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Abstract
We develop techniques for studying fundamental
groups and integral singular homology of symmetric
Δ-complexes, and apply these techniques to study
moduli spaces of stable tropical curves of unit volume,
with and without marked points. As one application,
we show that Δg and Δg ,𝑛 are simply connected, for
g ⩾ 1. We also show that Δ3 is homotopy equivalent to
the 5-sphere, and that Δ4 has 3-torsion in𝐻5.
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1 INTRODUCTION

In this paper, we study the topology of Δg , the link of the vertex in the moduli space𝑀
trop
g of sta-

ble tropical curves of genus g ⩾ 2. The full moduli space 𝑀trop
g , as defined and studied in [1, 6],

is contractible because it is a cone, but the link Δg has exceedingly rich and interesting topology.
Indeed, the rational homology of Δg is naturally identified with both Kontsevich’s graph homol-
ogy and also with the top weight cohomology of the algebraic moduli space 𝑀g ; applications of
this perspective include the proof that dimℚ 𝐻

4g−6(𝑀g ; ℚ) grows exponentially with g [9]. The
homotopy type of Δg is an invariant of the algebraic moduli stackg [10], and here we focus on
its integral homology and homotopy groups.
The points of Δg naturally correspond with isomorphism classes of stable tropical curves of

genus g and volume 1. Here a tropical curve is a tuple𝐆 = (𝐺,𝓁, 𝑤), where𝐺 is a connected graph
(possibly with loops andmultiple edges), 𝓁 is a positive real length assigned to each edge, and𝑤 is
a non-negative integerweight assigned to each vertex. The genus is g(𝐆) = ℎ1(𝐺) +

∑
𝑣∈𝑉(𝐺) 𝑤(𝑣),

the volume is Vol(𝐆) =
∑

𝑒∈𝐸(𝐺) 𝓁(𝑒), and the stability condition states that every vertex 𝑣 of
weight zero has valence at least 3.
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The space Δg has the structure of a symmetric Δ-complex, that is, it is constructed by gluing
quotients of simplices by finite groups in a manner analogous to the construction of a Δ-complex
by gluing simplices [9, Section 3.2]. We recall the precise definition of a symmetric Δ-complex
in Section 2. In Sections 3–6, we develop tools for computing fundamental groups of symmetric
Δ-complexes and apply them to Δg .

Theorem 1.1. The space Δg is simply connected.

In addition, we develop tools for computing homology of symmetric Δ-complexes with integer
coefficients and for proving contractibility of subcomplexes. We apply these toΔg , with particular
attention to examples where g is small. The space Δ2 has two maximal cells, each homeomorphic
to a triangle, and these are glued along an edge. In particular, Δ2 is contractible. Using the com-
parison to graph homology, it is also easy to see that Δ3 and Δ4 have the rational homology of 𝑆5
and a point, respectively.

Theorem 1.2. The space Δ3 is homotopy equivalent to 𝑆5.

Theorem1.3. The reduced integral homology �̃�𝑘(Δ4; ℤ) contains nontrivial 3-torsion for 𝑘 = 5 and
nontrivial 2-torsion for 𝑘 = 6, 7. It vanishes for 𝑘 ≠ 5, 6, 7.

In particular, Δ4 is not contractible.
Our methods apply equally well to moduli spaces of stable tropical curves with marked points.

For non-negative integers g and 𝑛, such that 2g − 2 + 𝑛 > 0, the moduli space 𝑀trop
g ,𝑛 of stable

tropical curves of genus g with 𝑛 marked points has pure dimension 3g − 3 + 𝑛. In particular,
when 3g − 3 + 𝑛 > 0, the link Δg ,𝑛 is not empty. A point of Δg ,𝑛 corresponds to a tropical curve
(𝐺,𝓁, 𝑤) of volume 1, together with a marking function 𝑚∶ {1, … , 𝑛} → 𝑉(𝐺), and the stability
condition states that, for every vertex 𝑣 of weight zero, the valence of 𝑣 plus |𝑚−1(𝑣)| is at least
3. The topology of Δg ,𝑛 is relatively simple when g is small. Indeed, Δ0,𝑛 is homotopy equivalent
to a wedge sum of (𝑛 − 2)! spheres of dimension 𝑛 − 4 [14]. Also, Δ1,𝑛 is contractible for 𝑛 = 1, 2,
and homotopy equivalent to a wedge sum of (𝑛 − 1)!∕2 spheres of dimension 𝑛 − 1, for 𝑛 ⩾ 3 [8,
Theorem 1.2]. Note, in particular, that Δ0,4 is not connected, and Δ0,5 is connected but not simply
connected.

Theorem 1.4. The space Δg ,𝑛 is simply connected for (g , 𝑛) ≠ (0, 4), (0, 5).

The 𝑝-skeleton of a symmetric Δ-complex is the union of all cells of dimension at most 𝑝. In
Section 3, we show that the fundamental group of a symmetric Δ-complex is generated by loops
in the 1-skeleton. However, for 𝑘 > 1, we give examples showing that 𝜋𝑘 (respectively, 𝐻𝑘) is not
generated by spheres (respectively, cycles) in the 𝑘-skeleton. Even for 𝑘 = 1, the relations among
spheres (respectively, cycles) in the 𝑘-skeleton are not necessarily generated by boundaries of balls
(respectively, chains) in the (𝑘 + 1)-skeleton. In particular, the relations in 𝜋1 among the classes
of loops in the 1-skeleton are not always generated by boundaries of discs in the 2-skeleton.
In Section 4, we describe the spectral sequence associated to the filtration by 𝑝-skeleta. Taken

with rational coefficients, this spectral sequence recovers the rational cellular homology theory
developed in [9]. With integer coefficients, it provides new information on torsion in homology of
symmetric Δ-complexes. We refine this approach by considering an analogous spectral sequence
relative to a subcomplex, which is essential for the proof of Theorem 1.3. The idea of computing
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homology of moduli spaces of tropical curves relative to large contractible subcomplexes is not
new; contractibility of Δ𝑏𝑟

g ,𝑛, the closure of the locus of tropical curves with bridges, is essential to
themain results in [8]. Herewe use an even larger contractible subcomplex, given by Theorem 6.1.
The techniques we develop to study Δg ,𝑛 as a symmetric Δ-complex apply to more general fil-

tered spaces, in which a 𝑝-skeleton is obtained from a (𝑝 − 1)-skeleton as the mapping cone for
a continuous map from a disjoint union of quotients of (𝑝 − 1)-spheres by finite subgroups of
the orthogonal group. We call these symmetric CW-complexes, and Theorems 3.1, 4.2, and 4.3 are
proved for this more general class of spaces. Symmetric CW-complexes that are not symmetric Δ-
complexes appear naturally in algebraic geometry as dual complexes of boundary divisors in non-
simplicial toroidal compactifications, such as the Voronoi compactifications of moduli spaces of
principally polarized abelian varieties.

Remark 1.5. The space Δg has several natural interpretations in algebraic geometry, low-
dimensional topology, and geometric group theory (see [9, p. 565]). Notably, it is the quotient of
Harvey’s complex of curves on a closed orientable surface of genus g by the action of the mapping
class group, and is also the quotient of the simplicial completion of Culler–VogtmannOuter Space
by the action ofOut(𝐹g ). It is homotopy equivalent to the one point completion of the quotient of
Outer Space itself by the action of Out(𝐹g ). Nevertheless, the rational homology of Δg has little
relation to the rational homology of Out(𝐹g ) [8, Section 7], and we do not know of any greater
relation between the torsion homologies. For an alternate proof of Theorem 1.1, using ideas from
geometric group theory, see Remark 6.2.

Remark 1.6. Theorem 1.3 is not the first observed instance of torsion in the homology of the spaces
Δg ,𝑛. Indeed, 𝐻∗(Δ2,𝑛, ℤ) has torsion in degree 𝑛 + 1, for odd 𝑛 ⩾ 5 [7]. However, it is the first
instance of torsion in degree less than max{2g − 1, 2g − 3 + 𝑛}, the bound on low-degree ratio-
nal homology induced of Δg ,𝑛 induced by vanishing of high-degree cohomology on the algebraic
moduli spaceg [8, Theorem 1.6].

2 STRUCTURE OF SYMMETRIC 𝚫-COMPLEXES

We begin by recalling the definition of symmetric Δ-complexes, following [9, Section 3]. Let 𝐼
be the category with objects [𝑝] = {0, … , 𝑝}, for 𝑝 ⩾ 0, with morphisms given by injective maps.
Recall that a symmetric Δ-complex is a functor 𝑋∶ 𝐼op → 𝖲𝖾𝗍𝗌. Such a functor is determined by
a set 𝑋𝑝 = 𝑋([𝑝]) for each 𝑝 ⩾ 0, actions of the symmetric group𝔖𝑝+1 on 𝑋𝑝 for all 𝑝, and face
maps𝑑𝑖 ∶ 𝑋𝑝 → 𝑋𝑝−1 for𝑝 ⩾ 1, obtained by applying the functor𝑋 to the unique order-preserving
injective map [𝑝 − 1] → [𝑝]whose image does not contain 𝑖. The face maps satisfy the usual sim-
plicial identities as well as a compatibility with the symmetric group action.
An injection 𝜃∶ [𝑝] → [𝑞] determines an inclusion of standard simplices 𝜃∗ ∶ Δ𝑝 → Δ𝑞, whose

image is the 𝑝-face with vertices corresponding to the image of 𝜃. The geometric realization of a
symmetric Δ-complex 𝑋 is

|𝑋| = (
∞∐
𝑝=0

𝑋𝑝 × Δ𝑝

)/
∼, (2.1)

where ∼ is the equivalence relation generated by (𝑥, 𝜃∗𝑎) ∼ (𝜃∗𝑥, 𝑎). Each 𝑥 ∈ 𝑋𝑝 determines a
map of topological spaces 𝑥∶ Δ𝑝 → |𝑋|, which factors through the quotient ofΔ𝑝 by the stabilizer
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𝐻𝑥 < 𝔖𝑝+1, and𝑋may be recovered from the topological space |𝑋| together with this set of maps
from simplices.
Let 𝑋

𝑝
⊂ 𝑋𝑝 be a subset consisting of one representative of each𝔖𝑝+1-orbit. Then |𝑋| is parti-

tioned into cells

|𝑋| = ∐
𝑝

∐
𝑥∈𝑋𝑝

(Δ𝑝)◦∕𝐻𝑥,

each isomorphic to the quotient of an open simplex by a linear finite group action. Note that the
closure of each 𝑝-cell meets only finitely many other cells, each of dimension less than 𝑝. The
properties of this stratification are hence closely analogous to the properties of a CW-complex,
except that the cells are quotients of open balls by finite groups, rather than ordinary open balls.
We capture this analogy with the following definition.

Definition 2.1. A symmetric CW-complex is a Hausdorff topological space 𝑋 together with a
partition into locally closed cells, such that, for each cell 𝐶 ⊂ 𝑋, there is a continuous map from
the quotient of the closed unit ball in some ℝ𝑝 by a finite subgroup of the orthogonal group such
that

(1) the quotient of the open unit ball maps homeomorphically onto 𝐶, and
(2) the image meets only finitely many cells, each of dimension less than 𝑝.

We require furthermore that a subset of 𝑋 is closed if and only if its intersection with the closure
of each cell is closed.

We say that a symmetric CW-complex is finite if it has only finitely many cells. All of the appli-
cations we consider involve only finite symmetric CW-complexes.

Definition 2.2. The 𝑝-skeleton of a symmetric CW-complex, denoted 𝑋(𝑝) ⊂ 𝑋, is the union of
its cells of dimension at most 𝑝.

Suppose 𝑋 has 𝑝-cells {𝐶𝑖 ∶ 𝑖 ∈ 𝐼}. Let 𝐺𝑖 ⩽ 𝑂(𝑝) be a subgroup of the orthogonal group for
which there is a continuous map 𝐵𝑝∕𝐺𝑖 → 𝑋 taking (𝐵𝑝)◦∕𝐺𝑖 homeomorphically onto 𝐶𝑖 . Note
that 𝐵𝑝∕𝐺𝑖 is cone shaped around the image of the origin, and that 𝑋(𝑝) is naturally identified
with the mapping cone of the attaching map∐

𝑖∈𝐼

𝜕𝐵𝑝∕𝐺𝑖 → 𝑋(𝑝−1).

The total space 𝑋 is the direct limit of its skeleta 𝑋(𝑝).

Example 2.3. Let 𝑋 be a symmetric Δ-complex. Then |𝑋|, together with its partition into cells,
is a symmetric CW-complex.

Example 2.4. Let Δ be a generalized cone complex, as defined in [1], obtained as the colimit
of a diagram of rational polyhedral cones with face maps. Then the geometric realization |Δ| is
partitioned into cells by the images of the relative interiors of the cones in the diagram. The link
of the vertex, with its induced partition into cells, is a symmetric CW-complex.
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Remark 2.5. Example 2.4 shows that symmetric CW-complexes appear naturally in algebraic
geometry, as dual complexes of boundary divisors in toroidal embeddings. In cases where the
toroidal embedding is non-simplicial, as is the case in such well-studied examples as the per-
fect cone and second Voronoi toroidal compactifications of moduli spaces of principally polarized
abelian varieties, the resulting symmetric CW-complex is not a symmetric Δ-complex. While the
applications to moduli spaces of tropical curves stated in the introduction require only the special
case of symmetricΔ-complexes, we expect that symmetric CW-complexes will be useful for future
applications, for example, for studying the top weight cohomology of the moduli space of abelian
varieties. Since the proofs of our basic technical results (Theorems 3.1, 4.2, and 4.3) work equally
well for symmetric CW-complexes, we present them in this greater level of generality.

3 HOWATTACHING 𝒑-CELLS AFFECTS HOMOLOGY AND
HOMOTOPY GROUPS OF SYMMETRIC CW-COMPLEXES

Let 𝑋 be a symmetric CW-complex obtained from a subcomplex 𝑋′ by attaching cells of dimen-
sion 𝑝. In stark contrast with ordinary CW-complexes, the pair (𝑋, 𝑋′) is not necessarily (𝑝 − 1)-
connected, that is, the inclusion 𝑋′ ↪ 𝑋 need not induce isomorphisms on homotopy groups 𝜋𝑖
for 𝑖 < 𝑝 − 1 and a surjection for 𝑖 = 𝑝 − 1 (see Examples 3.2–3.7). Hence, the classical cellular
approximation theorems for CW-complexes do not extend to symmetric CW-complexes. The fol-
lowing theorem is the key technical step in the proof of Theorems 1.1 and 1.4; it shows that cellular
approximation holds in dimension 1, even though it fails in all higher dimensions.

Theorem 3.1. Let 𝑋 be a finite symmetric CW-complex with 𝑥 ∈ |𝑋(1)|. Then the natural map
𝜋1(|𝑋(1)|, 𝑥) → 𝜋1(|𝑋|, 𝑥) is surjective.
Proof. It suffices to show that, if 𝑋 is obtained from a subcomplex 𝑋′ by attaching a single cell of
dimension 𝑛 ⩾ 2, then the induced map 𝜋1(|𝑋′|, 𝑥) → 𝜋1(|𝑋|, 𝑥) is surjective. We may assume 𝑋
and 𝑋′ are connected. In this case, |𝑋| is the identification space obtained from |𝑋′| and 𝐵𝑛∕𝐺

by identifying the points of 𝑆𝑛−1∕𝐺 with their images in |𝑋′| under the attaching map, where
𝐺 ⩽ 𝑂(𝑛) is finite. We write 0 for the origin in 𝐵𝑛 and express |𝑋| as the union of the open
sets |𝑋| − {0} and (𝐵𝑛 − 𝑆𝑛−1)∕𝐺. Their intersection is homeomorphic to ℝ × (𝑆𝑛−1∕𝐺), hence
connected. By van Kampen’s theorem, 𝜋1(|𝑋|) is generated by the images under inclusion of
𝜋1(|𝑋| − {0}) and 𝜋1((𝐵

𝑛 − 𝑆𝑛−1)∕𝐺). The first of these coincides with the image under inclu-
sion of 𝜋1(|𝑋′|). This is because the radial deformation retraction of 𝐵𝑛 − {0} onto 𝑆𝑛−1 is 𝐺-
equivariant and therefore induces a deformation retraction from (𝐵𝑛 − {0})∕𝐺 into 𝑆𝑛−1∕𝐺. Since
𝜋1((𝐵

𝑛 − 𝑆𝑛−1)∕𝐺) is trivial, 𝜋1(|𝑋|) is generated by the image under the inclusion of 𝜋1(|𝑋′|), as
required. □

It follows from Theorem 3.1 that 𝐻1 is also generated by loops in the 1-skeleton of a finite-
dimensional symmetric CW-complex. This surjectivity on𝐻1 and 𝜋1 looks like a weak result, but
it is the only general result of this nature that one can expect. Suppose 𝑘 > 0. We will exhibit a
finite symmetric Δ-complex 𝑋 whose dimension 𝑛 is larger than 𝑘 + 1, such that the inclusion of|𝑋(𝑛−1)| into |𝑋| induces non-injective maps on𝐻𝑘 and 𝜋𝑘 and non-surjective maps on𝐻𝑘+1 and
𝜋𝑘+1.We beginwith symmetric CW-complex examples because theymake the essentialsmore vis-
ible. See Remark 6.3 for an example in nature of a symmetricΔ-complex𝑋 such that 𝑘th homology
and homotopy groups of the 𝑘-skeleton do not surject onto those of 𝑋.
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Example 3.2 (Attaching a symmetric 𝑛-cell can kill 𝜋1 and𝐻𝑘 for odd 𝑘 < 𝑛 − 1). Suppose 𝑛 > 2,
let𝐺 ⩽ 𝑂(𝑛) be generated by the negationmap, and consider𝐵𝑛∕𝐺. The CWcomplex structure on|𝑋′| = 𝑆𝑛−1∕𝐺 ≅ ℝ𝑃𝑛−1 is not important. We regard 𝐵𝑛∕𝐺 as a single symmetric 𝑛-cell, attached
to |𝑋′| in the obvious way. The result is contractible. Therefore, attaching this symmetric 𝑛-cell
kills not just 𝐻𝑛−1(ℝ𝑃

𝑛−1; ℤ) but also 𝜋1(ℝ𝑃
𝑛−1) ≅ ℤ∕2ℤ and 𝐻𝑖(ℝ𝑃

𝑛−1; ℤ) ≅ ℤ∕2ℤ where 𝑖 <
𝑛 − 1 is positive and odd.

Example 3.3 (Attaching a symmetric 𝑛-cell can kill 𝜋𝑘 and 𝐻𝑘 for 2 ⩽ 𝑘 < 𝑛 − 1). As a variation
on the previous example, take 2 ⩽ 𝑘 ⩽ 𝑛 − 2 and let g ∈ 𝑂(𝑛) act on ℝ𝑛 by fixing pointwise a
(𝑘 − 1)-dimensional subspace and acting by negation on its orthogonal complement. Write 𝐺 ≅

ℤ∕2ℤ for the group generated by g . Again 𝐵𝑛∕𝐺 is contractible, but this time |𝑋′| = 𝑆𝑛−1∕𝐺 is
the join of ℝ𝑃𝑛−𝑘 and 𝑆𝑘−2. Taking the join of a space with 𝑆𝑘−2 is the same as (unreducedly)
suspending it 𝑘 − 1 times. So, the reduced homology of |𝑋′| is obtained by shifting the reduced
homology of ℝ𝑃𝑛−𝑘 up 𝑘 − 1 degrees. In particular, the first nonzero homology group of |𝑋′| in
positive degree is𝐻𝑘(|𝑋′|; ℤ) ≅ 𝐻1(ℝ𝑃

𝑛−𝑘; ℤ) ≅ ℤ∕2ℤ. Since we chose 𝑘 ⩾ 2, we always suspend
at least once, so |𝑋′| is simply connected. Combined with the Hurewicz theorem, this shows that
the first nontrivial homotopy group of |𝑋′| is 𝜋𝑘(|𝑋′|) ≅ 𝐻𝑘(|𝑋′|; ℤ) ≅ ℤ∕2ℤ. So the maps on𝐻𝑘

and 𝜋𝑘 induced by |𝑋′| → |𝑋| are not injective, even though 𝑋 is obtained from 𝑋′ by attaching
a single symmetric 𝑛-cell.

The next few examples are quotients of a standard simplex. Let 𝐺 ⩽ 𝔖𝑛+1. Then the quotient
𝑋 = Δ𝑛∕𝐺 naturally inherits the structure of a symmetric Δ-complex, with 𝑋𝑞 being the set of
𝐺-orbits of 𝑞-faces of Δ𝑛. Then |𝑋(𝑛−1)| is the quotient of the boundary of the simplex by 𝐺. The
geometric realization |𝑋| is contractible because it is the cone over |𝑋(𝑛−1)|.
Example 3.4 (Analogue of Example 3.3 for symmetric Δ-complexes). Suppose 𝑘 ⩾ 3 is given,
choose 𝓁 satisfying 3 ⩽ 𝓁 ⩽ 𝑘, and set 𝑛 = 𝑘 + 𝓁 − 1. Consider the subgroup 𝐺 of 𝑂(𝑛) gen-
erated by the involution g that fixes all but the first 2𝓁 vertices of Δ𝑛, which it permutes by
(01)(23)⋯ (2𝓁 − 2 2𝓁 − 1). This makes sense since 2𝓁 ⩽ 𝑛 + 1. We make the affine span of Δ𝑛 ⊆

ℝ𝑛+1 into a vector space 𝑉 by taking its barycenter as the origin. It is easy to see that g acts on 𝑉

by negating an 𝓁-dimensional subspace and pointwise fixing its orthogonal complement, which
has dimension 𝑘 − 1. We can identify the unit sphere in 𝑉 with the boundary of Δ𝑛 by radial pro-
jection. This extends to a 𝐺-equivariant identification of Δ𝑛 with the unit ball in 𝑉. Therefore,
every feature of the previous example carries over to the symmetric Δ-complex Δ𝑛∕𝐺. In partic-
ular, the maps on 𝜋𝑘 and 𝐻𝑘 induced by |(Δ𝑛∕𝐺)(𝑛−1)| → |Δ𝑛∕𝐺| are not injective. We needed
the restriction 𝓁 ⩾ 3 to get 𝑛 > 𝑘 + 1, and we needed 𝓁 ⩽ 𝑘 so that the permutation of the ver-
tices of Δ𝑛 makes sense. Hence, these examples only occur for 𝑘 ⩾ 3. For 𝑘 = 1, 2 we refer to the
following examples.

Example 3.5 (Attaching a symmetric 3-simplex can kill𝜋1 and𝐻1).We construct a 3-dimensional
contractible symmetric Δ-complex whose 2-skeleton is not simply connected. Take 𝐺 ≅ ℤ∕4ℤ to
be the subgroup of 𝑂(3) generated by an element that permutes the vertices of Δ3 cyclically as
in Figure 1. The cube is a visual aid, and the tetrahedron is inscribed in it. The encircling arrows
indicate this transformation, namely the composition of a 𝜋∕2 rotation and the reflection across
the equatorial plane. The shaded face is a fundamental domain, and the arrows on its boundary
indicate the identifications arising from the quotient map. As a result, 𝜕Δ3∕𝐺 is homeomorphic
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F IGURE 1 The action of ℤ∕4ℤ on Δ3 as in Example 3.5

to ℝ𝑃2. Taking 𝑋 = Δ3∕𝐺, it follows that |𝑋| is simply connected, even though its 2-skeleton is
not: 𝜋1(|𝑋(2)|) ≅ 𝜋1(ℝ𝑃

2) ≅ ℤ∕2ℤ.

Example 3.6 (Attaching a symmetric 4-simplex can kill𝜋2 and𝐻2).We construct a 4-dimensional
contractible symmetric Δ-complex whose 3-skeleton is simply connected and has nontrivial 𝐻2

(hence 𝜋2). Take 𝑋 = Δ4∕𝐺 where 𝐺 ≅ ℤ∕4ℤ fixes one vertex and permutes the others cyclically.
This example contains the previous one; the quotient of the boundary of Δ4 is the unreduced
suspension of ℝ𝑃2. The suspension points are the fixed points of 𝐺, namely the fixed vertex and
the barycenter of the opposite facet.

Example 3.7 (Non-surjectivity of 𝜋𝑘 and 𝐻𝑘). Take 𝑋 as in any of the previous examples, and
define 𝑍 as the symmetric CW-complex or symmetric Δ-complex obtained by identifying the two
copies of 𝑋 along their (𝑛 − 1)-skeleta. So 𝑍(𝑛−1) = 𝑋′ in the notation of the previous examples.
Let 𝑘 > 1 be the smallest degree for which𝐻𝑘(|𝑋′|; ℤ) ≠ 0. Since 𝑍 is the (unreduced) suspension
of 𝑋′, we have 𝐻𝑘+1(|𝑍|; ℤ) ≠ 0. The Hurewicz theorem shows that 𝜋𝑘+1(|𝑍|) is also nonzero.
On the other hand, the natural maps 𝐻𝑘+1(|𝑋′|; ℤ) → 𝐻𝑘+1(|𝑍|; ℤ) and 𝜋𝑘+1(|𝑋′|) → 𝜋𝑘+1(|𝑍|)
are the zero maps because |𝑋′| → |𝑍| factors through the contractible space |𝑋|. So, the induced
maps on𝐻𝑘+1 and 𝜋𝑘+1 are not surjective.

4 COMPUTING HOMOLOGY USING THE FILTRATION BY
SKELETA

Let 𝐴 be an abelian group. Any finite filtration of a topological space 𝑌 by subspaces

∅ = 𝑌−1 ⊂ 𝑌0 ⊂ 𝑌1 ⊂ ⋯ ⊂ 𝑌𝑛 = 𝑌

induces a filtration on the singular chain complex with coefficients in 𝐴,

0 ⊂ 𝐶(𝑌0; 𝐴) ⊂ 𝐶(𝑌1; 𝐴) ⊂ ⋯ ⊂ 𝐶(𝑌𝑛;𝐴) = 𝐶(𝑌;𝐴).

This filtration on 𝐶(𝑌) gives rise to a spectral sequence with

𝐸0
𝑝,𝑞 = 𝐶𝑝+𝑞(𝑌

𝑝, 𝑌𝑝−1; 𝐴) = 𝐶𝑝+𝑞(𝑌
𝑝; 𝐴)∕𝐶𝑝+𝑞(𝑌

𝑝−1; 𝐴),
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and

𝐸1
𝑝,𝑞 = 𝐻𝑝+𝑞(𝑌

𝑝, 𝑌𝑝−1; 𝐴)

that converges to

𝐸∞
𝑝,𝑞 =

im(𝐻𝑝+𝑞(𝑌
𝑝; 𝐴) → 𝐻𝑝+𝑞(𝑌;𝐴))

im(𝐻𝑝+𝑞(𝑌
𝑝−1; 𝐴) → 𝐻𝑝+𝑞(𝑌;𝐴))

.

Remark 4.1. The higher differentials in this spectral sequence may be understood as follows. An
element of𝐸1

𝑝,𝑞 is represented by a (𝑝 + 𝑞)-chain 𝜎 in𝑌𝑝 whose boundary 𝜕𝜎 is a (𝑝 + 𝑞 − 1)-cycle
in 𝑌𝑝−1. If 𝜕𝜎 is contained in 𝑌𝑝−𝑟 but not in 𝑌𝑝−𝑟−1, then [𝜎] survives to 𝐸𝑟, and 𝑑𝑟 ∶ 𝐸𝑟

𝑝,𝑞 →

𝐸𝑟
𝑝−𝑟,𝑞+𝑟−1

maps [𝜎] to [𝜕𝜎] in the surviving subquotient of𝐻𝑝+𝑞−1(𝑌
𝑝−𝑟, 𝑌𝑝−𝑟−1; 𝐴).

This spectral sequence will be our main tool for understanding the homology of symmetric
CW-complexes. When applied to the filtration by skeleta, it gives the following.

Theorem 4.2. Let 𝑋 be a finite-dimensional symmetric CW-complex whose 𝑝-cells are {𝐶𝑖 ≅

(𝐵𝑝)◦∕𝐺𝑖 ∶ 𝑖 ∈ 𝐼𝑝}, for some finite subgroups 𝐺𝑖 ⊂ 𝑂(𝑝). Then there is a spectral sequence
with

𝐸1
0,𝑞 = 𝐻𝑞(|𝑋(0)|; 𝐴), and 𝐸1

𝑝,𝑞 =
⨁
𝑖∈𝐼𝑝

�̃�𝑝+𝑞−1(𝑆
𝑝−1∕𝐺𝑖; 𝐴),

for 𝑝 ⩾ 1, that converges to

𝐸∞
𝑝,𝑞 =

im(𝐻𝑝+𝑞(|𝑋(𝑝)|; 𝐴) → 𝐻𝑝+𝑞(|𝑋|; 𝐴))
im(𝐻𝑝+𝑞(|𝑋(𝑝−1)|; 𝐴) → 𝐻𝑝+𝑞(|𝑋|; 𝐴)) .

Proof. Consider the spectral sequence associated to the filtration of 𝑋 by its skeleta 𝑋(𝑝), which
has 𝐸1

𝑝,𝑞 = 𝐻𝑝+𝑞(|𝑋(𝑝)|, |𝑋(𝑝−1)|; 𝐴). For 𝑝 > 0, each connected component of |𝑋(𝑝)|∕|𝑋(𝑝−1)| is
homeomorphic to the wedge sum of unreduced suspensions 𝑆(𝑆(𝑝−1)∕𝐺𝑖) associated to 𝑝-cells
𝐶𝑖 = 𝐵𝑝∕𝐺𝑖 in that component, and the theorem follows. □

If we take 𝐴 = ℚ, then 𝐸1
𝑝,𝑞 vanishes for 𝑞 ≠ 0, so we get a single chain complex, the 𝑞 = 0 row

of 𝐸1, that computes the rational homology of |𝑋|. When 𝑋 is a symmetric Δ-complex, this is
precisely the rational cellular chain complex presented in [9].
For our applications to Δg ,𝑛, which typically has many cells and contains a large contractible

subcomplex, we use the following variant of Theorem 4.2.

Theorem 4.3. Let 𝑋 be a finite-dimensional symmetric CW-complex, let 𝑍 ⊂ 𝑋 be a subcomplex,
and let {𝐶𝑖 ≅ (𝐵𝑝)◦∕𝐺𝑖 ∶ 𝑖 ∈ 𝐼𝑝}, be the cells of𝑋 that are not in 𝑍. Then there is a spectral sequence
with

𝐸1
0,𝑞 = 𝐻𝑞(|𝑍| ∪ 𝑋(0); 𝐴), and 𝐸1

𝑝,𝑞 =
⨁
𝑖∈𝐼𝑝

�̃�𝑝+𝑞−1(𝑆
𝑝−1∕𝐺𝑖; 𝐴)
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for 𝑝 ⩾ 1, that converges to

𝐸∞
𝑝,𝑞 =

im(𝐻𝑝+𝑞(|𝑋(𝑝)|; 𝐴) → 𝐻𝑝+𝑞(|𝑋|; 𝐴))
im(𝐻𝑝+𝑞(|𝑋(𝑝−1)|; 𝐴) → 𝐻𝑝+𝑞(|𝑋|; 𝐴)) .

Proof. The argument is identical to the proof of Theorem 4.2, using the filtration of 𝑋 by the
subcomplexes𝑊(𝑝) = 𝑍 ∪ 𝑋(𝑝). □

5 QUOTIENTSWITH REFLECTIONS

As explained above, a symmetric CW-complex is filtered by its 𝑝-skeleta, and the associated
graded of the induced filtration on singular homology is the abutment of a spectral sequence
whose 𝐸1-page is a direct sum of homology groups of quotients of spheres by finite subgroups of
orthogonal groups. The topology of such quotients of spheres is understood in only a few special
cases. Swartz considered the case where the subgroup of the orthogonal group is isomorphic to
(ℤ∕2ℤ)𝑘 [13], and Lange classified the cases where the quotient is a PL-sphere [11] or a topological
sphere [12]. See also [3] for applications of Lange’s results to quotients of 𝑆𝑛−1 by subgroups of the
permutation group𝔖𝑛+1.

Proposition 5.1. Let𝐻 < 𝑂(𝑛) be a finite subgroup that contains a reflection. Then 𝑆𝑛−1∕𝐻 is con-
tractible.

Proof. Let𝐾 < 𝐻 be the subgroup generated by reflections. Each reflection in𝐾 fixes a hyperplane
pointwise, and we let 𝐶 be a chamber, that is, the closure of a component of the complement of
the union of these hyperplanes. Every point in ℝ𝑛 is 𝐾-equivalent to exactly one point in 𝐶 [5,
V.3.3], and hence 𝐶 → ℝ𝑛∕𝐾 is a homeomorphism. Furthermore, since 𝐾 is normal in 𝐻, we
have homeomorphisms

𝑆𝑛−1∕𝐻 ≅ (𝑆𝑛−1∕𝐾)∕(𝐻∕𝐾) ≅ (𝑆𝑛−1 ∩ 𝐶)∕𝐻𝐶,

where𝐻𝐶 < 𝐻 is the stabilizer of 𝐶. We now show that (𝑆𝑛−1 ∩ 𝐶)∕𝐻𝐶 is contractible.
There is a point 𝑣 in the interior of 𝐶 that is invariant under𝐻𝐶 , for example, choose any point

in the interior of 𝐶 and take the sum of the points in its 𝐻𝐶-orbit. Composing straight line flow
toward 𝑣 with radial projection to the unit sphere gives a deformation retraction of 𝑆𝑛−1 ∩ 𝐶 to
the point 𝑣∕|𝑣|. This deformation retraction is𝐻𝐶-equivariant, and hence induces a deformation
retraction of (𝑆𝑛−1 ∩ 𝐶)∕𝐻𝐶 to a point. □

6 APPLICATIONS TOMODULI SPACES OF TROPICAL CURVES

One strategy for studying the topology of Δg ,𝑛 is to identify large contractible subcomplexes. The
largest contractible subcomplex identified in [8, Theorem 1.1] is the locus Δ𝑏𝑟

g ,𝑛 of tropical curves
with bridges, cut vertices, loop edges, repeated markings, or vertices of positive weight; it is the
closure of the locus of tropical curves with bridges.We now use Proposition 5.1 to produce an even
larger contractible subcomplex.
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Theorem6.1. The subcomplexΔ𝑏𝑚
g ,𝑛 ⊂ Δg ,𝑛 parameterizing tropical curves with bridges, cut vertices,

loops, repeated markings, vertices of positive weight, or multiple edges is contractible, for g ⩾ 1.

The superscript 𝑏𝑚 reflects the fact that this subcomplex is the closure of the locus of tropical
curves with bridges ormultiple edges.

Proof. First, note that contracting an edge in a graph with a multiple edge produces a graph with
either a loop edge or a multiple edge. Hence, Δ𝑏𝑚

g ,𝑛 is a subcomplex.
Note that Δ𝑏𝑚

g ,𝑛 is obtained from the subcomplex Δ𝑏𝑟
g ,𝑛 as an iterated mapping cone, for a finite

sequence of continuous maps from quotients of spheres 𝑆𝑝−1∕Aut(𝐺), where 𝐺 is a graph with
multiple edges. Interchanging a pair of edges between the same endpoints acts by a reflection,
and hence the quotient 𝑆𝑝−1∕Aut(𝐺) is contractible, by Proposition 5.1.
If 𝑌 is contractible and 𝑓∶ 𝑌 → 𝑍 is continuous, then the inclusion of 𝑍 into the mapping

cone of 𝑓 is a homotopy equivalence. Applying this observation to the iterated mapping cone
construction discussed above, we see that the inclusion ofΔ𝑏𝑟

g ,𝑛 inΔ
𝑏𝑚
g ,𝑛 is a homotopy equivalence.

The subcomplex Δ𝑏𝑟
g ,𝑛 is contractible [8, Theorem 1.1], and the theorem follows. □

We now show that Δg ,𝑛 is simply connected, for (g , 𝑛) ≠ (0, 4), (0, 5).

Proof of Theorem 1.4. First, note that Δ0,𝑛 is simply connected for 𝑛 ⩾ 6, because it is homotopic
to a wedge of spheres of dimension 𝑛 − 4 [14]. We therefore assume that g ⩾ 1. We claim that the
1-skeleton of Δg ,𝑛 is contained in Δ𝑏𝑚

g ,𝑛, for g ⩾ 1. To see this, note that Δ(1)
g ,𝑛 parameterizes stable

tropical curves with 1 or 2 edges. Either one of the edges is a bridge, all of the edges are loops,
or there are two edges that together form a loop. In particular, the underlying graph has either a
loop, bridge, or multiple edges. This proves the claim. Next, recall that the fundamental group is
generated by loops in Δ(1)

g ,𝑛, by Theorem 3.1. If g ⩾ 1, then all such loops can be contracted in Δ𝑏𝑚
g ,𝑛,

by Theorem 6.1, and hence Δg ,𝑛 is simply connected. □

Remark 6.2. We briefly sketch an alternate proof thatΔg is simply connected, suggested by A. Put-
man. A theorem of Armstrong [2] states that, when a group 𝐺 acts simplicially on a simply con-
nected simplicial complex 𝑋, the fundamental group of the quotient space 𝑋∕𝐺 is the quotient
of 𝐺 by the subgroup generated by elements of 𝐺 that fix some point of 𝑋. In particular, since
Δg is the quotient of Harvey’s complex of curves on a closed orientable surface of genus g by the
action of themapping class group, and since themapping class group is generated by Dehn twists,
each of which fixes points in the curve complex, the quotient Δg is simply connected. Variations
on this argument are possible as well, for example, using the description of Δg as the quotient of
the simplicial completion of Culler–Vogtmann Outer Space by the action ofOut(𝐹g ), or using the
action of the pure mapping class group on the complex of curves on a punctured surface to give
an alternate proof of Theorem 1.4.

Next, we show that Δ3 is homotopy equivalent to 𝑆5.

Proof of Theorem 1.2. First, note that Δ3 is homotopy equivalent to Δ3∕Δ
𝑏𝑚
3
, by Theorem 6.1. Enu-

merating stable graphs of genus 3 shows that the only one without bridges, cut vertices, loops,
multiple edges, or vertices of positive weight is the complete graph 𝐾4. The cell of Δ3 correspond-
ing to𝐾4 is the quotient of the open 5-simplex, whose vertices correspond to the 2-element subsets
of a 4-element set, by the permutation group𝔖4.
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It follows Δ3∕Δ
𝑏𝑚
3

is homeomorphic to the unreduced suspension 𝑆(𝑆4∕𝔖4). Each transposi-
tion in 𝔖4 acts by a double transposition on the vertices of the 5-simplex. This is a rotation in
the sense of [11], meaning that its fixed-point set has codimension 2. Any quotient of 𝑆𝑛−1 by a
finite group generated by such rotations is PL-homeomorphic to 𝑆𝑛−1 [11]. In particular, 𝑆4∕𝔖4 is
homeomorphic to 𝑆4, and hence Δ3 is homotopy equivalent to 𝑆(𝑆4) ≅ 𝑆5. □

We conclude by showing that Δ4 has nontrivial 3-torsion in 𝐻5 and nontrivial 2-torsion in 𝐻6

and 𝐻7. The proof uses Theorems 4.3 and 6.1, together with explicit computations of the integral
homology of certain quotients of spheres𝑆𝑝−1 by subgroups of the permutation group𝔖𝑝+1. These
computations were carried out with computer assistance. We considered theΔ-complex structure
on 𝑆𝑝−1∕𝔖𝑝+1 induced by barycentric subdivision on the boundary of Δ𝑝, and used a python
script to generate matrices for the simplicial chain complex. We then usedMagma [4] to compute
the homology. The code may be found at the following link.

https://github.com/dcorey2814/homologyQuotientSpheres.git

Proof of Theorem 1.3. We compute the 𝐸1-page of the spectral sequence given by Theorem 4.3,
using the contractible subcomplex 𝑍 = Δ𝑏𝑚

4
.

By enumerating the stable graphs of genus 4, we see that there are precisely 3 cells in Δ4 that
are not contained in Δ𝑏𝑚

4
. These are the edge graph 𝐺 of a square pyramid, the edge graph 𝐺′

of a triangular prism, and the complete bipartite graph 𝐾3,3. For each graph, we computed the
reduced homology of the corresponding sphere quotient. The nonzero reduced homology groups
are as follows:

�̃�𝑘(𝑆
6∕Aut(𝐺); ℤ) =

{
ℤ∕4ℤ, for 𝑘 = 4,

ℤ∕2ℤ, for 𝑘 = 5;

�̃�𝑘(𝑆
7∕Aut(𝐺′); ℤ) =

{
ℤ∕2ℤ, for 𝑘 = 5,

ℤ∕2ℤ, for 𝑘 = 6;

�̃�𝑘(𝑆
7∕Aut(𝐾3,3); ℤ) =

⎧⎪⎨⎪⎩
ℤ∕3ℤ, for 𝑘 = 4,

ℤ∕4ℤ, for 𝑘 = 5,

ℤ∕2ℤ, for 𝑘 = 6.

Consider the spectral sequence given by Theorem 4.3 for 𝑋 = Δ4 and 𝑍 = Δ𝑏𝑚
4
. The nonzero

terms on the 𝐸1-page, aside from 𝐸1
0,0

= ℤ, are:

𝐸1
7,−2 = ℤ∕4ℤ,

𝐸1
7,−1 = ℤ∕2ℤ,

and

𝐸1
8,−3 = ℤ∕3ℤ,

𝐸1
8,−2 = ℤ∕4ℤ ⊕ ℤ∕2ℤ,

𝐸1
8,−1 = ℤ∕2ℤ ⊕ ℤ∕2ℤ.

https://github.com/dcorey2814/homologyQuotientSpheres.git
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There are no differentials between nonzero terms on 𝐸𝑟, for 𝑟 > 1, so the sequence degenerates
at 𝐸2. The only differentials between nonzero terms on 𝐸1 are 𝐸1

8,−2
→ 𝐸1

7,−2
and 𝐸1

8,−1
→ 𝐸1

7,−1
.

Each source is larger than its target, so we conclude that both 𝐸∞
8,−2

and 𝐸∞
8,−1

contain nontrivial
2-torsion. It follows that 𝐻6(Δ4; ℤ) and 𝐻7(Δ4; ℤ) contain nontrivial 2-torsion. Similarly, we see
that 𝐸∞

8,−3
= ℤ∕3ℤ and conclude that𝐻5(Δ4; ℤ) contains nontrivial 3-torsion. □

Remark 6.3. In the proof of Theorem 1.3, we have seen that Δ(6)
4
is contained in a contractible sub-

complex Δ𝑏𝑚
4
. However, Δ4 has nontrivial𝐻5 and𝐻6. We conclude that𝐻5(Δ4; ℤ) and𝐻6(Δ4; ℤ)

are not generated by cycles in the 5-skeleton and 6-skeleton, respectively. By the Hurewicz theo-
rem, we see also that 𝜋5(Δ4; ℤ) is not generated by maps of spheres into the 5-skeleton.
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