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Polynomial point counts and
odd cohomology vanishing on
moduli spaces of stable curves

By Jonas Bergström, Carel Faber, and Sam Payne

To the memory of Bas Edixhoven

Abstract

We compute the number of Fq-points onM4,n for n ≤ 3 and show that

it is a polynomial in q, using a sieve based on Hasse–Weil zeta functions.

As an application, we prove that the rational singular cohomology group

Hk(Mg,n) vanishes for all odd k ≤ 9. Both results confirm predictions of

the Langlands program, via the conjectural correspondence with polarized

algebraic cuspidal automorphic representations of conductor 1, which are

classified in low weight. Our vanishing result for odd cohomology resolves

a problem posed by Arbarello and Cornalba in the 1990s.

1. Introduction

In the 1990s, Arbarello and Cornalba introduced an inductive method

for computing the rational singular cohomology groups of moduli spaces of

stable curves, using the combinatorial stratification of the boundary and basic

properties of Deligne’s weight filtration. As one application, they showed that

the rational singular cohomology groups Hk(Mg,n) vanish for odd k ≤ 5 for

all g and n [AC98]. Unlike the odd cohomology groups of Grassmannians and

smooth projective toric varieties, the odd cohomology groups of moduli spaces

of stable curves do not vanish in all degrees. For example, H11(M1,11) ∼= Q2,

andM1,n has odd cohomology in a range of degrees greater than or equal to 11
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for n > 11 [Get98]. It is also known that H33(Mg,n) is non-zero when g is

sufficiently large, for arbitrary n, as is H13(Mg,n) when g is sufficiently large

and n ≥ 10 [Pik95, Cor. 4.7].

Theorem 1.1. The rational singular cohomology groups Hk(Mg,n) van-

ish for all odd k ≤ 9.

This affirmatively resolves the natural open problem that was highlighted

by Arbarello and Cornalba [AC98, p. 103]. The examples in genus 1 show that

the bound is best possible. Here and throughout, all singular cohomology is

taken with rational coefficients.

Remark 1.2. This vanishing of odd cohomology in degrees less than 11

was expected based on conjectures from the Langlands program. Simple mo-

tives appearing in the cohomology of smooth and proper Deligne–Mumford

(DM) stacks over Z, such as Mg,n, up to Tate twists, should correspond to

irreducible polarized algebraic cuspidal automorphic representations of PGLn
of conductor 1; see, e.g., the motivational discussion in [CR15, §1.2]. However,

there are no such representations in any odd weight less than 11 [Mes86, §III,

Rem. 1]. For the full classification up to motivic weight 22, see [CL19, Th. F].

Our proof of Theorem 1.1 follows the original inductive method of Ar-

barello and Cornalba. In order to run the induction for k = 9, we must es-

tablish several new base cases. In particular, we need to show that H9(M4,n)

vanishes for n ≤ 3. We prove this using the Behrend–Grothendieck–Lefschetz

trace formula for algebraic stacks [Beh91], [Beh93] and point counting over

finite fields.

Recall that if X is an algebraic stack and Fq is the finite field with q

elements, then X(Fq) is a finite groupoid. By definition,

#X(Fq) :=
∑

x∈[X(Fq)]

1

# Aut(x)
,

where [X(Fq)] denotes the set of isomorphism classes in the groupoid X(Fq).
Proposition 1.3 ([Beh91], [Beh93]). Let X be an algebraic stack.

(i) If X is stratified by locally closed substacks X = X0 t · · · t Xn, then

#X(Fq) = #X0(Fq) + · · ·+ #Xn(Fq).

(ii) If X is a quotient stack [X/G], where X is a scheme and G is a connected

linear algebraic group, then

#X(Fq) = #X(Fq)/#G(Fq).

(iii) If X is a DM stack with coarse moduli space X , then #X(Fq) = #X(Fq).
(iv) If X is a DM stack over Fq and ` is prime to q, then

(1) #X(Fq) = Tr(Fq | H•c,ét(XFq
,Q`)),
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where Fq is the geometric Frobenius endomorphism and Tr denotes the

graded trace.

Proposition 1.3 reduces the problem of point counting on many stacks,

including all of those that we consider in this paper, to point counting on

algebraic varieties.

We will be especially interested in stacks with the polynomial point count

property, i.e., the property that #X(Fq) is a polynomial in q. Let X be a DM

stack that is smooth, proper and of pure relative dimension over Z, such as

Mg,n. By [vdBE05, Th. 2.1], the following are equivalent:

(i) There are a polynomial P (t) with rational coefficients and a subset S of

primes of Dirichlet density 1 such that #X(Fpm) = P (pm)+o(pm·dimX/2)

for p ∈ S and m ≥ 1.

(ii) There is a polynomial P (t) with positive integer coefficients such that

#X(Fq) = P (q) for all finite fields Fq.
(iii) For all primes `, the `-adic étale cohomology H•ét(XQ,Q`) vanishes in

odd degrees, and in degree 2i it is isomorphic to a direct sum of copies

of Q`(−i).
When these conditions hold, the coefficient of ti is equal to the dimension of

H2i
ét (XQ,Q`). By the étale-to-singular comparison theorem and the universal

coefficient theorem, if X has polynomial point counts, then the rational singular

cohomology H•(XC) is supported in even degrees, and h2i is the coefficient of ti.

Assuming furthermore that the coarse moduli space XQ is the quotient of a

smooth projective variety by a finite group, as is the case for Mg,n [BP00], it

follows also that the Hodge structure on H•(XC) is pure Tate.

Theorem 1.4. For any n ≤ 3, #M4,n(Fq) is a polynomial in q. More

precisely,

#M4(Fq) = q9 + 4q8 + 13q7 + 32q6 + 50q5 + 50q4 + 32q3 + 13q2 + 4q + 1,

#M4,1(Fq) = q10 + 6q9 + 30q8 + 93q7 + 191q6 + 240q5

+ 191q4 + 93q3 + 30q2 + 6q + 1,

#M4,2(Fq) = q11 + 11q10 + 76q9 + 319q8 + 838q7 + 1362q6

+ 1362q5 + · · ·+ 11q + 1

#M4,3(Fq) = q12 + 21q11 + 207q10 + 1168q9 + 3977q8 + 8296q7

+ 10605q6 + · · ·+ 21q + 1.

As a consequence, the cohomology of M4,n is pure Tate for n ≤ 3, with

Poincaré polynomials

hM4
(t) = t18 + 4t16 + 13t14 + 32t12 + 50t10 + 50t8 + 32t6 + 13t4 + 4t2 + 1,
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and so on. The elided terms for n = 2 and 3 are determined by Poincaré duality.

The polynomial hM4
(t) was previously determined in [BT07]; for n ∈ {1, 2, 3},

these computations are new.

We also determine the Sn-equivariant (polynomial) point counts of M4,n

for n ≤ 3, by which we mean a point count on forms of M4,n twisted by

elements of Sn. Furthermore, from Theorem 1.4 and previously known results

in lower genus, we determine the point counts on the open moduli spaceM4,n

for n ≤ 3.

Theorem 1.5. For any n ≤ 3, #M4,n(Fq) is a polynomial in q. More

precisely,

#M4(Fq) = q9 + q8 + q7 − q6,

#M4,1(Fq) = q10 + 2q9 + 2q8 − q7 − q6 − q2,

#M4,2(Fq) = q11 + 3q10 + 4q9 − 2q8 − 4q7 − 2q3 − 2q2,

#M4,3(Fq) = q12 + 4q11 + 7q10 − 4q9 − 13q8 + 4q7 − q6 − 11q3 + 2q2 + 2q− 1.

These point counts are determined from Theorem 1.4 by subtracting the

point counts of the boundary ∂Mg,n := Mg,n rMg,n. The boundary point

counts are determined (by computer-aided calculation) using the combinato-

rial structure of the boundary, as encoded in modular operads [GK98], plus

previously known (S•-equivariant) polynomial point count computations for

smaller moduli spaces.

Remark 1.6. If we replace q in Theorem 1.5 by the cyclotomic character

Q`(−1), then we get an equality for the `-adic compactly supported Euler char-

acteristic of (M4,n)Q with values in the Grothendieck group of `-adic absolute

Galois representations; see [Ber08, Th. 3.2]. Explicitly, the first equality then

reads
ec(M4 ⊗Q,Q`) = Q`(−9) + Q`(−8) + Q`(−7)−Q`(−6).

Similarly, we can translate this into an equality for the Euler characteristic

ec((M4)C,Q) with values in the Grothendieck group of rational mixed Hodge

structures with q replaced by Q(−1), the rational Tate Hodge structure of

weight 2; see [Tom05, Th. 1.4] and [BT07, Th. 8].

Remark 1.7. The fact that M4,n has polynomial point count for n ≤ 3

is again predicted by the Langlands program via low weight classification re-

sults. Indeed, let X be a DM stack that is smooth and proper over Z of

relative dimension less than or equal to 12. Assuming the conjectured corre-

spondence between motives of conductor 1 and automorphic representations,

the only motives that can appear in the cohomology of X are powers of the

Tate motive L, the motive S[12], of weight 11, and its twist LS[12] of weight 13

(appearing exactly when dimZX = 12 and S[12] appears). The motive S[12]

corresponds to the cuspidal representation ∆11 and contributes to the Hodge
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number h11,0. Therefore, it should appear in the motive of X if and only if XC
possesses a global holomorphic 11-form. If XC is unirational, then it has no

such holomorphic form and its motive should be a polynomial in L. In partic-

ular, given that (M4,n)C is unirational for n ≤ 15 [Log03, Th. 7.1], the motive

of M4,n should be a polynomial in L for n ≤ 3, and hence M4,n should have

polynomial point count. Theorem 1.4 confirms this prediction unconditionally.

Remark 1.8. Several of the polynomials in q occurring in this paper have

been checked against the data provided by computer calculations for small q.

For q = 2, the starting point is the census of genus 4 curves over F2 by Xarles

[Xar20]; in addition, one needs to determine the order of the automorphism

group over F2 of (a representative of) each isomorphism class. For q = 3, we

have carried out a similar census of trigonal curves of genus 4 over F3, with

the orders of the automorphism groups and their numbers of points over F3,

F9, and F27. Since the equivariant count of hyperelliptic curves is known (cf.

Section 11.1), this is enough to verify Theorems 1.5, 11.1, and 11.5 for q = 2

and q = 3. In addition, Propositions 8.1, 8.2, 8.4, 8.5, 8.6, 8.7, 11.2, 11.3, and

11.4 have been verified for q = 2, by computer calculations of representatives

of all trigonal curves over F2, together with the orders of their automorphism

groups as well as their numbers of points over F2, F4, and F8, and how many of

these points are singular. Note that we have exact formulas in all of these cases,

but have stated them in some cases only up to o(q6). Further verifications of

the counts of curves on the split quadric are provided by van Rooij [vR16].

Finally, we have compared our results with computations in the tautolog-

ical subring of H•(M4,n), as follows. The program admcycles [DSvZ21] can

compute the dimension of the subspace of H2i(M4,n) generated by tautolog-

ical classes, assuming that the Pixton relations span all relations among the

tautological generators. The range of degrees in which such computations can

be carried through is limited by computing power; we have run the program for

n = 1, i ≤ 4, n = 2, i ≤ 3, and n = 3, i ≤ 3. In all of these cases, the dimensions

predicted by admcycles agree with the Betti numbers given by Theorem 1.4.

Canning and Larson have subsequently shown that H•(M4,n) is generated by

tautological classes for n ≤ 6 [CL22, Th. 1.4]. It follows, in particular, that

Pixton’s relations are complete in the range of cases noted above.

2. Inductive argument

Here we recall the inductive method of Arbarello and Cornalba [AC98],

give the proof of Theorem 1.1 for k = 7, and we explain how the case k = 9

follows from Theorem 1.4.

To start, recall that excision of the boundary ∂Mg,n :=Mg,nrMg,n gives

a long exact sequence of rational (compactly supported) cohomology groups:

· · · → Hk
c (Mg,n)→ Hk(Mg,n)→ Hk(∂Mg,n)→ Hk+1

c (Mg,n)→ · · · .
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Thus, whenever Hk
c (Mg,n) = 0, restriction to the boundary gives an injection

from Hk(Mg,n) to Hk(∂Mg,n). Using “a bit of Hodge theory,” i.e., basic

properties of Deligne’s weight filtration, Arbarello and Cornalba improve this

statement as follows.

Lemma ([AC98, Lemma 2.6]). Suppose Hk
c (Mg,n) = 0. Then pullback to

the normalization of the boundary gives an injection Hk(Mg,n) ↪→ Hk(∂̃Mg,n).

Since each component of the normalization of the boundary is the quo-

tient of a product of smaller moduli spaces Mg′,n′ , as in Notation 4.1, by a

finite group, by applying the Künneth formula and taking invariants, one gets

an inductive method for proving odd cohomology vanishing. The key is to

understand vanishing of odd (compactly supported) cohomology of the open

moduli spaces Mg,n.

Arbarello and Cornalba obtained vanishing in a range of degrees using

Poincaré duality and the virtual cohomological dimension (vcd) of Mg,n. We

will need the following improvement.

Proposition 2.1. Assume g ≥ 1; then

(2) Hk
c (Mg,n) = 0 for

{
k < 2g and n = 0, 1,

k < 2g − 2 + n and n ≥ 2.

Proof. The bound for n > 1 is [AC98, (2.4)]. For n = 0, 1, the proposition

improves their bound by 1. The proof is essentially identical, using Poincaré

duality and the vanishing of Hk(Mg) and Hk(Mg,1) for large k. Arbarello and

Cornalba used that the vcds ofMg andMg,1 are 4g−5 and 4g−3, respectively.

The improvement comes from the fact that H4g−5(Mg) and H4g−3(Mg,1) both

vanish [CFP12], [MSS13]. �

Remark 2.2. Since this paper was written, Wong has improved Proposi-

tion 2 for n = 2, showing that H2g
c (Mg,2) = 0 for g ≥ 1 [Won24, Th. 4.1].

Remark 2.3. Note that the cohomology of Mg,n does not always vanish

in degree equal to the vcd for n > 1. Already for g = 2, explicit computations

show that the top weight part of Hn+2
c (M2,n) does not vanish for 4 ≤ n ≤ 17

[Cha22], [BCGY23]. To the best of our understanding, it is not known whether

WkH
k(Mg,n) vanishes in degree equal to vcd(Mg,n). Such a weaker vanishing

statement would suffice for the purposes of the Arbarello-Cornalba inductive

arguments.

Lemma ([AC98, Lemma 2.9]). Let k be an odd integer. Suppose Hq(Mg,n)

= 0 for all odd q ≤ k and all g and n such that Hq
c (Mg,n) 6= 0. Then

Hq(Mg,n) = 0 for all odd q ≤ k and all g and n.
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Note that, by (2), there are only finitely many (g, n) such that Hq
c (Mg,n)

6= 0, and they are explicitly bounded. These are the base cases required to run

the induction.

Proof of Theorem 1.1 for k = 7. We already know that Hq(Mg,n) van-

ishes for q ∈ {1, 3, 5} for all g and n [AC98, Th. 2.1]. Also, H•(M0,n) is

supported in even degrees [Kee92]. It remains to check that H7(Mg,n) van-

ishes in the finitely many cases where g ≥ 1 and max{2g, 2g − 2 + n} ≤ 7. In

fact, in each of these cases, Mg,n has polynomial point count and hence has

cohomology supported in even degrees. Moreover, this holds in a slightly wider

range of cases that includes all cases with g ≤ 3 and 2g − 2 + n ≤ 9. Indeed,

we know that Mg,n has polynomial point count for g = 1 and n ≤ 10 [Get98],

for g = 2 and n ≤ 7 [Ber09, §11.2], and for g = 3 and n ≤ 5 [Ber08]. �

Proof that Theorem 1.1 for k = 9 follows from Theorem 1.4. In the proof

for k = 7, we have seen that the cohomology of Mg,n is supported in even

degrees for a range that includes all cases with g ≤ 3 and 2g − 2 + n ≤ 9. In

order to run the induction and prove Theorem 1.1 for k = 9, it remains to check

that H9(M4,n) = 0 for n ≤ 3. Theorem 1.4 says that M4,n has polynomial

point count for n ≤ 3, and the required vanishing follows. �

Remark 2.4. The improved vanishing bound in (2), using the vanishing of

singular cohomology of Mg,n in degree equal to the vcd for n = 0, 1 [CFP12],

[MSS13], is essential to our proof of Theorem 1.1 for k = 9. Without this,

additional arguments would be required to prove that H9(M5) and H9(M5,1)

both vanish. The improved bound is also used in the proof for k = 7, as

presented above. Without it, we would also need the vanishing of H7(M4)

and H7(M4,1) to run the induction; the proof for k = 7 would then also

depend on Theorem 1.4.

Remark 2.5. In the proof of Theorem 1.1 for k = 9, we do not use the full

strength of Theorem 1.4; we only use the vanishing of H9(M4,n) for n ≤ 3. By

Corollary 3.2 it is enough to prove that #M4,n(Fq) is a polynomial in q plus

o(q
9
2

+n). In particular, some of the more subtle point counting computations in

Sections 8.1–8.3 are not necessary for the proof of Theorem 1.1. Nevertheless,

knowing the full cohomology ofM4,n with its Sn-action will be useful for future

work, e.g., for the computation of the cohomology of M4,4, M5, and M5,1.

Also, as explained in the introduction, the fact thatM4,n has polynomial point

count for n ≤ 3 is predicted by the Langlands program, and the additional

computations that we present are needed to prove Theorem 1.4 and confirm this

prediction unconditionally. Note that the argument involved in this prediction

does not extend to n = 4 because, a priori, a Tate twist of the motive S[12]
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could appear in the middle degree cohomology group H13(M4,4). However,

Canning and Larson have now shown that this does not occur [CL22, Th. 1.4]

3. Approximately polynomial point counts

Here we remark that Theorem 1.4 gives far more precise point counting

information than required for the proof of Theorem 1.1. Indeed, one can show

thatHk(M4,n) vanishes for k ≤ 9 by fixing a single prime p, giving approximate

point counts over Fq for q = pm, up to o(q
9
2

+n), and applying the following

general fact.

Fix a prime p, and let Zp denote the p-adic integers.

Proposition 3.1. Let X be a smooth and proper DM stack of relative

dimension d over Zp, and let ‹Fp be a lift of the geometric Frobenius endomor-

phism. Fix an integer s ≥ d, and assume there is a polynomial P (t) =
∑

i Pi t
i

with rational coefficients such that #X(Fpm) = P (pm) + o(pms/2) as m → ∞.

Then

• dimH i(XC) = 0 for all odd i ≥ s;
• dimH2i(XC) = Pi for all s/2 ≤ i ≤ d; and

• all eigenvalues of ‹Fp acting on H2i
ét (XQp

,Q`) for ` 6= p are pi for s/2 ≤ i ≤ d.

Proof. Let di = dimH i
ét(XQp

,Q`), and let {αi,j , 1 ≤ j ≤ di} be the

eigenvalues of ‹Fp acting on H i
ét(XQp

,Q`). By comparing H i
ét(XQp

,Q`) with

H i
ét(XFp

,Q`) ([vdBE05, Prop. 3.1]) and applying the Behrend–Grothendieck–

Lefschetz trace formula (1), we have

2d∑
i=0

(−1)i
∑

1≤j≤di

αmi,j = P (pm) + o(pmd/2)

as m→∞. Then [vdBE05, Lemma 4.1] tells us that di = 0 for all odd i ≥ s,

and all eigenvalues of ‹Fp acting on H2i
ét (XQp

,Q`) are pi for s/2 ≤ i ≤ d. The

rest of the theorem follows by applying the `-adic étale to singular comparison

theorem and the universal coefficients theorem. �

Applying Proposition 3.1 with X = M4,n and s = 9 + 2n, we have the

following.

Corollary 3.2. Suppose there is a polynomial P ∈ Q[t] such that for

q = pm, #M4,n(Fq) = P (q) + o(q
9
2

+n) as m → ∞. Then Hk(Mg,n) = 0 for

all odd k ≤ 9.

Similarly, to prove Theorem 1.4, it suffices to show that the stated polyno-

mial counts are correct up to o(q
9+n
2 ); this follows by applying Proposition 3.1

with X =M4,n and s = 9 + n.
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4. The polynomial point count property for the boundary divisor

As explained in the introduction, our approach to showing thatM4,n has

polynomial point count depends in an essential way on knowing that the bound-

ary divisor ∂M4,n has polynomial point count. This is established inductively,

as follows.

Notation 4.1. Say (g′, n′) ≺ (g, n) if (g′, n′) <lex (g, n) and 2g′ + n′ ≤
2g + n.

Each stratum of ∂Mg,n is a finite quotient
(∏

iMgi,ni

)
/G, where each

(gi, ni) ≺ (g, n).

Say that a DM stack X over Z has polynomial point count if #X(Fq) is a

polynomial in q.

Proposition 4.2. Suppose Mg′,n′ has polynomial point count for all

(g′, n′) ≺ (g, n). Then

(1) every eigenvalue of Fp on H•c,ét((Mg′,n′)Fp
,Q`), for (g′, n′) ≺ (g, n), is a

power of p;

(2) the open moduli space Mg′,n′ has polynomial point count for all (g′, n′) ≺
(g, n);

(3) the boundary divisor ∂Mg,n has polynomial point count.

Proof. Assume Mg′,n′ has polynomial point count for all (g′, n′) ≺ (g, n).

SinceMg′,n′ is smooth and proper over Z, it follows that the odd cohomology

ofMg′,n′ vanishes with rational coefficients, and every eigenvalue of Fp acting

on H2k
ét ((Mg′,n′)Fp

,Q`) is pk.

To prove (1), consider the weight spectral sequence associated to the nor-

mal crossing compactificationMg′,n′ ⊂Mg′,n′ , as in [PW21, §2.3]. The bound-

ary is stratified according the topological types of the stable curves, which are

encoded by the marked dual graphs, as in [AC98]. Let MG be the locus of

curves with dual graph G, and let M̃G be the normalization of its closure.

Then

M̃G
∼=
( ∏
v∈V (G)

Mgv ,nv

)
/Aut(G),

where gv and nv denote the genus and valence, respectively, of a vertex v, and

hence

H•(M̃G) =
( ⊗
v∈V (G)

H•(Mgv ,nv)
)Aut(G)

.

The weight spectral sequence abuts to the compactly supported cohomology

of Mg,n, collapses at E2, and has E1-page given by

(3) Ej,k1 =
⊕

|E(G)|=j

Hk(M̃G).
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If we take this spectral sequence in `-adic étale cohomology, after basechange

to Fp, then it is a spectral sequence of Galois representations [Pet17, Exam. 3.5].

The odd rows vanish, and every eigenvalue of Fp acting on the row E•,2k1 is pk.

This proves (1).

Moreover, the dimension of Ej,k1 is independent of the prime p and every

eigenvalue of Frobenius acting on H•c,ét((Mg′,n′)Fp
,Q`) is an integer power of p.

The Behrend–Grothendieck–Lefschetz trace formula (1) tells us thatMg′,n′ has

polynomial point count. This proves (2).

Finally, note that ∂Mg,n is the disjoint union of the spaces

MG =
∏

v∈V (G)

Mgv ,nv/Aut(G),

where (gv, nv) ≺ (g, n) for all v. The arguments above show that MG has

polynomial point count for each graph G. This proves (3). �

To determine the polynomials #M4,n(Fq) and #M4,n(Fq) from the ap-

proximate polynomial points that we compute in Sections 8.1–8.3, we must

know the precise point count for the boundary ∂M4,n. The computation of

the latter involves the symmetric group action on the cohomology of Mg′,n′

for (g′, n′) ≺ (4, n), due to the Aut(G)-invariants in (3); see Section 9.

5. Counting hyperelliptic curves with up to three marked points

Let Hg,n ⊂Mg,n be the closed substack of n-marked hyperelliptic curves

for g ≥ 2. Here, we recall the computation of #Hg,n(Fq) for n ≤ 3. We follow

the arguments from [Ber09], which explains such computations more generally

for n ≤ 7. For simplicity, we present proofs only in the case where q is odd

and give a reference for the general case.

Let q denote an odd prime power. The stack Hg of hyperelliptic curves

of genus g over SpecZ
[

1
2

]
is a global quotient of the space of homogeneous

polynomials of degree 2g + 2 with non-vanishing discriminant by a connected

linear algebraic group G with #G(Fq) = (q2−1)(q2− q) [AV04, Cor. 4.7]. The

discriminant vanishes if and only if the polynomial is divisible by the square

of a non-constant polynomial. We therefore dehomogenize and consider the

set Pg of squarefree polynomials of degree 2g + 2 or 2g + 1 in a single variable

over Fq. Since any polynomial can be written uniquely as the product of a

square-free polynomial and the square of a monic polynomial, we get

(q−1)(q2g+2+q2g+1) = #Pg+#Pg−1 ·q+. . .+#P1 ·qg−1+#P0 ·qg+(q−1)qg+1.

Note that #P0 = q2(q − 1). Then a simple induction shows that #Pg =

(q − 1)(q2g+2 − q2g) for g ≥ 1 and

(4) #Hg(Fq) =
#Pg

#G(Fq)
= q2g−1

for g ≥ 2; cf. [BG01, Prop. 7.1].
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Proposition 5.1. The point counts #Hg,n(Fq) for g ≥ 2 and n ≤ 3 are

#Hg,1(Fq) = (q + 1)q2g−1, #Hg,2(Fq) = (q + 2)q2g − 1,

#Hg,3(Fq) = (q2 + 3q − 1)q2g − 3q.

We give a short proof in the case where q is odd. The same polynomial

formulas hold in general; see [Ber09, Th. 10.3]. Knowing these point counts

for odd q is sufficient for the purpose of proving our main theorems, since

[vdBE05, Th. 2.1] only requires point counting information over a set of primes

of Dirichlet density 1.

Lemma 5.2. Assume q is odd. Then∑
C∈[Hg(Fq)]

(q + 1−#C(Fq))k

# Aut(C)
=

{
0 if k is odd,

q2g − 1 if k = 2.

Proof. Let Cf be the closure in P(1, 1, g + 1) of the affine curve given by

y2 = f(x) for f ∈ Pg. Since q is odd, every hyperelliptic curve is of this form.

Fix a non-square t ∈ Fq. Then the map Cf 7→ Ctf induces an involution on

[Hg(Fq)], and # Aut(Cf ) = # Aut(Ctf ). Moreover,

q + 1−#Cf (Fq) = −(q + 1−#Ctf (Fq)).

This proves the lemma when k is odd.

It remains to consider the case k = 2. Let χ be the quadratic character

on Fq, so χ(a) is 0 if a is zero, 1 if a is a non-zero square, and −1 if a is a

non-square. Then∑
C∈[Hg(Fq)]

(q + 1−#C(Fq))2

# Aut(C)

=
1

#G(Fq)
∑
f∈Pg

( ∑
x∈P1(Fq)

χ
(
f(x)

))2

=
1

#G(Fq)
∑
f∈Pg

( ∑
x∈P1(Fq)

χ
(
f(x)

)2
+

∑
x 6=y∈P1(Fq)

χ
(
f(x)

)
χ
(
f(y)

))
.

Note that
∑

f∈Pg
χ(f(x))2 is the number of polynomials in Pg that do not

vanish at x. This is independent of x, and evaluating at x =∞ shows∑
f∈Pg

∑
x∈P1(Fq)

χ
(
f(x)

)2
= (q + 1)(q − 1)(q2g+2 − q2g+1)

= q2g ·#G(Fq).

Also, if we take the sum over all polynomials of degree at most d ≥ 2,∑
deg(f)≤d

∑
x 6=y

χ
(
f(x)

)
χ(f(y)),
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then the total is zero, by interpolation. An inductive argument, again using

the fact that every polynomial can be written uniquely as the product of a

square free polynomial and the square of a monic polynomial, shows that∑
f∈Pg

∑
x 6=y

χ
(
f(x)

)
χ
(
f(y)

)
= −#G(Fq),

and the lemma follows. �

Proof of Proposition 5.1. Assume q is odd. Applying Lemma 5.2 for k = 1

and (4), we have

#Hg,1(Fq) =
∑

C∈[Hg(Fq)]

#C(Fq)
# Aut(C)

= (q + 1)q2g−1.

Applying Lemma 5.2 also for k = 2, 3, we find

#Hg,2(Fq) =
∑

C∈[Hg(Fq)]

#C(Fq)
(
#C(Fq)− 1

)
# Aut(C)

= (q2 + q) #Hg(Fq) +
∑

C∈[Hg(Fq)]

(q + 1−#C(Fq))2

# Aut(C)

= (q + 2)q2g − 1

and

#Hg,3(Fq) = (q3 − q) #Hg(Fq) + 3q

×
∑

C∈[Hg(Fq)]

(q + 1−#C(Fq))2

# Aut(C)
= (q2 + 3q − 1)q2g − 3q,

as required. �

6. Counting non-hyperelliptic curves

via the classification of quadrics

Recall that the image of the canonical embedding of a non-hyperelliptic

curve C of genus 4 is the complete intersection of a quadric and a cubic in P3.

Conversely, every smooth (2, 3)-complete intersection in P3 is a canonically

embedded curve of genus 4. Thus the moduli stack of non-hyperelliptic curves

M4rH4 is naturally identified with the quotient of the space of smooth (2, 3)-

complete intersections in P3 by the action of Aut(P3) = PGL4. Since PGL4 is

a connected linear algebraic group, we can therefore count points over Fq in

this moduli stack using Proposition 1.3(ii), as follows. Let

S23(Fq) := {smooth (2, 3)-complete intersections in P3 over Fq}.

Then

(5) #(M4 rH4)(Fq) = #S23(Fq) /#PGL4(Fq).
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We compute the right-hand side of (5) by summing over cases according to

the PGL4(Fq)-orbit of the unique quadric containing the canonically embedded

curve and using the orbit stabilizer theorem.

The quadric containing a canonically embedded genus 4 curve is neces-

sarily reduced and irreducible. There are precisely three PGL4(Fq)-orbits of

reduced and irreducible quadric surfaces in P3 over Fq, represented by

• a quadric cone Qcon ∼= P(1, 1, 2);

• a non-split smooth quadric Qnsp of Picard rank 1 over Fq;
• a split smooth quadric Qspl ∼= P1 × P1.

Note that Qnsp becomes isomorphic to P1 × P1 after base change to Fq2 . The

non-trivial element of Gal(Fq2 |Fq) interchanges the two P1 factors; the geomet-

ric Frobenius is given by

([x0 :x1], [y0 :y1]) 7→ ([yq0 :yq1], [xq0 :xq1]).

Let N con(q) be the number of smooth curves of degree 6 in P(1, 1, 2) over Fq.
Similarly, let Nnsp(q) and N spl(q) be the number of smooth curves in Qnsp and

Qspl, resp., defined over Fq that that have geometric bidegree (3, 3) in P1×P1.

Proposition 6.1. The number of non-hyperelliptic curves of genus 4 over

Fq is

#(M4 rH4)(Fq) =
N con(q)

# Aut(Qcon)
+

Nnsp(q)

# Aut(Qnsp)
+

N spl(q)

# Aut(Qspl)
.

Proof. First, we note that each automorphism of Qcon extends to a linear

automorphism of P3, because the linear series of hyperplane sections is com-

plete. Thus, Aut(Qcon) is naturally identified with the subgroup of PGL4(Fq)
that stabilizes Qcon. Furthermore, since the linear series of cubic sections is

complete, N con(q) is the number of smooth (2,3)-complete intersections that

lie on a fixed Qcon. Thus, by the orbit-stabilizer theorem, we have

N con(q)

# Aut(Qcon)
=

#{C ∈ S23(Fq) : C lies on a quadric cone}
#PGL4(Fq)

.

Similarly,

Nnsp(q)

# Aut(Qnsp)
=

#{C ∈ S23(Fq) : C lies on a non-split quadric}
#PGL4(Fq)

and
N spl(q)

# Aut(Qspl)
=

#{C ∈ S23(Fq) : C lies on a split quadric}
#PGL4(Fq)

.

Hence, the proposition follows from (5), since every C ∈ S23(Fq) lies on a

unique quadric. �

Proposition 6.1 extends naturally to canonically embedded genus 4 curves

with n marked points for n ≤ 3. Let N con
n (q) be the number of tuples

(C; p1, . . . , pn), where C is a smooth (2, 3)-complete intersection on Qcon(q)
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and p1, . . . , pn are distinct Fq-rational points on C, and similarly for Nnsp
n (q)

and N spl
n (q).

Proposition 6.2. The number of n-pointed non-hyperelliptic curves of

genus 4 over Fq is

#(M4,n rH4,n)(Fq) =
N con
n (q)

# Aut(Qcon)
+

Nnsp
n (q)

# Aut(Qnsp)
+

N spl
n (q)

# Aut(Qspl)
.

The orders of these automorphism groups are readily computed:

# Aut(Qcon) = q7 − q6 − q5 + q4, # Aut(Qnsp) = 2(q6 − q2),

# Aut(Qspl) = 2(q3 − q)2.
(6)

The following sections are devoted to estimating N con
n (q), Nnsp

n (q), and N spl
n (q)

for n ≤ 3, using a sieve for counting smooth curves in a family that allows for

efficient computation of approximate point counts via properties of Hasse–Weil

zeta functions.

7. A Hasse–Weil sieve for counting smooth curves in families

We begin by recalling the sieve method introduced for counting smooth

curves in linear series over finite fields in [Ber08, §6]. The sieve works equally

well to count smooth fibers in arbitrary families of curves, not just linear

series, and can be adapted in the evident way for families of higher dimensional

varieties. Here, we focus on families of curves.

Let C → V be a surjective family of curves in a variety X over Fq. We

wish to count the smooth curves in this family, i.e., we want to determine

NC := #{v ∈ V (Fq) : Cv is smooth}.

We do so by starting with #V (Fq) and then adding and subtracting terms that

account for singularities. For a non-empty partition λ, let X(λ) be the set of

0-dimensional subsets Z ⊂ X such that the geometric Frobenius Fq acts on

Z(Fq) with orbit type λ. These are exactly the λ-tuples from [Ber08, Def. 4.7].

Proposition 7.1 ([Ber08, §6]). Suppose all fibers of C → V are reduced.

Then

(7)

NC = #V (Fq) +
∑
λ

∑
Z∈X(λ)

(−1)`(λ) ·#{v ∈ V (Fq) : Cv is singular along Z}.

The proof is elementary; if C is a singular fiber, then
∑

Z⊂Csing(−1)`(λZ) =

−1, where Z ranges over non-empty subsets of Csing defined over Fq and λZ is

the orbit type of Fq acting on Z(Fq).
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Remark 7.2. For applications to families that include non-reduced fibers,

one approach is to modify the sieve and account for the non-reduced fibers

separately, as in [Ber08, Def. 6.3]. Under favorable circumstances, when the

non-reduced locus of each fiber has only even cohomology, one may also apply

the sieve directly and the contributions from non-reduced fibers eventually

cancel; see Proposition 7.4.

Here, we reinterpret Proposition 7.1 in terms of Hasse–Weil zeta func-

tions to see that it can be extended to many families with non-reduced fibers,

including the complete linear series on quadrics spanned by canonically em-

bedded genus 4 curves discussed in Section 6. We also discuss truncations of

the sieve, obtained by summing over partitions of bounded length, and sys-

tematically controlling the error terms in the resulting approximations of NC .

The approximations obtained in this way are typically better than one might

naively expect. Indeed, as is well known to practitioners of point-counting,

there are often remarkable cancellations among the terms in sums such as (7).

For instance, if we fix d ≥ 2 and restrict the sum to partitions λ ` d, then the

combined contribution of all partitions of d is typically orders of magnitude

smaller than the contribution of any given partition. These cancellations can

be explained and systematically quantified by reinterpreting (7) in terms of

coefficients of inverse Hasse–Weil zeta functions and using fundamental facts

about eigenvalues of Frobenius acting on compactly supported `-adic étale co-

homology, as we now discuss.

Recall that the Hasse–Weil zeta function of a variety Y over Fq is

Z(Y ; t) := exp
(∑

m

#Y (Fqm)

m
tm
)
.

Then an elementary argument, given by Vakil and Wood in the context of

motivic discriminants, shows that the inverse of the Hasse–Weil zeta function

satisfies

(8)
1

Z(Y ; t)
=
∑
d

(∑
λ`d

(−1)`(λ) ·#Y (λ)
)
· td,

where #Y (λ) denotes the number of Frobenius-stable subsets of Y (Fq) with

orbit type λ; see [VW15, Prop. 3.7]. The usefulness of this formula for point

counting sieves and curve counting over finite fields was noted recently by

Wennink [Wen20, p. 37].

Definition 7.3. Let

sd(Y ) :=
∑
λ`d

(−1)`(λ) ·#Y (λ)

be the coefficient of td in the inverse Hasse–Weil zeta function of Y .
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Note that s0(Y ) = 1 for all Y . Also, Hasse–Weil zeta functions and their

inverses are multiplicative for disjoint unions, so Z(∅; t) = 1, and

(9)
1

Z(Y ; t)
=

1

Z(Y1; t) · Z(Y2; t)
for Y = Y1 t Y2.

In particular, if y ∈ Y is a point, then

(10)
1

Z(Y r y; t)
=

1

1− t
· 1

Z(Y ; t)
.

The Hasse–Weil zeta function is characterized in terms of the action of

the geometric Frobenius Fq on even and odd compactly supported étale coho-

mology, as follows:

(11)
1

Z(Y ; t)
=

det
(
1− t Fq |Heven

c,ét (YFq
,Q`)

)
det
(
1− t Fq |Hodd

c,ét (YFq
,Q`)

) .
This is a consequence of the Grothendieck–Lefschetz trace formula (1).

Proposition 7.4. Let Y be a non-empty algebraic variety (possibly re-

ducible or disconnected) that is proper over Fq and such that Hodd
ét (YFq

,Q`)=0.

Then

sd(Y ) = 0 for d > dimHeven
ét (YFq

,Q`), and
∑
d

sd(Y ) = 0.

Proof. By (11), the inverse Hasse–Weil zeta function 1
Z(Y ;t) is a polynomial

in t of degree equal to dimHeven
ét (YFq

,Q`). Furthermore, it is divisible by (1−t),
since 1 is an eigenvalue of Fq acting on H0

ét(YFq
,Q`). �

Recall that when X is an algebraic variety over Fq, we write X(λ) for the

set of Fq-stable subsets of X(Fq) with orbit type λ. The following proposition,

which we call the Hasse–Weil sieve, allows one to precisely count smooth fibers

in a family of curves in X, even when some fibers are non-reduced, provided

that the singular locus of each fiber has no odd cohomology.

Proposition 7.5. Let C → V be a surjective family of curves in a proper

variety X over Fq . Denote the number of smooth fibers by

NC = #{v ∈ V (Fq) : Cv is smooth},

and let

(12) Sd :=
∑
λ`d

∑
Z∈X(λ)

(−1)`(λ) ·#{v ∈ V (Fq) : Cv is singular along Z}.

Suppose Hodd
ét ((Csing

v )Fq
,Q`) = 0 for all v ∈ V (Fq). Then

Sd = 0 for d� 1 and NC = #V (Fq) +
∑
d≥1

Sd.
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Note that the vanishing condition Hodd
ét ((Csing

v )Fq
,Q`) = 0 is satisfied

whenever Cv is reduced, since then the singular locus is just a finite set of

points.

Proof. The right-hand side of (12) may be rewritten as
∑

v∈V (Fq) sd(C
sing
v ).

By Proposition 7.4, we know that sd(Csing
v ) = 0 for d sufficiently large. More-

over, ∑
d≥0

sd(Csing
v ) =

{
1 if Cv is smooth,

0 otherwise,

and the proposition follows. �

Remark 7.6. Proposition 7.5 is useful not only for exactly counting the

number of smooth fibers of C → V , but also for efficiently approximating NC .

Consider the truncation

NC [k] := #V (Fq) +
∑
d≤k

Sd.

When the hypotheses of Proposition 7.5 are satisfied, we have

NC −NC [k] =
∑
d>k

Sd.

Then the terms Sd for d > k can be estimated by stratifying V according to the

topological type of the fibers. The eigenvalues of Fq acting on H0
ét((C

sing
v )Fq

,Q`)

are roots of unity, and the eigenvalues of Fq acting on H2
ét((C

sing
v )Fq

,Q`) are

roots of unity times q.

We conclude with examples showing that the hypothesisHodd
ét ((Csing

v )Fq
,Q`)

= 0 is satisfied for the families of curves on quadrics that we will use for count-

ing points in (M4,n rH4,n)(Fq), as discussed in Section 6.

Example 7.7. Let V ∼= A15 be the space of complete intersections of a

quadric cone Qcon ⊂ P3 with a cubic surface that does not contain the cone

point, with C → V the restriction of the linear series to this open subspace.

The singular locus of any non-reduced fiber is isomorphic to P1, and the

étale cohomology of a non-reduced scheme agrees with that of its reduced

induced subscheme. We compute that

s0(P1) = 1, s1(P1) = −1− q, s2(P1) = q, and sd(P1) = 0 for d > 2.

In particular, Proposition 7.5 applies, so we can count smooth fibers by apply-

ing the Hasse–Weil sieve to the family over V . Moreover, the contribution of

each non-reduced curve to the truncated count NC [k] vanishes for k ≥ 2.
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Let Cred → V red be the restriction of C → V to the open locus V red of

reduced curves. Thus,

NC [k] = NCred [k] for k ≥ 2.

In particular, there is no need to modify the naive sieve given by Proposi-

tion 7.1 to count smooth fibers in C → V , as long as one groups terms ap-

propriately, as in the Hasse–Weil sieve, and the estimates that we get from

truncated counts are equally accurate, regardless of whether or not we include

non-reduced fibers.

Example 7.8. Let Qnsp ⊂ P3 be a non-split quadric over Fq, and let C →
V ∼= P15 be the linear series of complete intersections of Qnsp with cubics.

The singular locus of any non-reduced fiber is either a curve of geometric

bidegree (1, 1), which may be smooth or singular, or the disjoint union of such

a (1, 1)-curve with a point (the singular locus of the residual (1, 1)-curve). In

all four cases, the odd cohomology of the singular locus vanishes, and hence

we may apply Proposition 7.5 to count the smooth fibers. Moreover, since the

cohomology of the singular locus of each non-reduced fiber has dimension at

most 4, we have NC [k] = N red
C [k] for all k ≥ 4.

Example 7.9. Let Qspl ⊂ P3 be a split quadric over Fq. We again consider

the linear series of complete intersections with cubics C → V ∼= P15. In this

case, the non-reduced locus is either a line in one of the rulings or a (1, 1)-

curve, which may be smooth or singular. In both cases, the residual reduced

curve (of type (1, 3) or (1, 1), respectively) may be smooth or singular. In

all cases, the odd cohomology of the singular locus of each non-reduced fiber

vanishes, and hence we may apply Proposition 7.5 to count the smooth fibers.

Moreover, since the cohomology of the singular locus of each non-reduced fiber

has dimension at most 5, we have NC [k] = N red
C [k] for all k ≥ 5.

8. Applying the Hasse–Weil sieve

to count genus 4 curves on quadrics

We now count non-hyperelliptic curves of genus 4, by counting canoni-

cally embedded curves on each of the three isomorphism classes of irreducible

quadric surfaces over Fq, as outlined in Section 6. In each case, we apply the

Hasse–Weil sieve presented in Section 7 to count smooth fibers in an appropri-

ate family of curves on the given surface.

8.1. Canonically embedded genus 4 curves on a quadric cone. LetQcon⊂P3

be a quadric cone over Fq, with Ccon → V con ∼= A15 the space of complete

intersection curves of Qcon with a cubic that does not pass through the vertex

of the cone.



ODD COHOMOLOGY VANISHING ON MODULI SPACES OF STABLE CURVES 1341

Note that the smooth locus X := (Qcon)sm can be decomposed as X =

A2 t A1, so

(13)
1

Z(X; t)
= (1− qt)(1− q2t) = 1− (q2 + q)t+ q3t2.

As in Proposition 7.5, set

Sd(Ccon) :=
∑
λ`d

∑
Z∈X(λ)

(−1)`(λ) ·#
{
v ∈ V con(Fq) : Z ⊂ (Ccon

v )sing
}
.

Proposition 8.1. The Hasse–Weil sieve terms Sd(Ccon) for d ≤ 3 are

S0(Ccon) = q15; S1(Ccon) = −q14 − q13; S2(Ccon) = q12; S3(Ccon) = 0.

Proof. By rearranging terms, we have

Sd(Ccon) =
∑

v∈V con(Fq)

sd((Ccon
v )sing).

Thus S0(Ccon) = #{v ∈ V con(Fq)} = q15. Being singular at any point in X(Fq)
imposes three linear conditions, so

S1(Ccon) = q12 · s1(X) = −q14 − q13.

Any fiber singular at two geometric points of a line in Qcon must contain

the line and hence the vertex. Being singular at two non-collinear geometric

points imposes six linear conditions. Thus S2(Ccon) is q9 times the Hasse–Weil

count of non-collinear pairs of points in Qcon:

S2(Ccon) = q9 · (s2(X)− (q + 1)s2(A1)) = q12.

Singularities at three non-collinear points impose nine conditions. It fol-

lows that S3(Ccon) is equal to q6s3(X) = 0 plus terms divisible by s2(A1) = 0

or s3(A1) = 0 for triples containing two or three collinear points. Thus

S3(Ccon) = 0. �

Let V con
n ⊂ V con × (Qcon)n be the incidence variety parametrizing tuples

(C; p1, . . . , pn) where p1, . . . , pn are distinct points on C, and let Ccon
n → V con

n

be the universal n-pointed curve.

Proposition 8.2. The Hasse–Weil sieve terms Sd(Ccon
n ) for d, n ≤ 3 are

S0(Ccon
1 ) q16 + q15

S1(Ccon
1 ) −q15 − 3q14 − q13 + q12

S2(Ccon
1 ) 2q13 + q12 − q11

S3(Ccon
1 ) 0

S0(Ccon
2 ) q17 + 2q16 − q14

S1(Ccon
2 ) −q16 − 5q15 − 3q14 + 3q13 + 2q12

S2(Ccon
2 ) 3q14 + 4q13 − 3q12 − 3q11 + q10

S3(Ccon
2 ) −q12 + q11 + q10 − q9

S0(Ccon
3 ) q18 + 3q17 − 5q15 − q14 + 2q13

S1(Ccon
3 ) −q17 − 7q16 − 6q15 + 12q14 + 7q13 − 5q12

S2(Ccon
3 ) 4q15 + 9q14 − 10q13 − 9q12 + 6q11

S3(Ccon
3 ) −3q13 + 5q12 − 5q11 + 7q10 + 2q9 − 12q8 + 6q7



1342 JONAS BERGSTRÖM, CAREL FABER, and SAM PAYNE

Proof. Start with n = 1. A point in X imposes one linear condition on

curves in Ccon, so S0(Ccon
1 ) = q14(q2 + q). The computations of Sd(Ccon

1 ) for

1 ≤ d ≤ 3 are similar to those of Sd(Ccon), taking into account whether or not

the singularity is at the marked point x, and using (10) to compute 1
Z(Xrx;t) .

Being singular at a point imposes three conditions except when the singularity

coincides with the marked point x, where a singularity is only two conditions, so

S1(Ccon
1 ) = q11(q2 + q)s1(X r x) + q12(q2 + q)s1(x).

The formula for S1(Ccon
1 ) follows, since s1(Xrx) = −q2−q+1 and s1(x) = −1.

Similarly, letting L be the line through the marked point, and discarding terms

divisible by s2(A1) = 0, we have

S2(Ccon
1 ) = q8(q2 + q) · (s2(X r x)− s2(Lr x))− q9 · (q2 + q) · s1(X r L).

The formula for S2(Ccon
1 ) follows, since s2(X r x) = q3 − q2 − q + 1 and

s2(Lr x) = 1− q.
For n = 2, note that passing through two points imposes two linear con-

ditions, so

S0(Ccon
2 ) = (q2 + q)(q2 + q − 1)q13.

The remaining computations are again similar to those for n = 1, taking into

account how many of the singularities coincide with marked points. For in-

stance, S2(Ccon
2 ) is equal to

(q2 + q)(q2) ·
(
q7(s2(X r 2pt)− 2s2(Gm)) + 2q8(q2 − 1) + q9

)
,

coming from configurations where the marked points are not collinear, plus

(q + 1)(q)(q − 1)(2q8)(q2)

from configurations where the marked points are collinear. Here, 2s2(Gm) =

2 − 2q is the Hasse–Weil count of configurations of two points collinear with,

but distinct from, a marked point, and 2(q2 − 1) is the count of non-collinear

pairs including exactly one marked point.

To compute S3(Ccon
2 ), note that the three singularities lie on a unique

smooth hyperplane section. For a fixed hyperplane that contains at most one

of the marked points, one finds that the contribution is a sum of terms each

divisible by s3(P1) = 0 or s2(A1) = 0. It remains to consider the cases where

the hyperplane section contains both marked points. In such cases, the marked

points are necessarily not collinear. There are (q2 + q)q2 choices for two non-

collinear marked points, and q smooth hyperplane sections through each such

pair. When the hyperplane is fixed, the Hasse–Weil count is

(14) s1(Gm) · q6 − 2s2(Gm)q5 + s3(Gm)q5,

where the term involving sk(Gm) is the Hasse–Weil count of configurations

of three singularities in which k singularities are not at the marked points.
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Multiplying (14) by q5 + q4 gives the formula for S3(Ccon
2 ), using the fact that

sd(Gm) = 1− q for d ≥ 1.

The computations for Ccon
3 are again similar, only more bookkeeping is

required to keep track of how many singularities coincide with marked points,

how many marked points are coplanar with three singularities, and so on. �

Remark 8.3. These computations are more precise than what is needed

for our main results. To prove Theorems 1.4 and 1.5 via the approximate point

counting, as in Proposition 3.1, we only need to know #Sd(Ccon
3 ) up to bq13 +

o(q13) for some (undetermined) integer b. For Theorem 1.1, an approximate

count up to O(q14) would suffice. Such estimates are easier to obtain than the

computations given here; many cases can be readily discarded. Similarly, our

point counting computations in Sections 8.2–8.3 for curves whose canonical

embeddings lie on smooth quadrics are far more precise than required for our

main results.

8.2. Counting canonical genus 4 curves on a non-split quadric. Let Qnsp

be a non-split quadric over Fq, with Cnsp → V nsp ∼= P15 the linear series of

complete intersections with cubics in P3.

Applying formula (11), we see that the inverse Hasse–Weil zeta function

of Qnsp is
1

Z(Qnsp; t)
= (1− t)(1− qt)(1 + qt)(1− q2t)

and hence

s1(Qnsp) = −q2 − 1, s2(Qnsp) = 0, s3(Qnsp) = q4 + q2, s4(Qnsp) = −q4.

The Hasse–Weil zeta function of Qnsp minus finitely many points is computed

similarly, via (10).

We use the notation pn := qn + qn−1 + · · · + 1. In other words, pn =

#Pn(Fq).

Proposition 8.4. The Hasse–Weil sieve terms Sd(Cnsp) for d ≤ 3 are

S0(Cnsp) = p15, S1(Cnsp) = (−q2 − 1)p12,

S2(Cnsp) = 0, S3(Cnsp) = (q4 + q2)p6.

Proof. For n ≤ 3, singularities at any n points impose 3n linear conditions,

and hence

Sn(Cnsp) = sn(Qnsp)p15−3n. �

Let V nsp
n ⊂ V nsp × (Qnsp)n be the incidence variety parametrizing tuples

(C; p1, . . . , pn), where p1, . . . , pn are distinct points on C, and let Cnsp
n → V nsp

n

be the universal n-pointed curve.
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Proposition 8.5. The Hasse–Weil sieve terms Sd(Cnsp
n ) for d, n ≤ 3 are

S0(Cnsp
1 ) (q2 + 1)p14

S1(Cnsp
1 ) −(q4 + q2)p11 − (q2 + 1)p12

S2(Cnsp
1 ) q13 + q11

S3(Cnsp
1 ) (q6 + q4)p5 + (q4 + q2)p6

S0(Cnsp
2 ) (q4 + q2)p13

S1(Cnsp
2 ) (−q6 + q2)p10 − 2(q4 + q2)p11

S2(Cnsp
2 ) 2q14 + q13 + q12 + q11 − q10

S3(Cnsp
2 ) 3q11 + 3q10 + 5q9 + 5q8 + 3q7 + 3q6 + q5 + q4

S0(Cnsp
3 ) (q6 − q2)p12

S1(Cnsp
3 ) (−q8 + 2q6 + q4 − 2q2)p9 − 3(q6 − q2)p10

S2(Cnsp
3 ) 3(q15 + q14 − q13 − q11 − q10 + q9)

S3(Cnsp
3 ) −2q13 + 6q12 + 2q11 + 2q10 + 3q9 − 5q8 − 2q7 − 2q6 − q5 − q4

Proof. The calculations for d ≤ 2 are similar to those for Sd(Cnsp), with

additional cases according to how many of the singularities are at the marked

points. For d = 3, the three singularities lie in a unique hyperplane section.

When the hyperplane section is smooth, we consider how many of the marked

points lie on the hyperplane, since a second or third marked point in the hyper-

plane imposes no new conditions, and how many of the singularities coincide

with marked points. These computations are similar to the computation of

S3(Ccon
2 ), above.

If the hyperplane section is singular, then it is a conjugate pair of lines

meeting at a point x ∈ Cnsp(Fq). The three singularities must be x plus a

conjugate pair of points, one on each line. Being singular at two points on a

line forces containment of the line, so the curves under consideration consist of

the hyperplane section plus a residual quadric section passing through the two

conjugate points. Any set of up to three marked points outside the hyperplane

section imposes independent conditions on the residual quadric section, and the

only possible marked point in the hyperplane is x. There are q2 +1 possibilities

for the singular hyperplane section, q2 possibilities for the conjugate pair of

singular points, and q2 possibilities for marked points outside the hyperplane.

Thus, considering two cases according to whether or not x is a marked point,

we find that the contribution to S3(Cnsp
1 ) from curves with three singularities

spanning a singular hyperplane section is q2(q2 + 1)(p6 + q2p5). Similarly, the

contributions to S3(Cnsp
2 ) and S3(Cnsp

3 ) are q2(q2 + 1)(q2p5 + q2(q2− 1)p4) and

q2(q2 + 1)(q2(q2 − 1)p4 + q2(q2 − 1)(q2 − 2)p3), respectively. �

8.3. Counting canonical genus 4 curves on a split quadric. Let Qspl be

a split quadric over Fq, with Cspl → V spl ∼= P15 the linear series of complete

intersections with cubics in P3. Applying formula (11), we see that the inverse

Hasse–Weil zeta function of Qspl is

1

Z(Qspl; t)
= (1− t)(1− qt)(1− qt)(1− q2t)

and hence

s1(Qspl) = −q2−2q−1; s2(Qspl) = 2(q3 +q2 +q); s3(Qspl) = −q4−2q3−q2.
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The Hasse–Weil zeta function of Qspl minus finitely many points is computed

similarly, via (10).

Proposition 8.6. The Hasse–Weil sieve terms Sd(Cspl) for d ≤ 3 are

given by S0(Cspl) = p15:

S1(Cspl) = (−q2 − 2q − 1)p12, S2(Cspl) = 2(q3 + q2 + q)p9,

S3(Cspl) = (−q4 − 2q3 − q2)p6.

Proof. Singularities at d ≤ 2 points impose 3d independent conditions, so

Sd(Cspl) = sd(Q
spl)·p15−3d. Singularities at three points impose nine conditions

unless the points lie on a line of one of the rulings, in which case they impose

only seven conditions. When the three singularities are collinear in this way,

the line is uniquely determined, and the contribution of such configurations is

divisible by s3(P1) = 0. It follows that also S3(Cspl) = s3(Qspl) · p6. �

Let V spl
n ⊂ V spl × (Qspl)n be the incidence variety parametrizing tuples

(C; p1, . . . , pn), where p1, . . . , pn are distinct points on C, and let Cspl
n → V spl

n

be the universal n-pointed curve.

Proposition 8.7. The Hasse–Weil sieve terms Sd(Cspl
n ) for d, n ≤ 3 are

given up to o(q6) by

S0(Cspl1 ) (q + 1)2p14

S1(Cspl1 ) −(q + 1)2((q2 + 2q)p11 + p12)

S2(Cspl1 ) 3q13 + 12q12 + 21q11 + 24q10 + 24q9 + 24q8 + 24q7 + 24q6 + · · ·
S3(Cspl1 ) −3q11 − 10q10 − 15q9 − 16q8 − 16q7 − 16q6 + · · ·

S0(Cspl2 ) (q + 1)2(q2 + 2q)p13

S1(Cspl2 ) −(q + 1)2(q2 + 2q)((q2 + 2q − 1)p10 + 2p11)

S2(Cspl2 ) 4q14 + 27q13 + 61q12 + 75q11 + 73q10 + 72q9 + 72q8 + 72q7 + 70q6 + · · ·
S3(Cspl2 ) −10q12 − 31q11 − 45q10 − 49q9 − 49q8 − 47q7 − 41q6 + · · ·

S0(Cspl3 ) (q + 1)2(q2 + 2q)(q2 + 2q − 1)p12

S1(Cspl3 ) −q17 − 12q16 − 54q15 − 106q14 − 117q13 − 102q12

− 96q11 − 96q10 − 96q9 − 96q8 − 95q7 − 87q6 + · · ·
S2(Cspl3 ) 5q15 + 53q14 + 151q13 + 190q12 + 153q11

+ 141q10 + 147q9 + 142q8 + 128q7 + 90q6 + · · ·
S3(Cspl3 ) −30q13 − 96q12 − 116q11 − 94q10 − 97q9 − 93q8 − 62q7 − 24q6 + · · ·

Proof. For the terms S1(Cspl
n ), note that a singularity and n ≤ 2 marked

points impose 3 + n independent conditions, except when the singularity is

equal to a marked point. When n = 3, there is one additional case to consider:

if the singularity and all three marked points are collinear, then they impose

five conditions instead of six.
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For S2(Cspl
1 ), the two singularities and a marked point impose independent

conditions unless one singularity is equal to the marked point or all three points

are collinear, i.e., they lie on a ruling. When all three are collinear and distinct,

the contribution is divisible by s2(A1) = 0. So, we need only consider two cases,

according to whether or not one of the singularities is at the marked point.

For S2(Cspl
n ) with n = 2, 3, there are more cases to consider, which require

substantial bookkeeping but present no significant difficulties. For instance,

with n = 3 and when all five points are distinct, we distinguish cases where

both singularities lie on a horizontal ruling and one singularity and all three

marked points lie on a vertical ruling.

For S3(Cspl
1 ), the computation is similar to that of S3(Cspl). For S3(Cspl

2 ),

we consider cases according to which collections of singularities and marked

points are collinear or coplanar, and how many singularities coincide with

marked points. Many such cases give contributions divisible by s3(P1) or

sd(A1) for d ≥ 2, and hence vanish. One case with non-vanishing contribution

is of particular note: there are two singular (1,1) curves through both marked

points. Vanishing on the (1,1) curve imposes seven conditions. Adding the

three singularities gives ten total conditions, instead of the expected eleven.

The Hasse–Weil count of such configurations (for each such singular (1,1)

curve) is −s1(A1)2 = −q2, coming from configurations with one singularity

at the singular point of the (1, 1)-curve, and one additional singularity on each

of its components. Another case with non-vanishing contribution is when all

three singularities and both marked points are coplanar. The computation of

S3(Cspl
3 ) is similar, but with additional cases where a singularity is collinear

with all three marked points. �

8.4. Controlling the contribution from curves with four or more singu-

larities. In this section, we prove that the computations from the preceding

sections suffice to determine #M4,n(Fq) and hence #M4,n(Fq) for n ≤ 3. We

do so, roughly speaking, by showing that the Hasse–Weil sieve count of curves

with four or more singularities in each of the families that we considered is too

small to be relevant when applying [vdBE05, Th. 2.1].

Proposition 8.8. Suppose • ∈ {con,nsp, spl}. The remaining Hasse–

Weil sieve terms are bounded by∑
d≥4

Sd(C•n)

# Aut(Q•)
= o(q

9+n
2 )

for n ≤ 2. For n = 3, there is an integer B such that∑
d≥4

Sd(C•n)

# Aut(Q•)
= Bq6 + o(q6).
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Remark 8.9. For n = 3, we will not directly compute the coefficient B

of q6. Instead, we will use the fact that #M4,3(Fq) is a polynomial plus o(q6)

to conclude that #M4,3(Fq) is a polynomial and to determine all of the coeffi-

cients other than that of q6. We then use an Euler characteristic computation

to determine the coefficient of q6. We have also verified computationally that

the resulting polynomial is correct at q = 2, 3; see Remark 1.8.

Proof. First, we show that the contributions from non-reduced curves sat-

isfy the specified bounds. Example 7.7 shows that each non-reduced curve C

in Ccon
n has sd(C) = 0 for d ≥ 4.

From Example 7.8, we see that each non-reduced curve C in Cnsp
n has

sd(C) = O(q2) for d ≥ 4. The non-reduced curves in Cnsp
n form a family of

dimension 6 + n, and hence the total contribution is of size

O(q8+n)

# Aut(Qnsp)
= O(q2+n).

The argument for non-reduced curves in Cspl
n is similar, using Example 7.9.

The contribution for curves non-reduced along a (1, 1)-curve is bounded exactly

as for Cnsp
n . The curves whose non-reduced locus is a line in a ruling form an

8-dimensional family. Each such curve C has sd(C) = O(q) and hence the total

contribution to Sd(Cspl
n ) is

bq9+n + o(q9+n)

# Aut(Qspl)
= bq3+n + o(q3+n)

for some integer b, as required.

It remains to bound the contributions from reduced curves with four or

more singularities. We do so for curves on Qspl; the arguments for curves on

Qcon and Qnsp are analogous and simpler.

Start with the curves on Qspl that have five or more singularities. Such

curves are reducible and come in four families, with irreducible decompositions

generically of the following types:

(A) (2, 1) + (1, 2);

(B) (2, 2) + (1, 1), where the (2, 2) curve is singular;

(C) (3, 2) + (0, 1), where the (3, 2) curve has two singularities;

(D) (2, 2) + (1, 0) + (0, 1).

Each of these families is of dimension 10 and the general curve in each family

has precisely five singularities. The contribution to Sd(Cspl
n ) from any family

of reduced curves of dimension 9 trivially satisfies the stated bounds. Thus

we can ignore reduced curves with six or more singularities as well as other

degenerations, such as families of curves of type (A)–(D) with four or fewer

singularities. Such curves necessarily have non-nodal singularities; they arise,

e.g., when two components are tangent. We now address the contributions
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from the families (A)–(D), and show that each contributes a polynomial of

degree at most 9 + n to Sd(Cspl
n ).

(A): Fix a (2, 1)-curve C, which we may assume irreducible and hence

smooth and isomorphic to P1. There is a unique (1, 2)-curve through five gen-

eral points on C. For n = 0, we see that the contribution of such curves is

divisible by s5(P1) = 0. For n = 1, it is a sum of terms divisible by s5(P1) or

s4(A1), which also vanishes. For n = 2 and 3, the contributions are still poly-

nomial, and we consider cases depending on how many singularities coincide

with marked points, taking a sieve count for the moving singularities in open

subsets of P1. There are at least two moving singularities in each case, and

the Hasse–Weil sieve counts of the moving singularities on P1 minus finitely

many points is a polynomial of degree at most 1 in q, so we conclude that the

contribution to Sd(Cspl
n ) is a polynomial of degree at most 9 + n, as required.

(B): The arguments are analogous to (A), fixing the singular point of the

(2, 2)-component, fixing the (1, 1)-component, and varying the four intersection

points.

(C): This case is also analogous to (A), fixing the two singularities of the

(3, 2)-component, fixing the line, and varying the three intersection points on

the line.

(D): Fix the two lines, and let P be their point of intersection. Choose

two points away from P on either ruling. We are interested in the smooth

(2, 2)-curves intersecting the rulings in the four given points. These are curves

of genus 1 embedded with the two linear series of degree 2 and rank 1 given

by the points on the rulings. So the open set in the P4 of smooth (2, 2)-curves

through these four points is isomorphic to M1,4/(C2 × C2). It is known that

M1,n has polynomial point count for n between 4 and 7; this gives the required

polynomiality. The required cancellations arise since we vary two points on A1

and s2(A1) = 0. In fact, we have two copies of A1 on which we vary two points.

For n ≤ 2, a single A1 suffices: any choice of two marked points outside the

rulings imposes two conditions. For n = 3, things are different: when all three

marked points lie on a new ruling through one of the four given points, then

(and only then) the third marked point does not impose a new condition. The

point on the original rulings through which the new ruling passes is defined

over k, and the cancellation associated to the corresponding original ruling no

longer applies. However, the contribution of such curves is still divisible by

s2(A1), by varying the two points on the other ruling.

Thus we have shown the contributions from non-reduced curves and from

curves with five or more singularities (and their degenerations) are of the re-

quired form. It remains to control the contributions from reduced curves with

precisely four singularities, ignoring those that are degenerations of curves with

five or more singularities.
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Say that four points on Qspl ∼= P1 × P1 are in general position if no two

of them lie on a ruling and they do not all lie on an irreducible (1, 1)-curve.

If an irreducible (3, 3)-curve has four singularities, the singularities must be

in general position. The reducible (3, 3)-curves with four singularities that we

must consider are of two types:

(E) (2, 2)+(1, 1), where the four singularities lie on an irreducible (1, 1)-curve;

(F) (3, 2) + (0, 1), where the (3, 2)-curve is irreducible with one singularity.

The other three singularities lie on a ruling. (Note that when two singu-

larities lie on a ruling, the ruling necessarily contains a third singularity.)

We first deal with the reducible curves.

(E): Fix the (1, 1)-curve. For n = 0, the signed count Sd(Cspl
n ) is divisible

by s4(P1) = 0, by varying the singularities on the (1, 1)-curve. To see that this

cancellation persists for n ≤ 3, one only needs to understand in which situa-

tions an additional marked point fails to impose a condition on (3, 3)-curves

of this type. There are two such cases. First, if the marked point is on the

(1, 1)-curve, then the contribution is still divisibly by s4(P1). The other case

is when n = 3 and all three marked points lie on a ruling through one of the

four singularities. The contribution in this case is divisible by s3(A1) = 0, by

varying the other three singularities.

(F): We fix the horizontal ruling of type (0, 1) and the singularity outside

the ruling. We may assume the vertical ruling through this singularity does

not contain another singularity (the (3, 3)-curve would in general have five sin-

gularities). Varying the three remaining singularities shows that the resulting

contribution is divisible by s3(A1) = 0. It remains to consider when n ≤ 3

marked points fail to impose n independent conditions. This happens exactly

when three marked points lie on the horizontal ruling through the outside sin-

gularity, or when at least two marked points lie on the vertical ruling through

the outside singularity, or when three marked points lie on the vertical ruling

through one of the singularities on the fixed (0, 1)-curve. Only in the latter

case the choice of the singularities is affected. Two of the singularities can still

vary freely on A1, and so the contribution is still divisible by s2(A1) = 0, and

hence the cancellation persists.

It remains to consider the irreducible curves with four singularities in

general position. We claim that the Hasse–Weil count of such 4-tuples is

(q + 1)2q2(q − 1)2, i.e., #(PGL2 × PGL2)(Fq). Note that PGL2 × PGL2 acts

freely on such 4-tuples, so the total must be divisible by the order of this group.

Also, the Hasse–Weil count of 4-tuples on a (1, 1) curve is a sum of terms each

divisible by s4(P1), or sd(A1) for d ≥ 2, and hence this count is 0.

The Hasse–Weil count of all 4-tuples of points on Qspl is s4(Qspl) = q4.

From this, we may sieve to remove configurations with at least two points on

a line in the ruling. We do so by yet another sieve, removing tuples with
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at least two points on each line in some configuration of lines over Fq, with

signs according to the number of Frobenius orbits on the set of lines, just as in

Proposition 7.1. We consider cases, according to the number of lines in each

ruling that contain at least two of the four points, the number of points on each

line, and how many of the four points lie on multiple lines. All cases contribute

O(q5) except for the case of one line in each ruling, intersecting at P . Here, all

terms contribute 0 except where the 4-tuple consists of P , one more point on

each ruling, and one additional point. There are (q + 1)2 such pairs of lines,

and each contributes s1(P ) · s1(A1)2 · s1(A2) = q4. Thus the full Hasse–Weil

count of 4-tuples in general position is q6 + O(q5), and since it is divisible by

(q + 1)2q2(q − 1)2, it must be equal to (q + 1)2q2(q − 1)2, as claimed. There

is a P3 of (3, 3)-curves singular at any such configuration of four points, and

hence the total contribution of irreducible curves to S4(Cspl) is bq9 + o(q9).

Similarly, the curves of this type through configurations of nmarked points

that impose independent conditions contribute bq9+n + o(q9+n). It remains to

account for the configurations of n ≤ 3 points that impose fewer than n inde-

pendent conditions. There are four possibilities to consider. The first is when

n = 3, and all three marked points lie on a ruling through a singularity. A

simple parameter count shows that these contribute bq12 + o(q12). The second

possibility is when n ≥ 2 and the (1, 1)-curve through three of the singularities

contains at least two marked points. Without cancellations, one finds a poly-

nomial of degree at most 13, but the signed count of the three singularities on

the (1, 1) gives more cancellations than necessary. The third possibility is when

n = 3 and all four singularities and all three marked points lie on a (2, 1) or

(1, 2). The argument is analogous to the one for the second possibility. Finally,

the fourth possibility is when at least one marked point equals a singularity.

When at least two marked points equal singularities, things are easy. When

one marked point equals a singularity, the signed count of the remaining three

singularities on Qspl r {pt} gives the required cancellations. �

Remark 8.10. The counts carried out above are enough to conclude that

#M4,n(Fq) and #M4,n(Fq) are polynomials in q for n ≤ 3. Determining

these polynomials requires the precise computation of the contribution from

the boundary, which is worked out in the next section, using equivariant point

count data for (g′, n′) ≺ (g, n).

Remark 8.11. There are many options for organizing point counts and

carrying through the sieves. We have presented one approach, using the co-

efficients of inverse Hasse–Weil zeta functions systematically. One can also

carry out equivalent computations by more naive and elementary methods,

e.g., in many cases one can simply apply Proposition 7.1 directly, counting

configurations in each Frobenius orbit-type. Similarly, we used the Hasse–Weil

zeta function to take a signed count of all 4-tuples of points on Qspl and then
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sieved to remove configurations with two or more points on a line, to obtain

a signed count of 4-tuples of points in general position. But many other ap-

proaches to the same computation are possible. For instance, one could naively

and directly count configurations in general position in each orbit type under

Frobenius to find that the signed count is

1/24(q + 1)2q2(q − 1)2(q − 2)(q − 3)− 1/4(q2 − q)2(q + 1)2q(q − 1)

+ 1/3(q3 − q)2(q + 1)q − 1/4(q4 − q2)(q3 − q)(q − 1)

+ 1/8(q2 − q)2(q2 − q − 2)(q2 − 2q − 3) = (q + 1)2q2(q − 1)2.

9. Equivariant point counts and contributions from the boundary

As explained in the introduction, our point counting strategy for deter-

mining #M4,n(Fq) and #M4,n(Fq) for n ≤ 3 depends in an essential way on

knowing the corresponding boundary point counts #∂M4,n(Fq). The bound-

ary point counts are calculated using a formula of Getzler and Kapranov for the

characters of modular operads [GK98, Th. 8.3] that involves the Sn′-equivariant

Euler characteristic of Mg′,n′ for (g′, n′) ≺ (g, n). Under favorable circum-

stances, this equivariant Euler characteristic can be computed via equivariant

point counting [KL02], [Ber08]. We now recall the basics of this equivariant

point counting in the form needed for the proof of our main results.

9.1. Twisted forms and the trace formula. Let X be a variety over Fq with

σ ∈ Aut(X). Then there is a unique twisted form of X, denoted Xσ with an

isomorphism Xσ
Fq

∼−→ XFq
that identifies the geometric Frobenius action on

Xσ
Fq

with the action of σFq on XFq
. We have already seen an example of such

a twisted form in Section 6. The non-split quadric Qnsp is the twisted form of

P1×P1 associated to the involution σ that interchanges the two factors. For a

discussion of twisted forms of moduli spaces of curves obtained by permuting

marked points, see [KL02], [FHR21].

Because the endomorphism σFq is identified with the geometric Frobenius

of the twistXσ, its action on `-adic étale cohomology satisfies the Grothendieck–

Lefschetz trace formula. In particular, the graded trace of σFq acting on

H•ét(XFq
,Q`) is equal to #Xσ(Fq).

9.2. Equivariant point counts. Let X be a variety over Fq with the action

of a finite group G. Note that conjugate elements of G induce isomorphic

twisted forms of X, so #Xσ(Fq) is a class function on G.

Definition 9.1. The G-equivariant point count #GX(Fq) is the element of

the representation ring of G associated to the class function σ 7→ #Xσ(Fq).
Note that the ordinary point count #X(Fq) is the special case where G

is trivial. As with ordinary point counts, we will be particularly interested in

how #GX(Fq) varies with q.
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Remark 9.2. Although X and its G-action may be defined over Z, the

construction of the twisted form Xσ depends fundamentally on q. Even in

fixed characteristic, the construction does not commute with finite extension

of the base field. For instance, the non-split quadric over Fq2 is not the base

change of the non-split quadric over Fq. In this paper, we will always fix q

before constructing a twisted form, and we will count its points only over Fq.
Thus, even though we omit q from the notation for the twisted form, the

meaning of #Xσ(Fq) and #GX(Fq) is unambiguous.

Proposition 9.3. Suppose X is smooth and proper over Z and has poly-

nomial point count. Assume the action of G is defined over Z. Then #GX(Fq)
is a polynomial in q. More precisely, there are polynomials PV ∈ Z[t], indexed

by the irreducible representations V of G, such that

#GX(Fq) =
∑
V

PV (q) · [V ].

Moreover, if we write PV =
∑

i PV,it
i, then PV,i is the multiplicity of V in

H2i(XC,Q).

In particular, when X is smooth and proper over Z and has polynomial

point count, then we can determine H•(XC,Q) as a graded representation of

G by counting points over finite fields.

Proof. This follows from the universal coefficient theorem and the fact

that the isomorphisms produced by the standard comparison theorems for

singular and `-adic cohomology are functorial and hence G-equivariant [KL02,

Prop. 1.2]. �

Remark 9.4. Let V ∨ denote the irreducible representation dual to V .

When X is irreducible of relative dimension d over Z, equivariant Poincaré

duality tells us that PV ∨(t) = tdPV (t−1). In particular, when V is self-dual, as

is the case for all irreducible representations of Sn, the coefficients of PV have

the symmetry PV,i = PV,d−i.

The argument goes through essentially without change when X is the

coarse space of a smooth and proper DM stack over Z. It also applies equally

well to a smooth and proper DM stack X, provided that one can define the

twisted forms Xσ for σ ∈ G. For moduli spaces of stable curves with their

symmetric group actions, this can be done as follows.

The moduli space Mg,n can be realized Sn-equivariantly as the global

quotient of a smooth and proper variety Xg,n by the action of a finite group

H [BP00]. For fixed q, we can then define the twisted form Mσ
g,n := [Xσ

g,n/H]

for σ ∈ Sn. Note that Mσ
g,n is a smooth and proper DM stack over Fq and

represents the functor taking a scheme S over Fq to the set of isomorphism
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classes of families of stable curves over S with n disjoint labeled geometric

sections such that Frobenius acts on this set of sections via the permutation σ.

The irreducible representations of Sn correspond to partitions λ ` n, and

we identify these with symmetric functions in the usual way, writing sλ for the

Schur function that corresponds to the character of the irreducible represen-

tation Vλ. We write grW• for the associated graded of the weight filtration on

the cohomology of a variety or DM stack.

Corollary 9.5. SupposeMg′,n′ has polynomial point count for (g′, n′) �
(g, n). Then there are polynomials Pλ ∈ Z[t] for λ ` n such that

#SnMg,n(Fq) =
∑
λ

Pλ(q)sλ.

Moreover, the coefficient of tk in Pλ is the multiplicity of Vλ in the virtual

representation
∑

i(−1)igrW2kH
i
c(Mg,n,Q).

Proof. By Proposition 9.3, we know that #Sn′Mg′,n′ is a polynomial in q,

for (g′, n′) � (g, n), with coefficients corresponding to the multiplicities of Vλ
in the cohomology groups ofMg′,n′ . The rest of the argument is similar to the

proof of Proposition 4.2, by inspection of the weight spectral sequence for the

normal crossings compactification Mg,n ⊂ Mg,ns; see [Pet17, Exam. 3.5] and

[PW21, §2.3]. �

Thus, when Mg′,n′ has polynomial point count for (g′, n′) � (g, n), we

can determine the Sn-equivariant weight-graded Euler characteristic of Mg,n

by counting points over finite fields.

9.3. The contribution from the boundary. We compute the polynomials

#∂M4,n(Fq) for n ≤ 3, using the Sn′-equivariant point counts on Mg′,n′ , for

(g′, n′) ≺ (4, n) in the sense of Notation 4.1, i.e., for 2g′ + n′ ≤ 11, and the

Getzler–Kapranov formula for characters of modular operads [GK98, Th. 8.13].

Proposition 9.6. The boundary point counts #∂M4,n(Fq) are given by

#∂M4(Fq) = 3q8 + 12q7 + 33q6 + 50q5 + 50q4 + 32q3 + 13q2 + 4q + 1,

#∂M4,1(Fq) = 4q9 + 28q8 + 94q7 + 192q6 + 240q5 + 191q4 + 93q3

+ 31q2 + 6q + 1,

#∂M4,2(Fq) = 8q10 + 72q9 + 321q8 + 842q7 + 1362q6 + 1362q5 + 838q4

+ 321q3 + + 78q2 + 11q + 1,

#∂M4,3(Fq) = 17q11 + 200q10 + 1172q9 + 3990q8 + 8292q7 + 10606q6

+ 8296q5 + + 3977q4 + 1179q3 + 205q2 + 19q + 2.
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Proof. Fix any q. The Getzler–Kapranov formula [GK98, Th. 8.13] gives

a way to compute the (Sn-equivariant) weight-graded Euler characteristic of

∂Mg,n using the Sn′-equivariant weight-graded Euler characteristics of Mg′,n′

for (g′, n′) ≺ (g, n). We follow their notation. Using the Lefschetz trace for-

mula, it is straightforward to generalize the Getzler–Kapranov formula to point

counts, noting that pn ◦q = qn, where pn is the degree n power sum symmetric

function and ◦ denotes plethysm. Namely, if we put

Ch(V) =
∑

2(g−1)+n>0

hg−1 #SnMg,n(Fq),

with h a formal variable, then we can use this information to compute

Ch(MV)− Ch(V) =
∑

2(g−1)+n>0

hg−1 #Sn∂Mg,n(Fq).

More precisely, knowing #S′n Mg′,n′(Fq) for all (g′, n′) ≺ (g, n), we can deter-

mine #Sn ∂Mg,n(Fq). The required input for g′ ≤ 3 is readily found in the

literature; see [KL02] for g′ = 0 and [Get98], [Ber08], [Ber09] for 1 ≤ g′ ≤ 3

and (g′, n′) ≺ (4, 3).

Thus, we can use the Getzler–Kapranov formula plus previously known

results in lower genus to compute #∂M4(Fq). These lower genus results also

suffice to compute #∂M4,1(Fq).
For n = 2 and 3, some additional input is required; there is no circularity,

one proceeds inductively, increasing the number of marked points one step at a

time. We use #∂M4,1(Fq) plus an approximation to #M4,1(Fq) to determine

#M4,1(Fq) via Poincaré duality; for details, see Section 10 below. Subtracting

#∂M4,1(Fq) then gives a precise formula for #M4,1(Fq), which is used as input

to compute #∂M4,2(Fq), and so on. Note that the equivariant point count

#S2M4,2(Fq) is not required to determine #∂M4,3(Fq). The ordinary point

count #M4,2(Fq) suffices because there is only one stable graph of genus 4

with three marked points that has a vertex of genus 4 and valence 2, and it

does not have any non-trivial automorphisms.

The actual computations were carried out using the computer software

Maple and the symmetric polynomial package SF [Ste]. �

10. Proof of Theorems 1.4 and 1.5

In this section, we discuss how to put together the approximate point

counts onM4,n(Fq) with the boundary point counts from the previous section

to obtain precise point counts for M4,n and M4,n for n ≤ 3 and thus prove

our main results stated in the introduction.
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10.1. Proof of Theorems 1.4 and 1.5. Consider first the case n = 0. By

Propositions 8.1 and 8.8, we have

N con(Fq) = q15 − q14 − q13 + q12 + o(q
23
2 ).

Similarly, Propositions 8.4, 8.6, and 8.8 give

Nnsp(Fq) = q15−q12−q11+o(q
21
2 ) and N spl = q15−2q13−q12+q11+o(q

21
2 ).

By Proposition 6.2 we can get the count of all non-hyperelliptic curves by

dividing these counts by the orders of the respective automorphism groups, as

given in (6), and summing to get

#(M4 rH4)(Fq) = q9 + q8 − q6 + o(q
9
2 ).

We then add #H4(Fq) = q7 and #∂M4(Fq) = 3q8 +12q7 +33q6 +50q5 +o(q
9
2 )

to find

#M4(Fq) = q9 + 4q8 + 13q7 + 32q6 + 50q5 + o(q
9
2 ).

By [vdBE05, Th. 2.1], it follows that #M4(Fq) is a polynomial in q and, by

Poincaré duality, the polynomial must be

#M4(Fq) = q9 + 4q8 + 13q7 + 32q6 + 50q5 + 50q4 + 32q3 + 13q2 + 4q + 1.

Subtracting #∂M4(Fq) then gives

#M4(Fq) = q9 + q8 + q7 − q6,

as required. The computations for n = 1 and n = 2 are similar. Note that for

n = 2, one uses #M4,1(Fq) as input for calculating #∂M4,2(Fq).
For n = 3, the analogous computations show that

#M4,3(Fq) = q12 + 21q11 + 207q10 + 1168q9 + 3977q8 + 8296q7 +Bq6 + o(q6)

for some integer B. Again, [vdBE05, Th. 2.1] shows that #M4,3(Fq) is a

polynomial in q. Applying Poincaré duality for M4,3(Fq) and subtracting

#∂M4,3(Fq) (which is determined using #M4,2(Fq)) then gives

#M4,3(Fq) = q12 + 4q11 + 7q10 − 4q9 − 13q8 + 4q7

+ (B − 10606)q6 − 11q4 + 2q2 + 2q − 1.

Evaluating at q = 1 gives the Euler characteristic, and χ(M4,3) = −10, e.g.,

by [Gor14]. We conclude that B = 10605, and the theorems follow.

11. Sn-equivariant point counts on M4,n and M4,n for n = 2, 3

As we have seen, knowing the Sn′-equivariant point counts on Mg′,n′

for (g′, n′) ≺ (g, n) is essential for determining the boundary point count

#∂Mg,n(Fq). Moreover, we know that the equivariant point counts on M4,2,

M4,3, M4,2 and M4,3 are polynomial, by Proposition 9.3 and Corollary 9.5.

For future work, it will be essential to know these polynomials.
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Theorem 11.1. The Sn-equivariant point counts on M4,n(Fq) and

M4,n(Fq) for n = 2, 3 are

#S2(M4,2)(Fq) (q11 + 9 q10 + 55 q9 + 220 q8 + 561 q7 + 901 q6 + · · ·+ 9 q + 1) s2

+(2 q10 + 21 q9 + 99 q8 + 277 q7 + 461 q6 + · · ·+ 21 q2 + 2 q) s12

#S3(M4,3)(Fq) (q12 + 11 q11 + 87 q10 + 424 q9 + 1347 q8 + 2694 q7 + 3414 q6 + · · ·+ 1) s3

+ (5 q11 + 58 q10 + 349 q9 + 1220 q8 + 2578 q7 + 3304 q6 + · · ·+ 5 q) s21

+ (4 q10 + 46 q9 + 190 q8 + 446 q7 + 583 q6 + · · ·+ 46 q3 + 4 q2) s13

#S2(M4,2)(Fq) (q11 + 2q10 + 3q9 − 2q8 − 2q7 − q3 − q2)s2 + (q10 + q9 − 2q7 − q3 − q2)s12

#S3(M4,3)(Fq) (q12 + 2q11 + 3q10 − 2q9 − 4q8 + 2q7 − q6 − q3 + 2q2)s3
+ (q11 + 2q10 − q9 − 4q8 + q7 − 4q3 − 1)s2,1 + (−q8 − 2q3 + 2q + 1)s13

The elided terms above are determined by Poincaré duality, as in Re-

mark 9.4. In principle, Theorem 11.1 could be proved by direct calculation,

evaluating at several values of q. However, doing so by brute force is beyond

the limitations of current computers. Instead, we give an argument that is

similar to the proofs of Theorems 1.4 and 1.5.

Let λ ` n be a partition. Say λ has n1 parts of size 1, n2 parts of size 2,

etc., and let σ(λ) ∈ Sn be the permutation that fixes the first n1 elements of

{1, . . . , n}, transposes the next n2 pairs, and so on. Let

Mg,λ :=Mσ(λ)
g,n

be the corresponding twisted form. Note that a point in Mg,λ(Fq) is repre-

sented by a tuple (C; p1, . . . , pn), where C is a smooth curve of genus g over

Fq and p1, . . . , pn are points in C(Fq) on which the geometric Frobenius Fq
acts by fixing the first n1 points, transposing the next n2 pairs, and so on. We

defineMg,λ, Hg,λ, and ∂Mg,λ similarly. In particular,Mg,λ =Mg,λ t∂Mg,λ.

We compute #Mg,λ(Fq), for odd q, just as we computed #Mg,n(Fq):
• the hyperelliptic point count #Hg,λ(Fq) is previously known [Ber09];

• the boundary point count #∂Mg,λ(Fq) is determined from the Sn′-equi-

variant point counts on Mg′,n′ for (g′, n′) ≺ (g, n), via [GK98, Th. 8.13];

• the count of smooth non-hyperelliptic curves is approximated to the re-

quired accuracy by applying the Hasse–Weil sieve to σ(λ)-twisted forms of

the universal families of n-pointed complete intersections on each of the

three isomorphism classes of reduced and irreducible quadrics over Fq, and

then dividing by the orders of the respective automorphism groups of these

surfaces.

Combining these data with Sn-equivariant Poincaré duality for Mg,n plus the

Sn-equivariant Euler characteristic ofMg,n, known from [Gor14], is enough to

determine the Sn-equivariant point count onMg,n. Finally, the Sn-equivariant

point count on Mg,n is obtained by subtracting the contribution from the

boundary.
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11.1. Equivariant count of hyperelliptic curves. In Section 5, we explained

the count of hyperelliptic curves #Hg,n(Fq) for n ≤ 3, following [Ber09], where

such counts are carried out in much greater generality, Sn-equivariantly for

n ≤ 7. For n = 2, 3, the Sn-equivariant counts are

#S2H4,2(Fq) (q9 + q8 − 1) s2 + q8 s12

#S3H4,3(Fq) (q10 + q9 − q8 − q) s3 + (q9 − q) s2,1

11.2. Equivariant count of canonically embedded genus 4 curves. We give

the Sn-equivariant count of n-pointed canonically embedded genus 4 curves

over Fq by separately counting complete intersections with cubics on each of

the three isomorphism classes of irreducible quadrics over Fq, just as we have

done for the ordinary point counts in Sections 8.1–8.3.

Continuing the partition notation established above, we fix λ ` n with n1

parts of size 1, n2 parts of size 2, etc., and let σ(λ) ∈ Sn be the permutation

that fixes the first n1 elements of {1, . . . , n}, transposes the next n2 pairs, and

so on. Let

V con
λ := (V con

n )σ(λ)

be the corresponding twisted form of the base V con
n of the family of n-pointed

complete intersections of a cubic with the quadric cone Qcon. Thus V con
λ (Fq)

is the set of tuples (C; p1, . . . , pn) with pi ∈ C(Fq) such that the geometric

Frobenius fixes the first n1 points, transposes the next n2 pairs, and so on. Let

Ccon
λ → V con

λ

be the universal n-marked complete intersection of Qcon with a cubic not pass-

ing through the vertex of the cone. We define Cnsp
λ → V ns

λ and Cspl
λ → V spl

λ

similarly.

Just as in the non-equivariant counts, we estimate the number of smooth

fibers N•λ in the family C•λ → V •λ by applying the Hasse–Weil sieve. The sieve

terms satisfy the conclusion of Proposition 8.8, with essentially the same proof,

and hence, using Sn-equivariant Poincaré duality and, for n = 3, Gorsky’s

computation of the Sn-equivariant Euler characteristic of Mg,n [Gor14], it

suffices to compute the sieve terms Sd(C•λ) for λ ∈ {[2], [2, 1], [3]} and d ≤ 3.

Proposition 11.2. The sieve terms Sd(Ccon
λ ) for λ ∈ {[2], [2, 1], [3]} and

d ≤ 3 are

S0(Ccon
[2] ) q17 − q14

S1(Ccon
[2] ) −q16 − q15 + q14 + q13

S2(Ccon
[2] ) q14 − 2q13 + q12 + q11 − q10

S3(Ccon
[2] ) q12 − q11 − q10 + q9
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S0(Ccon
[2,1]) q18 + q17 − q15 − q14

S1(Ccon
[2,1]) −q17 − 3q16 + 4q14 + q13 − q12

S2(Ccon
[2,1]) 2q15 − q14 − 4q13 + 3q12 + 2q11 − 2q10

S3(Ccon
[2,1]) q13 + q12 − 5q11 + q10 + 4q9 − 2q8

S0(Ccon
[3] ) q18 + q15 − q14 − q13

S1(Ccon
[3] ) −q17 − q16 + q13 + q12

S2(Ccon
[3] ) q15 − q13

S3(Ccon
[3] ) −q12 + q11 + q10 − q9

.

Proof. The proof is similar to that of Proposition 8.2 for n = 2 and 3.

The computations here are somewhat easier because there are fewer cases to

consider. For instance, when λ = [3], the number of marked points that

coincide with singularities must be either 0 or 3.

Put X := (Qcon)sm. To compute S0(Ccon
[2] ), note that there are q4 − q

ordered conjugate pairs of points in Qcon(Fq2) and each pair imposes two linear

conditions on curves in Ccon → V con ∼= A15. Thus

S0(Ccon
[2] ) = (q4 − q)q13.

Similarly,

S0(Ccon
[2,1]) = (q4 − q)(q2 + q)q12 and S0(Ccon

[3] ) = (q6 + q3 − q2 − q)q12.

Being singular at a specified point imposes three linear conditions unless λ =

[2, 1] and the singularity is at the Fq-rational marked point. The singularity

needs to lie outside every line containing at least two of the marked points,

because otherwise the fiber must contain that line and hence the vertex of the

cone. Thus

S1(Ccon
[2] ) = (q4 − q2)s1(X)q10 and S1(Ccon

[3] ) = (q6 − q2)s1(X)q9,

while

S1(Ccon
[2,1]) = (q4 − q2)(q2 + q)s1(pt)q10 + (q4 − q− (q2 − q))(q2 + q− 1)s1(X)q9.

The computations of Sd(Ccon
λ ) for d = 2 and 3 are likewise closely analogous

to the computations for λ = [12] and [13] in the proof of Proposition 8.2,

using the Hasse–Weil sieve and considering cases according to how many of

the singularities coincide with marked points and how many are coplanar with

all three singularities. �
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Proposition 11.3. The sieve terms Sd(Cnsp
λ ) for λ ∈ {[2], [2, 1], [3]} and

d ≤ 3 up to o(q6) are

S0(Cnsp
[2] ) (q4 + q2)p13

S1(Cnsp
[2] ) −(q2 + 1)(q4 + q2)p10

S2(Cnsp
[2] ) −q13 − q12 − q11 − q10

S3(Cnsp
[2] ) 4q12 + 3q11 + 5q10 + 5q9 + 3q8 + 3q7 + 3q6 + · · ·

S0(Cnsp
[2,1]) (q2 + 1)(q4 + q2)p12

S1(Cnsp
[2,1]) −(q2 + 1)(q4 + q2)p10 − (q2 + 1)(q6 + q4)p9

S2(Cnsp
[2,1]) q15 − q14 + q13 − 2q12 − q11 − q10 − q9

S3(Cnsp
[2,1]) 4q13 + 6q12 + 8q11 + 10q10 + 7q9 + 7q8 + 4q7 + 4q6 + · · ·

S0(Cnsp
[3] ) q18 + q17 + q16 + q15 + · · ·

S1(Cnsp
[3] ) −q17 − q16 − 2q15 − 2q14 − q13 − q12 + q7 + q6 + · · ·

S2(Cnsp
[3] ) 0

S3(Cnsp
[3] ) q13 + 2q11 + 2q10 + q8 − 2q7 − 2q6 + · · ·

Proof. The proof is similar to that of Proposition 8.5 for n = 2 and 3.

The surface Qnsp has q4 + q2 ordered conjugate pairs of points over Fq2 and

q6−q2 ordered conjugate triples over Fq3 . All such collections of marked points

impose independent linear conditions on curves in the linear series Cnsp → P15.

Thus

S0(Cnsp
[2] ) = (q4 + q2)p13, S0(Cnsp

[2,1]) = (q4 + q2)(q2 + 1)p12,

and S0(Cnsp
[3] ) = (q6 − q2)p12,

where pm = #Pm(Fq). To compute S1, note that a singularity imposes three

additional linear conditions unless it coincides with a marked point, in which

case it imposes only two conditions.

For S2, the number of linear conditions imposed by a pair of singularities

depends only on the number of singularities that coincide with marked points.

The vanishing of S2(Cnsp
[3] ) is immediate; none of the singularities can coincide

with marked points and so this sieve coefficient is divisible by s2(Qnsp) = 0.

For S3, the three singularities span a unique hyperplane section. We con-

sider cases according to whether this hyperplane section is smooth or singular,

how many of the marked points lie in this hyperplane, and how many marked

points coincide with singularities. �
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Proposition 11.4. The sieve terms Sd(Cspl
λ ) for λ ∈ {[2], [2, 1], [3]} and

d ≤ 3 up to o(q6) are

S0(Cspl[2] ) q17 + q16 + 2q15 + · · ·
S1(Cspl[2] ) −q16 − 3q15 − 5q14 − 5q13 − 2q12 + · · ·
S2(Cspl[2] ) 2q14 + 5q13 + 11q12 + 5q11 + q10 − 2q6 + · · ·
S3(Cspl[2] ) −2q12 − 7q11 − 7q10 − q9 + q8 + q7 + 3q6 + · · ·

S0(Cspl[2,1]) q18 + 3q17 + 5q16 + 5q15 + 2q14 + · · ·
S1(Cspl[2,1]) −q17 − 6q16 − 16q15 − 22q14 − 15q13 − 4q12 + q7 + 5q6 + · · ·
S2(Cspl[2,1]) 3q15 + 17q14 + 35q13 + 32q12 + 11q11 − q10 − q9 − 2q8 − 8q7 − 18q6 + · · ·
S3(Cspl[2,1]) −8q13 − 24q12 − 26q11 − 10q10 + 3q9 + 7q8 + 12q7 + 18q6 + · · ·

S0(Cspl[3] ) q18 + q17 + q16 + 3q15 + 2q14 + · · ·
S1(Cspl[3] ) −q17 − 3q16 − 6q15 − 10q14 − 9q13 − 3q12 + q7 + 3q6 + · · ·
S2(Cspl[3] ) 2q15 + 8q14 + 16q13 + 16q12 + 6q11 − 2q8 − 4q7 − 6q6 + . . .

S3(Cspl[3] ) −3q13 − 12q12 − 14q11 − 4q10 + 2q9 + 3q8 + 4q7 + 6q6 + · · ·

Proof. The proof is similar to those of Proposition 8.7 for n = 2 and 3,

and Proposition 11.3. There are q4 + q2− 2q ordered conjugate pairs of points

in Qspl(Fq2) and q6 +2q3−q2−2q ordered conjugate triples in Qspl(Fq3). Each

such configuration of marked points imposes independent linear conditions on

Cspl → P15. Thus

S0(Cspl
[2] ) = (q4 + q2 − 2q)p13, S0(Cspl

[2,1]) = (q4 + q2 − 2q)(q2 + 2q + 1)p12, S0(Cspl
[3] ) = (q6 + 2q3 − q2 − 2q)p12.

A singularity imposes three additional linear conditions unless it coincides with

a marked point or is collinear with three marked points. The exceptional cases,

where the singularity imposes only two new linear conditions, cannot occur for

λ = [2], and hence

S1(Cspl
[2] ) = s1(Qspl)(q4 + q2 − 2q)p10.

For λ = [3], the singularity cannot coincide with a marked point, but it could

be collinear with all three marked points. There are 2(q + 1) lines, each of

which contains q3 − q ordered conjugate triples over Fq3 . Therefore,

S1(Cspl
[3] ) = s1(Qspl)(q6 + 2q3 − q2 − 2q)p9 + 2(q + 1)s1(P1)(q3 − q)(p10 − p9).

The computation of S1(Cspl
[2,1]) is similar, accounting in addition for the cases

where the singularity coincides with the Fq-rational marked point.

The remaining computations of S2 and S3 are similar to the correspond-

ing computations in the proof of Proposition 8.7; substantial bookkeeping is

required to keep track of all of the cases, but each case presents no new diffi-

culties. �
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11.3. Proof of Theorem 11.1. This proof is analogous to the proof of The-

orems 1.4 and 1.5 in Section 10. We begin with n = 2. Putting together

the information from Propositions 11.2, 11.3 and 11.4 we get the approximate

S2-equivariant counts:

#S2Ccon
2 (Fq)/#Aut(Qcon) (q10 + q9 − q8 − q7 + o(q

11
2 ))s2

+ (q9 − q8 − q7 + q6 + o(q
11
2 ))s12

#S2Cnsp
2 (Fq)/#Aut(Qnsp) 1

2(q11 − q7 + o(q
11
2 ))s2

+ 1
2(−q9 + q8 − q6 + o(q

11
2 ))s12

#S2Cspl
2 (Fq)/#Aut(Qspl) 1

2(q11 + 2q10 + 2q9 − 4q8 − q7 + o(q
11
2 ))s2

+ 1
2(2q10 + q9 − q8 − 2q7 − q6 + o(q

11
2 ))s12

Adding the S2-equivariant count of the hyperelliptic locus in Section 11.1, we

get #S2M4,2(Fq) up to o(q
11
2 ). We add #S2∂M4,2(Fq) (see below) computed

using the Getzler–Kapranov formula as in the proof of Proposition 9.6 to get

#S2M4,2(Fq) up to o(q
11
2 ). Then #S2M4,2(Fq) is determined by Poincaré

duality, as in Remark 9.4, and #S2M4,2(Fq) is obtained by subtracting the

contribution of the boundary.
For n = 3, analogous computations show

#S3Ccon3 (Fq)/#Aut(Qcon) (q11 + q10 − q9 − q8 + q7 + ∗ q6 + o(q6))s3
+ (q10 − q9 − 3q8 + 2q7 + ∗ q6 + o(q6))s2,1
+ (−q8 + q7 + ∗ q6 + o(q6))s13

#S3Cnsp3 (Fq)/#Aut(Qnsp) 1
2 (q12 − q8 + ∗ q6 + o(q6))s3

+ 1
2 (−q10 + q9 + q8 − 2q7 + ∗ q6 + o(q6))s2,1

+ 1
2 (−q10 + q8 − 2q7 + ∗ q6 + o(q6))s13

#S3Cspl3 (Fq)/#Aut(Qspl) 1
2 (q12 + 2q11 + 2q10 − 4q9 − 3q8 + 2q7 + ∗ q6 + o(q6))s3

+ 1
2 (2q11 + 3q10 − 3q9 − 3q8 + ∗ q6 + o(q6))s2,1

+ 1
2 (q10 − q8 + ∗ q6 + o(q6))s13

Here, each ∗ denotes an undetermined integer. Together with #S3H4,3(Fq),
these computations determine #S3M4,3(Fq) up to o(q6). Adding #S3∂M4,3(Fq),
then using the polynomiality of #S3M4,3(Fq) together with Poincaré duality,

and subtracting #S3∂M4,3(Fq), we get

#S3M4,3(Fq) = (q12 + 2q11 + 3q10 − 2q9 − 4q8 + 2q7 + C1 q
6 − q3 + 2q2)s3

+(q11+2q10−q9−4q8+q7+C2 q
6−4q3−1)s2,1+(−q8+C3 q

6−2q3+2q+1)s13

for some as yet unknown integers C1, C2 and C3. Evaluating at q = 1 gives the

S3-equivariant Euler characteristic χS3(M4,3) = 2s3 − 6s2,1, see [Gor14]. This

shows that C1 = −1, C2 = 0 and C3 = 0, and completes the proof.
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We end by recording the equivariant point counts of the boundaries, com-

puted using the Getzler–Kapranov formula:

#S2(∂M4,2)(Fq) (7q10 + 52q9 + 222q8 + 563q7 + 901q6 + 901q5 + 561q4 + 221q3 + 56q2

+ 9q + 1)s2 + (q10 + 20q9 + 99q8 + 279q7 + 461q6 + 461q5 + 277q4

+ 100q3 + 22q2 + 2q)s12

#S3(∂M4,3)(Fq) (9q11 + 84q10 + 426q9 + 1351q8 + 2692q7 + 3415q6 + 2694q5 + 1347q4

+ 425q3 + 85q2 + 11q + 1)s3 + (4q11 + 56q10 + 350q9 + 1224q8 + 2577q7

+ 3304q6 + 2578q5 + 1220q4 + 353q3 + 58q2 + 5q + 1)s2,1 + (4q10 + 46q9

+ 191q8 + 446q7 + 583q6 + 446q5 + 190q4 + 48q3 + 4q2 − 2q − 1)s13

11.4. Counts in terms of local systems. The universal curve π : M4,1→M4

gives rise to the `-adic local system V := R1π∗Q` whose stalk over [C] ∈ M4

is H1(C,Q`). For every λ = λ1, λ2, λ3, λ4, with λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0,

we get, by applying Schur functors, an induced local system Vλ from the

irreducible representation of GSp(8) with the corresponding highest weight.

The trace of Frobenius on the compactly supported Euler characteristic of

M4 with coefficients in Vλ for all λ such that |λ| = λ1 + · · · + λ4 ≤ n gives

equivalent information to computing #SmM4,m for all 0 ≤ m ≤ n; see [Get99]

and [Ber08]. For simplicity of notation, we omit trailing zeros and write, for

instance, V1 := V1,0,0,0. Using this we can show the following:

Theorem 11.5. For any q, we have

Tr(Fq, H
•
c (M4,V1)) q7 + q2

Tr(Fq, H
•
c (M4,V2)) 0

Tr(Fq, H
•
c (M4,V1,1)) q9 − q8 − q7 − q2

Tr(Fq, H
•
c (M4,V3)) q3 − 2q − 1

Tr(Fq, H
•
c (M4,V2,1)) q8 − q7 − q4 + 2q3 + 1

Tr(Fq, H
•
c (M4,V1,1,1)) −q10 − q9 + q8 + q6 − q4 − q2

Note that the equalities of Theorem 11.5 can be translated into equalities

of Euler characteristics with values in the Grothendieck group of either `-adic

Galois representations or Hodge structures as in Remark 1.6.

References

[AC98] E. Arbarello and M. Cornalba, Calculating cohomology groups of

moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci.

Publ. Math. no. 88 (1998), 97–127 (1999). MR 1733327. Zbl 0991.14012.

Available at http://www.numdam.org/item?id=PMIHES 1998 88 97 0.

[AV04] A. Arsie and A. Vistoli, Stacks of cyclic covers of projective spaces,

Compos. Math. 140 no. 3 (2004), 647–666. MR 2041774. Zbl 1169.14301.

https://doi.org/10.1112/S0010437X03000253.

[Beh91] K. A. Behrend, The Lefschetz Trace Formula for the Moduli Stack of

Principal Bundles, ProQuest LLC, Ann Arbor, MI, 1991, Thesis (Ph.D.)–

University of California, Berkeley. MR 2686745.

http://www.ams.org/mathscinet-getitem?mr=1733327
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0991.14012
http://www.numdam.org/item?id=PMIHES_1998__88__97_0
http://www.ams.org/mathscinet-getitem?mr=2041774
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1169.14301
https://doi.org/10.1112/S0010437X03000253
http://www.ams.org/mathscinet-getitem?mr=2686745


ODD COHOMOLOGY VANISHING ON MODULI SPACES OF STABLE CURVES 1363

[Beh93] K. A. Behrend, The Lefschetz trace formula for algebraic stacks, Invent.

Math. 112 no. 1 (1993), 127–149. MR 1207479. Zbl 0792.14005. https:

//doi.org/10.1007/BF01232427.

[Ber08] J. Bergström, Cohomology of moduli spaces of curves of genus three via

point counts, J. Reine Angew. Math. 622 (2008), 155–187. MR 2433615.

Zbl 1158.14025. https://doi.org/10.1515/CRELLE.2008.068.

[Ber09] J. Bergström, Equivariant counts of points of the moduli spaces of

pointed hyperelliptic curves, Doc. Math. 14 (2009), 259–296. MR 2538614.

Zbl 1211.14030. https://doi.org/10.4171/DM/273.

[BT07] J. Bergström and O. Tommasi, The rational cohomology ofM4, Math.

Ann. 338 no. 1 (2007), 207–239. MR 2295510. Zbl 1126.14030. https:

//doi.org/10.1007/s00208-006-0073-z.

[BCGY23] C. Bibby, M. Chan, N. Gadish, and C. Yun, Homology representations

of compactified configuration spaces on graphs applied to M2,n, 2023.

https://doi.org/10.1080/10586458.2023.2209749.

[vdBE05] T. van den Bogaart and B. Edixhoven, Algebraic stacks whose num-

ber of points over finite fields is a polynomial, in Number Fields and

Function Fields—Two Parallel Worlds, Progr. Math. 239, Birkhäuser
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