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1. Introduction

Kontsevich and Soibelman introduced in [KS06] a metric on the canonical sheaf
of a C((t))-analytic Calabi-Yau manifold, and their definition was extended by
Mustaţă and Nicaise in [MN13] to pluricanonical sheaves ω⊗mX on a smooth al-
gebraizable Berkovich space X over a discretely valued field k. Their definition
associates to a pluricanonical form φ ∈ Γ(ω⊗mX ) a real-valued weight function wtφ
defined on a subset of X. First, one defines wtφ at divisorial points of X and then
extends it by continuity to PL subspaces (or skeletons) of X.

This lecture discusses a recent progress made in [Tem14]. The main goal of that
work was to metrize the sheaves ω⊗mX in a purely analytic way, thereby eliminat-
ing unnecessary technical assumptions. In particular, this method applies to all
rig-smooth spaces over an arbitrary non-archimedean field, including the trivially
valued ones, and deals with all points on an equal footing, thereby providing a norm
function ‖φ‖ : X → R+. Moreover, for any morphism of k-analytic spaces X → S
we naturally metrize ΩX/S and all related sheaves, such as SnΩX/S ,

∧m
ΩX/S , etc.

In particular, this applies to families of spaces parameterized by S.

2. [KS06], [MN13] and the weight function

The main idea of defining wtφ is as follows. For a divisorial point x ∈ X and
φ ∈ Γ(ωX) find an algebraic normal k◦-model X such that η = πX (x) is a generic
point of the closed fiber Xs. The regular locus U ⊆ X contains η and the relative
canonical sheaf ωU/k◦ is invertible, hence the rational section φ of ωU/k◦ defines a
vanishing divisor E on U . It is easy to see that locally at η we have an equality
nE = (π), where n > 0 and π ∈ k×, and one sets wtφ(x) = |πk| · |π|1/n, where πk
is a uniformizer of k. Independence of choices follows by easy computations with
lci morphisms between different models. This is the main source of restrictions of
the method, such as assuming k discretely valued and X algebraizable.

Remark 2.1. (i) This agrees with the definition of [MN13] with the only difference
that we switched to multiplicative notation.

(ii) The definition in [KS06] operates with k = C((t)) and uses the order of
vanishing of φ ∧ dt

t in ωX/C, but it misses a +1 summand to compensate for the

pole of dt
t .

Theorem 2.2 (Mustaţă-Nicaise). (i) wtφ extends by continuity to any PL subspace
of X.

(ii) If X possesses a semi-stable model then wtφ extends to an upper semicon-
tinuous function on the whole X.
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Remark 2.3. The main application of this theorem in [MN13] is a natural con-
struction of skeletons of analytic spaces.

3. Main idea and possible realizations

3.1. Fiberwise metric. Assume that X is rig-smooth of pure dimension d. For
each x ∈ X one can show that the completed fiber ωX/S,x ⊗OX,x

H(x) coincides

with the vector space
∧d

Ω̂H(x)/k. In first approximation, the idea of defining a
generalized weight function is to provide the latter space with a metric ‖ ‖x by

taking the image of
∧d

Ω̂H(x)◦/k◦ as the unit ball and to set wtφ(x) = ‖φ(x)‖x.

Example 3.1.1. (i) Let us consider the simplest one-dimensional example when
X =M(k{t}) is a unit disc over an algebraically closed k. If x is its maximal point

then dt generates Ω̂H(x)◦/k◦ and hence ‖dt‖x = 1. In general, Ω̂H(x)◦/k◦ is generated

by the elements d(t−a)
c = dt

c such that | t−ac |x ≤ 1 and hence ‖dt‖x = infa∈k |t−a|x.
Thus, ‖dt‖ coincides with the radius function r(x) on X. In particular, it is upper
semicontinuous but not continuous.

(ii) If x is a type 3 point corresponding to a generalized Gauss norm then |dtt |x = 1

but dt
t /∈ Ω̂H(x)◦/k◦ . In particular, Ω̂H(x)◦/k◦ is not the closed unit ball of the metric

it defines. In fact, it is the open unit ball in this case.

Remark 3.1.2. The example with type 3 point indicates that it is better to define

the norm using Ω̂log
H(x)◦/k◦ := Ω̂log

(H(x)◦,H(x)◦\{0})/(k◦,k◦\{0}). This module contains

Ω̂H(x)◦/k◦ and the quotient is annihilated by any π ∈ k with |π| < 1. In particular,
both define the same norm if the valuation on k is not discrete. We will see that in
the discrete case one should use the logarithmic module.

More generally, for any morphism f : X → S with x ∈ X and s = f(x) one

can define a seminorm ‖ ‖Ω on Ω̂H(x)/H(s) by taking the image of Ω̂log
H(x)◦/H(s)◦ as

the unit ball, and ‖ ‖Ω induces natural seminorms on the modules SnΩ̂H(x)/H(s),∧
SnΩ̂H(x)/H(s), etc. These fiberwise norms induce Kähler metrics on the sheaves

SnΩX/S ,
∧m

ΩX/S , etc. Having described a general idea, let us discuss more for-
mally a few possibilities to metrize sheaves. For concreteness, we consider a sheaf
of rings A on a topological space X. Once A is metrized, sheaves of A-modules are
dealt with similarly.

3.2. First approach. If A is a sheaf of k-algebras, one can metrize it by providing
the unit ball A�, which is a subsheaf of k◦-modules such that A = A� ⊗k◦ k. In
this approach, the Kähler metric ‖ ‖Ω,X/S on ΩX/S corresponds to O◦XdX/S(O◦X),
the minimal O◦X -submodule generated by the image of O◦X under dX/S .

Drawbacks: The generality is reduced to k-algebras. The case of a discretely
valued k is problematic, and the case of a trivially valued k does not make sense.
(Can be by-passed by extending k from the beginning.)

3.3. Second approach. Define metrics on A by metrizing the stalks Ax. In this
approach, ‖ ‖Ω,X/S is the minimal seminorm on ΩX/S such that the differential
dX/S is a non-expanding homomorphism of seminormed sheaves.

Drawbacks: This approach is used in the paper, but it is not topos-theoretic. In
particular, in order to apply it to a non-good Berkovich space X one cannot work
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with the G-topological space XG, and has to switch to its underlying topological
space |XG|. In particular, this requires to study points of XG.

3.4. Third approach. Define sheaves of seminormed rings and modules as sheaves
with values in the (non-expanding) categories of seminormed rings/modules.

Drawbacks: need to develop enough category theory of seminormed modules.
Also, has to extend seminorms so that they can obtain the infinite value, since
sections on open non-compact sets can be unbounded.

3.5. Seminormed algebra. Finally, let us discuss the algebraic side of the picture.
Analytic geometry mainly uses Banach rings and modules, but seminormed rings
and modules often appear in intermediate constructions, e.g. in the definition of ⊗̂.
Even more importantly, the stalks OX,x are just seminormed rings. For this reason,
[Tem14] is based on the “seminormed algebra” whose main objects are seminormed
rings and modules. In addition, it is important to consider only non-expanding
homomorphisms, although one usually works with all bounded homomorphisms
between Banach modules.

4. Seminormed sheaves

Formal definitions of the second and third approaches are as follows. For con-
creteness, we consider sheaves of rings.

Definition 4.1. Let A be a sheaf of rings on a topological space X. A seminorm
| | on A is a family of seminorms | |x on the stalks Ax such that the following
sheaf condition holds: for any section s ∈ A(U) the function |s| : U → R+ is upper
semicontinuous.

Definition 4.2. A sheaf of seminormed rings (A, | |) consists of a sheaf of rings
A and a quasi-norm | |U : A(U) → R+ ∪ {∞} (i.e. a seminorm that may take an
infinite value too) for any open U ⊆ X such that the following conditions hold:

• Boundedness: for any U and s ∈ A(U) there exists a covering U = ∪iUi
such that |s|Ui <∞ for each i.
• The sheaf condition: If U = ∪iUi then |s|U = supi |s|Ui .

The two definitions are equivalent: given {| |x}x∈X one defines |s|U = supx∈U |s|x
and given {| |U}U⊆X one defines |s|x = infx∈U |s|U . It is easy to see that these
constructions are inverse one to another. Also, one can naturally extend operations
on sheaves of modules, such as ⊗,

∧n
, etc. to operations on seminormed sheaves

of modules. For example, M⊗A N is provided with the maximal seminorm such
that the bilinear map M ×N →M⊗A N is non-expanding.

5. Kähler seminorms for seminormed rings

Definition 5.1. Let A → B be a non-expanding homomorphism of seminormed
rings. The Kähler seminorm ‖ ‖Ω on ΩB/A is the maximal seminorm making the
A-homomorphism d : B → ΩB/A non-expanding.

In fact, (ΩB/A, ‖ ‖Ω) provides a natural extension of the theory of Kähler differ-
entials to the seminormed setting.
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Lemma 5.2. (i) dB/A is the universal contracting A-derivation of B with values
in a seminormed B-module:

HomB,nonexp(ΩB/A,M)→̃DerA,nonexp(B,M)

(ii) If I is the kernel of the homomorphism of seminormed rings B ⊗A B → B
then the classical isomorphism φ : ΩB/A→̃I/I2 is an isometry.

(iii) If A → A′ is a non-expanding homomorphism and B′ = B ⊗A A′ then the
classical isomorphism ΩB/A ⊗B B′→̃ΩB′/A′ is an isometry.

Remark 5.3. If A → B → C is a sequence of non-expanding homomorphisms
then the first fundamental sequence

ΩB/A ⊗B C
ψC/B/A−→ ΩC/A

φ→ ΩC/B → 0

does not have to be strictly admissible in the middle, i.e. the norm on Im(ψC/B/A)
can be larger than the norm on Ker(φ). In case of valued fields one can control this
non-admissibility by use of ramification theory, and this will be important later.

6. Kähler seminorms for real-valued fields

If K is a real-valued field and φ : A → K is a homomorphism we set A◦ =

φ−1(K◦) and Ωlog
K◦/A◦ = Ωlog

(K◦,K◦\{0})/(A◦,A◦\{0}). The following simple theorem

expresses the Kähler seminorm in terms of the module of logarithmic differentials.

Theorem 6.1. Consider the natural homomorphism h : Ωlog
K◦/A◦ → ΩK/A. Then

Im(h) = Ωlog
K◦/A◦/torsion and the Kähler seminorm is the maximal K-seminorm on

ΩK/A such that ‖Im(h)‖Ω ≤ 1.

Using this theorem, one can study the non-admissibility of the first fundamental
sequence. We will be mainly interested in studying ψL/K/A, where L/K is an
extension of real-valued fields. We say that a separable algebraic extension L/K is

almost tame if the torsion module Ωlog
L◦/K◦ vanishes.

Theorem 6.2. Assume that L/K is finite and separable, so that ψL/K/A is an

isomorphism. Assume, also, that Ωlog
L◦/A◦ is torsion free (e.g. this happens when

A◦ is an algebraically closed real-valued field). Then ψL/K/A is an isometry if and
only if L/K is almost tame.

Remark 6.3. In fact, the ratio of the volumes of the unit balls equals to the
logarithmic different of L/K.

The following theorem is pretty subtle in the case when L/K is not separable
and hence ψL/K/A is not injective.

Theorem 6.4. If L/K is an extension of real-valued fields such that K is dense
in L then ψL/K/A is an isometry with a dense image.

Corollary 6.5. If K is dense in L then Ω̂K/A = Ω̂L/A, where the completions are
taken with respect to the Kähler seminorms.
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7. Kähler seminorm on ΩX/S

Let f : X → S be a morphism of Berkovich spaces. If x ∈ X and s = f(x) then

ΩX/S,x = colimiΩ̂Bi/A where M(A) is an affinoid domain containing s and M(Bi)
run over affinoid domains over M(A) that contain x. We define a seminorm ‖ ‖x
on ΩX/S,x as the colimit of the Kähler norms on Ω̂Bi/A.

Theorem 7.1. (i) The completion of (ΩX/S,x, ‖ ‖x) is naturally isomorphic as a

seminormed module to Ω̂H(x)/H(s).
(ii) For any section s ∈ ΩX/S(U) the function ‖s‖ is upper semicontinuous. In

particular, the stalk seminorms ‖ ‖x give rise to a seminorm ‖ ‖Ω on ΩX/S, that
we call the Kähler seminorm.

(iii) Each function ‖s‖ : |UG| → R+ factors through U . In particular, it is
determined by its values on the usual anlytic points.

The main task is to prove (i), and the crucial point here is that if the spaces are

good then Ω̂κ(x)/κ(s) = Ω̂H(x)/H(s) by Corollary 6.5. Once the Kähler seminorm is
defined we automatically obtain seminorms on the related sheaves, such as SnΩX/S
and

∧m
ΩX/S . We call them Kähler seminorms too.

Example 7.2. Let X =M(k{t}) be a unit disc.
(0) Assume that k is algebraically closed. It follows from Example 3.1.1 that

the maximality locus of dt on X is the maximal point, and the maximality locus
of dt

t on the punched unit disc is its skeleton (i.e. the set of all generalized Gauss

points). More generally, the maximality locus of dt1
t1
∧ · · · ∧ dtl

tl
on a torus (Gm)l is

the skeleton Rl
+.

(i) If k is perfect then ‖ ‖x = 0 at any rigid point x ∈ X since ΩH(x)/k = 0.

(ii) If k is not perfect, l = k(a1/p) is inseparable over k and l = H(x) for a rigid

point x ∈ X, then ‖dt‖x > 0. Moreover, one can show that if k̃ is not perfect then
the maximality locus of ‖dt‖ is an infinite tree.

8. Main results

8.1. Pullbacks. We say that a seminormed k-algebra A is universally spectral if
for any extension of real-valued fields l/k the product seminorm on A⊗k l is power-
multiplicative. One can show that a finite extension K/k is universally spectral if
and only if it is almost tame, although this is only checked for tame extensions in
[Tem14].

Theorem 8.1.1. Let f : X → S and g : S′ → S be morphisms of Berkovich spaces
and S′ = S×XX ′. Then ‖ ‖Ω,X′/S′ is dominated by the pullback of ‖ ‖Ω,X/S and the
two seminorms are equal if for any s′ ∈ S′ with s = g(s′) the extension H(s′)/H(s)
is universally spectral. In particular, this happens when g is a monomorphism (e.g.
embedding of a point) or S′ = S ⊗k l for a tame finite extension l/k.

Remark 8.1.2. The Kähler seminorm can drop under wildly ramified ground
field extensions. Therefore, it makes sense to also introduce the geometric Kähler
seminorm ‖ ||Ω,X/S obtained by computing the Kähler seminorm after the ground

field extension k̂a/k. By the above theorem the two norms coincides when k has
no wildly ramified extensions.
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8.2. Monomiality of the geometric Kähler seminorm. Assume that k = ka

and X is good. Then for any monomial point x ∈ X there exists a family of tame
parameters at x, i.e. elements t1, . . . ,tn ∈ OX,x such that n = dimx(X) and H(x)

is tame over its subfield ̂k(t1, . . . ,tn).

Theorem 8.2.1. Keep the above notation, then dt1
t1
, . . . ,dtntn form an orthonormal

basis of Ω̂H(x)/k.

The theorem allows to compute the Kähler seminorm on the sheaf F = Sn(ΩlX/k)

in terms of a tame parameter family: one represents φx ∈ Fx as
∑
e φee with

e’s of the form
(
dti1
ti1
∧ · · · ∧ dtil

til

)
⊗ · · · ⊗

(
dtj1
tj1
∧ · · · ∧ dtjl

tjl

)
and computes ‖φ‖x =

maxe |φe|x. Using (non-trivial) results on existence of tame parameters on skeletons
one also obtains the following important result.

Corollary 8.2.2. If φ ∈ Sn(ΩlX/k) is a differential pluriform on X then its geo-

metric Kähler seminorm ‖φ‖ restricts to a PL function on any PL subspace of
X.

Remark 8.2.3. Probably, this result also holds for Kähler seminorms, but this
requires a new argument.

8.3. The maximality locus.

Theorem 8.3.1. If X possesses a semistable model X then for any pluricanonical
form φ ∈ Γ(ω⊗mX ) the maximality locus of the geometric Kähler seminorm of φ is
a union of faces of the skeleton associated with X.

Remark 8.3.2. (i) The same result should hold for any log smooth model X.
(ii) As we know from Example 7.2(ii), the same assertion completely fails for the

usual Kähler seminorm.

Corollary 8.3.3. Assume that char(k̃) = 0, X is strictly analytic and rig-smooth
and φ ∈ Γ(ω⊗mX ). Then the maximality locus of the Kähler seminorm of φ is a PL
subspace of X.

Proof. We can replace k with k̂a since this does not affect the Kähler seminorm

thanks to the char(k̃) = 0 hypothesis. By local uniformization of Berkovich spaces
of equal characteristic zero, there exists an admissible covering of X by affinoid
domains that possess semistable reduction. It remains to use the above theorem.

�

8.4. Comparison with the weight function. It remains to answer the natu-
ral question whether our definition of Kähler seminorms on pluricanonical sheaves
coincides (up to a constant factor) with the definitions of [KS06] and [MN13]. Sur-
prisingly, this is so only in the case of residue characteristic zero. In general, the
discrepancy is described by the log-different. For any (not necessarily algebraic)

extension l/k of real-valued fields we define the log different δlog
l/k to be the torsion

content of the module Ωlog
l◦/k◦ (in the discrete valued case this is the absolute value

of the zeroth Fitting ideal of the torsion part of Ωlog
l◦/k◦). The log different is an

important invariant of the extension l/k that measures its “wildness”.
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Theorem 8.4.1. Assume that k is discretely valued with a uniformizer πk, X
is a smooth algebraizable Berkovich space over k, φ ∈ ω⊗mX , and x ∈ X is a
monomial point; in particular, the weight function wtφ is defined at x. Then

wtφ(x) = |πk|m(δlog
H(x)/k)m‖φ‖x, where the right-hand side involves the Kähler semi-

norm on ω⊗mX .

In particular, all reasonable seminorms coincide when k has no wildly ramified

extensions. (For a discrete valued k this means that char(k̃) = 0.) Note also that
the weight function drops under wildly ramified extensions, and one can define geo-
metric weight function analogously to geometric Kähler seminorm. Then it follows
from the theorem that the geometric Kähler norm coincides with the geometric
weight function in the case when the latter is defined.
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