
TROPICAL BRILL–NOETHER THEORY AND APPLICATIONS I
(NOTES FROM THE 2015 SIMONS SYMPOSIUM)

SAM PAYNE

These notes are from the first of two talks related to ongoing joint work with David
Jensen. The content is mostly background material for the second talk, given by Jensen.

1. Classical Brill–Noether theory

Let X be a smooth projective curve of genus g. At a very basic level, we wish to
understand the geometry of X by understanding its embeddings in projective space. The
space of such embeddings in not compact, so instead we study a compactification Grd(X)
parametrizing linear series of degree d and rank r on X. Each such linear series gives a
nondegenerate map of degree less than or equal to d to Pr up to change of coordinates
by PGLr+1. The difference between d and the degree of the map is accounted for by the
basepoints of the linear series.

The Brill-Noether number

ρ(g, r, d) = g − (r + 1)(g − d+ r)

is a naive dimension estimate for Grd(X). It follows from the Riemann–Roch Theorem
that this estimate is correct when d ≥ 2g − 2. However, for many curves of high genus,
including hyperelliptic curves and smooth complete intersections in projective space, this
is drastic underestimate when d is small. For instance, there are hyperelliptic curves of
every genus even though ρ(g, 1, 2) = 2− g is negative when g is at least 3. Nevertheless,
the estimate is correct on an open dense subset of the space of all curves.

Brill–Noether Theorem. [GH80] Let X be a general curve of genus g. Then Grd(X)
has pure dimension ρ(g, r, d), if this is nonnegative, and is empty otherwise.

Once we know the dimension of Grd(X), another natural goal is to understand its local
structure and any possible singularities. Again, the answer is as simple as possible on an
open dense subset of the space of all curves.

Gieseker–Petri Theorem. [Gie82] Let X be a general curve of genus g. Then Grd(X)
is smooth.

Many other results are known about the geometry of these spaces Grd(X), and we
mention just a few. The first three hold for arbitrary curves.

(1) If ρ(g, r, d) ≥ 0, then Grd(X) is nonempty.
(2) If ρ(g, r, d) ≥ 1, then Grd(X) is connected.
(3) Every component of Grd(X) has dimension at least ρ(g, r, d).
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(4) If X is general and ρ(g, r, d) ≥ 1 then Grd(X) is irreducible.
(5) If X is general and 0 ≥ ρ(g, r, d) ≥ g then a general linear series on X is complete,

i.e. the natural projection from Grd(X) to Picd(X) is generically 1-1 onto its image.

A fundamental difficulty in proving such results about a general curve is that it is ex-
traordinarily difficult to explicitly write down equations for even one sufficiently general
curve, when g is large. The original proofs of the Brill–Noether and Gieseker–Petri The-
orems were existence proofs via degenerations. Subsequent proofs from the 1980s include
one using limit linear series, a systematic approach to the study of degenerations of linear
series over one parameter families in which the special fiber is of compact type [EH83], and
one that avoids degenerations, instead using vector bundles on K3 surfaces and generic
smoothness [Laz86]. Here, there is a difficulty in writing down the curves explicitly, since
it is extraordinarily difficult to write down explicit equations for K3 surfaces of Picard
rank 1 with the required degree for each genus. More recently, new proofs of both results
have been given via tropical methods, which are most useful for studying degenerations
of linear series over one parameter families in which the special fiber is a nodal union of
smooth rational curves [CDPR12, JP14].

Some interesting problems about linear series on a general curve remain open, having
resisted attempts by all previous methods. Let U be the open subset of the moduli space
of curves parametrizing the Brill–Noether–Petri general curves, those curves X for which
Grd(X) is smooth of pure dimension ρ(g, r, d) when ρ(g, r, d) is nonnegative and empty
otherwise. When ρ(g, r, d) = 0, then monodromy acts transitively on the fibers of the
universal space of linear series Grd(U). Therefore Grd(U) is irreducible, and it makes sense
to talk about a general linear series of degree d and rank r on a general curve X, meaning
a linear series corresponding to a point in some open dense subset of Grd(U).

When ρ(g, r, d) ≥ 0 and r ≥ 3, a general linear series of degree d and rank r on
a general curve of genus g gives an embedding, and the following is an open question.
What is the Hilbert function of this embedded curve? A conjectural answer is provided
by the Maximal Rank Conjecture, which is attributed to Max Noether.

Maximal Rank Conjecture. Let V ⊂ L(DX) be a general linear series of rank r and
degree d on a general curve X of genus g. Then the multiplication maps

µm : Symm V → L(mDX)

have maximal rank for all m.

This conjecture was proved long ago in a number of cases, including when r ≤ 3 and in
the nonspecial case, when g + r ≤ d [BE87a, BE87b].

2. Limit linear series

Our primary interest in these talks is to present and explain the tropical approach. For
context, we briefly recall the theory of limit linear series for one parameter degenerations
to nodal curves of compact type.

Let K be a discretely valued field, such as C((t)), let R ⊂ K be the valuation ring,
and let X be a smooth projective curve of genus g over K. Suppose X has a simple
normal crossing semi-stable model whose special fiber is of compact type. In other words,
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we suppose there is a regular scheme X that is proper over SpecR whose special fiber X
is a reduced nodal curve of compact type. Let Xi be the irreducible components of X.
The compact type condition is equivalent to the condition that

∑
i g(Xi) = g. Another

equivalent condition is that the dual graph of X, with one vertex vi for each component
Xi, and one edge from vi to vj for each node in Xi ∩ Xj, is a tree. Note that we allow
multiple edges in dual graphs, when pairs of components meet at multiple nodes.

Let L be a line bundle of degree d on X. Such a line bundle extends to a line bundle
L on X, but not uniquely. The basic construction of limit linear series involves choosing
distinguished extensions of L, as follows. For each irreducible component Xi of X, there
is a unique extension Li such that

deg(Li|Xj
) = d · δij.

Then, given a linear series W ⊂ H0(X,L), we consider the collection of linear series
{Wi ⊂ H0(Xi,Li)} consisting of sections of these distinguished sections that are limits of
sections in W . These collections of linear series {Wi} ∈

∏
i Grd(Xi) satisfy a compatibility

condition, which may be expressed simply in terms of vanishing sequences at the nodes of
X. The theory of limit linear series studies all such collections of linear series, satisfying
this compatibility condition. One consequence of this theory is that if X is a chain of g
curves of genus 1, and if the difference between the two nodes on each of the g− 2 curves
in the interior of the chain do not differ by a torsion point of order less than or equal to
2g − 2 in the Jacobian, then X is not in the closure of complement of U in the moduli
space of stable curves.

3. The tropical approach

Consider X, X, and L as above, but we no longer assume that X is of compact type.
The tropical approach can be adapted to work much more generally, but for simplicity
we assume that each component Xi is isomorphic to P1. Let G be the dual graph of X.
The condition that each Xi is a smooth rational curve is equivalent to the condition that
h1(G) = g. Here, the first Betti number h1(G) is the number of vertices in G, minus the
number of edges, plus one.

Since we are no longer in the case where the dual graph G is a tree, there may or may
not exist an extension Li of L such that

deg(Li|Xj
) = d · δij.

Lacking these distinguished extensions, we instead study the obstruction to finding such
extensions, which can be measured by the component group of the Nëron model of the
Jacobian variety Jac(X). Most importantly for our purposes, this component group
depends only on the dual graph G and can be described as follows.

Let ∆(D) be the combinatorial Laplacian matrix, which is the degree matrix minus
the adjacency matrix. Its rows and columns are indexed by the vertices vi of G (or,
equivalently, by the components Xi of X). The ith diagonal entry is the number of edges
incident to vi (equivalently, the number of nodes on Xi) and the (i, j) off-diagonal entry
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is minus the number of edges joining vi to vj. One can think of ∆(G) as an operator

∆(G) : Zvert(G) → Zvert(G).

The rows and columns of ∆(G) all sum to zero, so the matrix is singular. In fact, it has
corank 1. Then the component group of the Néron model of Jac(X) is isomorphic to the
torsion subgroup of the cokernel of ∆(G). This finite abelian group has size equal to the
number of spanning trees of G. It has many names, and has been called the sandpile
group of G and the critical group of G, among others. We follow the tradition in the
tropical geometry literature, calling it the Jacobian of G and denoting it by Jac(G).

We think of the target of ∆(G), consisting of formal Z-linear combinations of vertices,
as divisors on the graph, and then the image of ∆(G) is the subgroup of principal divisors.
A divisor a0v0 + · · · + asvs has degree a0 + · · · + as, and the image of ∆(G) is contained
in the subgroup of divisors of degree zero. In the terms of this analogy, the group Jac(G)
is the divisors of degree zero modulo the principal divisors. The group Jac(G) has a
distinguished generating set, consisting of the classes of divisors vi−v0, which is analogous
to the image of the Abel–Jacobi map. One key technical fact is that Jac(G), with this
generating set, has diameter equal to g—the first Betti number of the graph G, which is
the same as the genus of the smooth projective curve X.

In order to relate Jac(G) to Brill–Noether theory, one needs a suitable analogue of the
rank of a divisor on an algebraic curve. There are now several such analogues in the
literature, and most of them satisfy analogues of the Riemann–Roch Theorem and are
related to ranks of divisors on smooth projective curves through a specialization lemma.
We use the original combinatorial rank function defined by Baker and Norine, which has
the advantage of being efficiently computable via Dhar’s burning algorithm.

Just as for divisors on algebraic curves, we say that a divisor D = a0v0 +
... + asvs on G

is effective if all of the coefficients ai are nonnegative, and that two divisors are equivalent
if their difference in principal.

Definition 3.1. The rank of a divisor D on G is the largest integer r such that D−E is
equivalent to an effective divisor for every effective divisor E of degree r.

Note that the analogous property is an equivalent characterization of the rank of a
divisor on an algebraic curve.

These ranks of divisors on graphs are related to ranks of divisors on curves through
Baker’s specialization lemma [?], as follows. Let L be any extension of L to X, and let
ai = deg(L|Xi

). Then the rank of a0v0 + · · ·+ asvs is at least the rank of L.
In order to give a tropical proof of the Brill–Noether theorem, one then needs a suitable

class of graphs on which all of the divisor classes of degree d and rank at least r can be
explicitly understood. Only one such class of graphs is known at this time—the chain
of loops with generic edge lengths. The computations needed to prove the Brill–Noether
theorem are carried out on these chains of loops in [CDPR12].

To go deeper into this subject (e.g. to prove Gieseker–Petri) one needs the tropical
Riemann-Roch Theorem, also due to Baker and Norine, which says that r(D)−R(KG −
D) = deg(D) + 1− g, for all divisors D on G. To go even further (e.g. to prove cases of
the Maximal Rank Conjecture) one also needs a suitable lifiting theorem. For chains of
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loops, this is proved in [?], using Rabinoff’s lifting theorem for complete intersections of
analytic hypersurfaces [?].
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