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Abstract. These are notes for the third in a series of lectures at the
2015 Simons Symposium on Tropical and Non-Archimedean Geometry.
The first two lectures were given by Mircea Mustaţă and Chenyang Xu;
their content is mostly covered by the survey article “Berkovich skeleta
and birational geometry” that will appear in the proceedings of the 2013
Symposium. Here we discuss an application to Igusa zeta functions,
obtained in collaboration with Chenyang Xu and published in the article
“Poles of maximal order of motivic zeta functions” (arXiv:1403.6792, to
appear in Duke Math. J.). The present notes can be read independently
of the aforementioned survey article.

1. Igusa’s p-adic zeta functions

(1.1) We fix a non-constant polynomial f in Z[x1, . . . , xn], for some n ≥ 1,
with f(0) = 0. For every prime number p and every integer d ≥ 0, we set

Nf,p(d) = ]{x ∈ (pZ/pd+1Z)n | f(x) ≡ 0 mod pd+1}.

Thus Nf,p(d) is the number of solutions of the congruence f ≡ 0 modulo

pd+1 that reduce to the origin modulo p. To study the asymptotic behaviour
of these numbers as d→∞, we introduce the generating series

Pf,p(T ) =
∑
d≥0

Nf,p(d)T d ∈ Z[[T ]].

Now it is natural to ask the following question.

Question (Borevich-Shafarevich, 1966). Is Pf,p(T ) a rational function?

(1.2) Note that the series Pf,p(T ) is easy to compute if the zero locus of
f in AnZ is smooth over Z at the origin of AnFp

: by Hensel’s lemma, we have

Pf,p(T ) =
1

1− pn−1T
.

However, the computation is substantially more difficult if f has a
singularity, already in the case of the plane cusp f = (x1)

2 − (x2)
3. We can

expect that Pf,p(T ) will reflect some interesting properties of the singularity.
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(1.3) Igusa has proven in 1975 that Pf,p(T ) is always rational. A key step
in the proof is to rewrite the generating series Pf,p(T ) as a p-adic integral

Zf,p(s) =

∫
(pZp)n

|f |sp|dx|

where s is a complex variable and |dx| is the Haar measure on Znp . This
p-adic integral converges Zf,p(s) if <(s) > 0 and defines a complex analytic
function on the right half-plane, which is called Igusa’s p-adic zeta function.
It is an easy exercise to express Zf,p(s) in terms of Pf,p(p

−s), so that it is
enough to prove that Zf,p(s) is a rational function in p−s (and, in particular,
extends to a meromorphic function on C). Igusa proved this by taking a
resolution of singularities for f over Q and using the change of variables
formula for p-adic integrals to reduce to the case where f is a monomial,
which can be solved by a simple computation.

(1.4) This proof not only establishes the rationality of Zf,p(s) but also
provides some interesting information about the possible poles of Zf,p(s) and
their expected orders in terms of the geometry of a resolution of singularities
for f . This is a striking result, because it relates arithmetic properties of f
(the poles of the zeta function) with geometric properties of f (the geometry
of a resolution of singularities). A completely explicit formula for Zf,p(s)
in terms of a resolution of f was later given by Denef, for p � 0. In the
next section, we will review the precise formulation of Igusa’s theorem and
Denef’s formula.

2. Denef’s formula

(2.1) First, we need to introduce some notation. Let h : Y → AnQ be a

log-resolution for the morphism f : AnQ → A1
Q defined by the polynomial

f . This means that Y is a smooth Q-variety, h is a projective morphism
of Q-varieties that is an isomorphism over AnQ \ div(f), and div(f ◦ h) is a
strict normal crossings divisor on Y . Such a morphism h always exists, by
Hironaka’s embedded resolution of singularities in characteristic zero.

(2.2) To every log-resolution h, we associate the following numerical
invariants. We write

div(f ◦ h) =
∑
i∈I

NiEi

where Ei, i ∈ I are the prime components of the divisor div(f ◦ h), and the
Ni are their multiplicities. Since h is an isomorphism over the complement
of div(f), we can write the relative canonical divisor of h as

KY/X =
∑
i∈I

(νi − 1)Ei.

The number νi is called the log-discrepancy of X at the divisor Ei; these
are fundamental invariants in birational geometry. Roughly speaking, the
multiplicities Ni measure the complexity of f and the log-discrepancies νi
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measure the complexity of the resolution h. For every non-empty subset J
of I, we set

EJ = ∩j∈JEj , EoJ = EJ \ (∪i/∈JEi).
The sets EoJ form a stratification of div(f ◦ h) into locally closed subsets.

Theorem 2.3 (Igusa 1975). For every prime number p, the zeta function
Zf,p(s) lies in the ring

Q
[

1

pas+b − 1

]
a,b∈Z>0

.

If s0 is a pole of order m of Zf,p(s), then there exists a subset J of I of
cardinality m such that EoJ(Qp) ∩ h−1(pZnp ) 6= ∅ and <(s0) = −νj/Nj for
every j in J .

Theorem 2.4 (Denef 1991). If the prime number p is sufficiently large,
then

Zf,p(s) = p−(n−1)
∑
∅6=J⊂I

](E
o
J(Fp) ∩ h

−1
(0))

∏
j∈J

p− 1

pNjs+νj − 1

where (·) denotes reduction modulo p.

To be precise, Denef’s formula is valid when the resolution h has “good
reduction modulo p” in a certain technical sense; for our purposes, it suffices
to know that this condition is always satisfied for p� 0.

(2.5) We can draw some immediate consequences from Igusa and Denef’s
results. Igusa’s theorem implies that the real parts of the poles of Zf,p(s)
are all contained in the finite set

{− νi
Ni
| i ∈ I, Eoi (Qp) ∩ h−1(pZnp ) 6= ∅}.

In practice, most of these candidates will not be real parts of actual poles
of Zf,p(s). For one thing, the list of candidates strongly depends on the
choice of the resolution h, whereas Zf,p(s) only depends on f and p. But
even if n = 2, when there exists a minimal log-resolution h of f , most of
the candidates will not appear as real parts of poles of the zeta function.
A partial explanation of this phenomenon would be given by the so-called
Monodromy Conjecture.

Conjecture (Igusa’s Monodromy Conjecture). If p is sufficiently large and
s0 is a pole of Zf,p(s), then <(s0) is a root of the Bernstein polynomial of f
at 0. In particular, exp(2πi<(s0)) is a local monodromy eigenvalue of f .

This conjecture has been solved if n = 2 by Loeser, and also for some special
classes of singularities, but the general case is wide open.

(2.6) Igusa’s theorem also implies that the order of a pole s0 of Zf,p(s) is
at most

max{]J | J ⊂ I, <(s0) = −νj/Nj for all j ∈ J, EoJ(Qp) ∩ h−1(pZnp ) 6= ∅}.
In particular, it is at most n, since EJ is empty if J has more than n elements
(n + 1 different prime components of a strict normal crossings divisor on a
variety of dimension n can never intersect in a point).
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(2.7) Finally, from Denef’s formula, one can also deduce that the real part
of a pole of Zf,p(s) is at most

−min{ νi
Ni
| i ∈ I, Ei ∩ h−1(0) 6= ∅}

when p is sufficiently large. The number

lct0(f) = min{ νi
Ni
| i ∈ I, Ei ∩ h−1(0) 6= ∅}

is an important invariant in birational geometry, called the log-canonical
threshold of f at 0. It is independent of the choice of a log-resolution h. It
is used to measure the degree of the singularity of f at 0, and to divide the
singularities into different types in the Minimal Model Program.

(2.8) The main subject of these notes is the following conjecture.

Conjecture (Veys 1999). Assume that p is sufficiently large. If s0 is a pole
of Zf,p(s) of order n, then <(s0) = −lct0(f).

Thus if Zf,p(s) has a pole of the largest possible order (namely, n), then its
real part is also as large as possible. Veys’s conjecture was originally stated
for a different type of zeta function (the so-called topological zeta function),
but the proof we will present is valid for the topological and motivic zeta
functions, as well.

3. Proof of Veys’s conjecture

(3.1) We will deduce Veys’s conjecture from a more general result about
the geometry of log-resolutions. Let k be a field of characteristic zero, X
a smooth k-variety, f : X → A1

k a dominant morphism and h : Y → X
a log-resolution of f as above. We fix a closed point x on X such that
f(x) = 0. The situation we have studied so far corresponds to the case
k = Q, X = AnQ, x = 0. We will continue to use the notations Ni, νi, EJ
etc. The result that we will prove is local on X at the point x; shrinking X
around x, we may assume that EJ ∩h−1(x) 6= ∅ as soon as EJ 6= ∅, for every
non-empty subset J of I. This assumption simplifies some of the notations
we will use.

(3.2) For every i ∈ I, we set wtf (Ei) = νi/Ni and we call this value the
weight of f at Ei. The log-canonical threshold of f at x is then given by

lctx(f) = min{wtf (Ei) | i ∈ I}.
We write Y0 for the divisor

div(f ◦ h) =
∑
i∈I

NiEi,

and we denote by ∆(Y0) its dual intersection complex. We introduce a
function

wtf : ∆(Y0)→ R
that is completely characterized by the following properties:

• for every i ∈ I, the value of wtf at the vertex of ∆(Y0) corresponding
to Ei is given by wtf (Ei);
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• the function wtf is affine on every face of ∆(Y0).

(3.3) The key observation is that wtf seems to behave like a “Morse
function” on ∆(Y0) with unique critical value lctx(f), in a sense that is
yet to be made precise. We will first look at an analogous setting where
the picture is somewhat cleaner. Let Z be a Calabi-Yau variety over k((t))
and let ω be a volume form on Z. In a joint work with Mircea Mustaţă, we
defined the weight function

wtω : Zan → R ∪ {+∞}
on the Berkovich analytification Zan of Z over the non-archimedean field
k((t)). If Z is a strict normal crossings model for Z over k[[t]], then the dual
intersection complex ∆(Zk) of its special fiber embeds canonically into Zan.
The image of this embedding is called the skeleton Sk(Z ) of Z . It is a
strong deformation retract of Zan. The weight function wtω is continuous
on Sk(Z ) and affine on every face. Moreover, it is strictly decreasing under
the projection Zan → Sk(Z ). In particular, the locus where wtω reaches
its minimal value wmin on Zan is a union of faces of Sk(Z ), which is called
the essential skeleton Sk(Z) of Z (it does not depend on ω). The following
theorems provide some evidence for the “Morse-like behaviour” of wtω.

Theorem A. If wtω is constant on a maximal face σ of Sk(Z ), then its
value on σ is the minimal value wmin of wtω. In other words, σ is contained
in the essential skeleton Sk(Z) of Z.

Theorem B. For every w ∈ R, we denote by Sk(Z )≤w the subcomplex of
Z spanned by the vertices v such that wtω(v) ≤ w. There exists a collapse
of Sk(Z ) onto Sk(Z) that simultaneously collapses Sk(Z )≤w for every w ≥
wmin.

A collapse is a combinatorial type of strong deformation retract on simplicial
complexes. Thus Theorem B implies in particular that the embedding
Sk(Z)→ Sk(Z )≤w is a homotopy equivalence for every w ≤ wmin.

(3.4) We have proven similar results in the setting of hypersurface
singularities, where log-resolutions play the role of strict normal crossings
models. A technical complication is that the components of Y0 come in
two flavours: the exceptional components of h and the components of the
strict transform of div(f). This does not affect the statement of Theorem A
(although it makes the proof more difficult) but it forces us to make a case

distinction in the formulation of Theorem B. We denote by ∆(Y0)
=lctx(f) the

locus where wtf reaches its minimal value lctx(f); this is a union of faces of
∆(Y0).

Theorem A’. If wtf is constant on a maximal face σ of ∆(Y0), then its
value on σ is the minimal value lctx(f) of wtf .

Theorem B’. Assume that div(f) is reduced. We denote by ∆(Y0)exc the
subcomplex of ∆(Y0) spanned by the vertices that correspond to exceptional
components of h. For every w ∈ R, we denote by ∆(Y0)

≤w the subcomplex of
Z spanned by the vertices v such that wtf (v) ≤ w, and we define ∆(Y0)exc
accordingly.
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• Assume that lctx(f) = 1 (that is, (X,div(f)) is log-canonical

at x). There exists a collapse of ∆(Y0) onto ∆(Y0)
=lctx(f) that

simultaneously collapses ∆(Y0)
≤w onto ∆(Y0)

=lctx(f) for every w ≥
lctx(f).
• Assume that lctx(f) 6= 1. There exists a collapse of ∆(Y0)exc

onto ∆(Y0)
=lctx(f) that simultaneously collapses ∆(Y0)

≤w
exc onto

∆(Y0)
=lctx(f) for every w ≥ lctx(f).

Note that in the second case of Theorem B’, we have lctx(f) < 1 so that

∆(Y0)
=lctx(f) is contained in ∆(Y0)exc (components Ei in the strict transform

of div(f) all have Ni = νi = 1).

(3.5) Finally, let us explain how Theorem A’ implies Veys’ conjecture. Let
f be a non-constant polynomial in Z[x1, . . . , xn] and let h : Y → AnQ be a

log-resolution for the morphism f : AnQ → A1
Q. Suppose that s0 is a pole of

order n of Zf,p(s), for some sufficiently large prime number p. As we have
observed above, Denef’s formula then implies that there exists a subset J
of I of cardinality n such that EoJ ∩ h−1(0) 6= ∅ and <(s0) = −νj/Nj for
every j ∈ J . Each connected component of EoJ corresponds to a face of
∆(Y0) of dimension n on which wtf is constant with value −<(s0). Since
the dimension of ∆(Y0) is at most n, such a face is always maximal. Now
Theorem A’ implies that <(s0) = −lct0(f), as predicted by Veys’ conjecture.
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