depend on the choice of some nonzero ω ∈ Γ(X,ω⊗mX ), with m ≥ 1.

The birational models Y −→ X we considered before are replaced in this setting by
SNC models X of X/K, that is, regular, projective schemes over Spec(R), whose special
fiber Xk is a simple normal crossing divisor on X , and whose generic fiber is isomorphic to
X. Note that existence of such models is guaranteed in our setting by Hironaka’s theorem.

Suppose now that we fix a nonzero ω ∈ Γ(X,ω⊗mX ), with m ≥ 1. We describe in
three steps how to define the weight function wtω : Xan −→ R≥0 ∪ {∞} associated to ω.

Step 1. Suppose that x ∈ Xan is a divisorial point, that is, there is a model X as above
and an irreducible component E of the special fiber Xk such that x = 1

N
ordE, where
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N = ordE(Xk). Consider now the relative dualizing sheaf ωX/R, which is a line bundle
on X by the assumption that X is regular. We may consider ω as a rational section
of ωX/R. As such, it determines a Cartier divisor divX (ω). If f is a local equation for
divX (ω) +m(Xk)red at the generic point of E, then we put

wtω(x) =
1

N
ordE(f).

It is straightforward to see that the definition only depends on x and not on the model
X .

Step 2. We now extend the above definition to the case when x ∈ Xan is a monomial
point. Suppose that X is an SNC model of X as above. A monomial point corresponds to
a connected component of E1∩ . . .∩Er, for some irreducible components E1, . . . , Er of Xk
and to some a1, . . . , ar ∈ R≥0 such that

∑r
i=1 aiNi = 1 (here Ni = ordEi

(Xk)). If the yi are
the local equations of the Ei at the generic point ξ of E1∩ . . .∩Er and if f =

∑
u∈Nr cuy

u,

with each cu ∈ ÔX ,ξ either zero or invertible, then the valuation vx corresponding to x
satisfies

vx(f) = min

{
r∑
i=1

uiai | cu 6= 0

}
.

As before, if f is a local equation for divX (ω) +m(Xk)red at ξ, then we put

wtω(x) = vx(f).

It is clear that when x is a divisorial point, this definition agrees with the one in Step 1.

Before we proceed with the general case, we recall some basic facts, due to Berkovich,
concerning monomial points.

• The Berkovich skeleton Sk(X ) associated to the model X is the subset of Xan consisting
of all monomial point associated to X . This is homeomorphic to the intersection complex
∆(Xk) of the special fiber.

• For every SNC model X , there is a canonical retraction ρX : Xan −→ Sk(X ) and there
is a homeomorphism

Xan ' lim←−XSk(X ).

• For every SNC model X , the Berkovich skeleton Sk(X ) is a strong deformation retract
of Xan.

We now go back to the definition of the weight function.

Step 3. Using the canonical retractions Xan −→ Sk(X ), we extend the definition of the
weight function, by putting

wtω(x) := sup
X

wtω(ρX (x)).

The weight function satisfies the following properties (see [MN] for proofs):
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• If X and X ′ are SNC models of X such that we have a morphism X ′ −→ X over R
inducing the identity on X, then

wtω(ρX (x)) ≤ wtω(ρX ′(x)),

with equality if and only if x ∈ Sk(X ). In particular, this implies that the general definition
in Step 3 agrees in the case of monomial points with the definition in Step 2.

• The function wtω is lower semicontinuous on Xan.

We can now define an analogue of the log canonical threshold in this setting, namely

wtω(X) := inf{wtω(x) | x ∈ Xan}.

As in the case of the log canonical threshold, one can show that the infimum in the
definition of wtω(X) is achieved on every SNC model X .

The Kontsevich-Soibelman skeleton is

Sk(X,ω) := {x ∈ Xan | wtω(x) = wtω(X)}.

As in the case of the log canonical threshold, for every SNC model X , we have Sk(X,ω) ⊆
Sk(X ).

Of course, the Kontsevich-Soibelman skeleton depends on the choice of pluricanon-
ical form ω. An important special case, studied by Kontsevich and Soibelman [KS], is
that when X is a Calabi-Yau variety and ω is taken to be a volume form. For two differ-
ent choices of ω the value of wtω(X) differs by an integer, but the skeleta Sk(X,ω) are
independent of ω.

For an arbitrary variety X (with the property that h0(X,ω⊗mX ) 6= 0 for some m ≥ 1),
in order to eliminate the dependence on ω, we define the essential skeleton

Sk(X) :=
⋃
ω

Sk(X,ω),

where the union is over all nonzero ω ∈ Γ(X,ω⊗mX ), with m ≥ 1. This invariant of X
seems to be particularly well-behaved when some multiple of ωX is globally generated.

Example (Baker-Nicaise). If X is a curve of genus at least 1 with semistable reduction,
then Sk(X) = Sk(X ), where X is the minimal SNC model.

We prove the following analogue of the connectedness result due to Kollár and
Shokurov.

Theorem. If h0(X,ωX) = 1 and ω ∈ Γ(X,ωX) is nonzero, then Sk(X,ω) is connected.

The proof of the theorem makes use of vanishing theorems, in a slightly different
way than in Kollár’s proof. Since we are not in the setting of schemes of finite type over
k, we need to deduce the statements of the vanishing theorems that we need (especially,
Kollár’s torsion-freeness theorem) from those in the classical settings.

A much stronger result, making use of the techniques of the Minimal Model Program,
was subsequently obtained by Nicaise and Xu [NX] (see the talk of Chenyang Xu).
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Remark. Halle and Nicaise [HN] have developed several other analogies between wtω(X)
and the log canonical threshold, by relating wtω(X) with other invariants that come up
in this non-Archimedean setting, such as poles of motivic zeta functions, monodromy, etc.
A case that is particularly well-understood is that of Abelian varieties, see [HN].
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