Igusa integrals and volume asymptotics in analytic and adelic geometry

joint work with A. Chambert-Loir

Basic observation

of lattice points \sim volume + error term

Basic observation

of lattice points \sim volume + error term

Basic problems

• compute the volume

Basic observation

of lattice points \sim volume + error term

Basic problems

- compute the volume
- prove that the error term is smaller than the main term

$$\mathbb{P}^1(\mathbb{Q}) = \{ \textbf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0) / \pm \ | \ \gcd(x_0, x_1) = 1 \}$$

$$\mathbb{P}^1(\mathbb{Q}) = \{ \mathbf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0) / \pm \ | \ \operatorname{\mathsf{gcd}}(x_0, x_1) = 1 \}$$

Height function

$$\begin{array}{rcl} H \colon & \mathbb{P}^1(\mathbb{Q}) & \to & \mathbb{R}_{>0} \\ & \mathbf{x} & \mapsto & \sqrt{x_0^2 + x_1^2} \end{array}$$

$$\mathbb{P}^1(\mathbb{Q}) = \{ \mathbf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0) / \pm \ | \ \mathsf{gcd}(x_0, x_1) = 1 \}$$

Height function

$$\begin{array}{rcl} H \colon & \mathbb{P}^1(\mathbb{Q}) & \to & \mathbb{R}_{>0} \\ & \mathbf{x} & \mapsto & \sqrt{x_0^2 + x_1^2} \end{array}$$

Counting function

$$N(B) := \#\{\mathbf{x} \mid H(\mathbf{x}) \leq B\} \sim$$

$$\mathbb{P}^1(\mathbb{Q}) = \{ \mathsf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0) / \pm \ | \ \mathsf{gcd}(x_0, x_1) = 1 \}$$

Height function

$$\begin{array}{rcl} H \colon & \mathbb{P}^1(\mathbb{Q}) & \to & \mathbb{R}_{>0} \\ & \mathbf{x} & \mapsto & \sqrt{x_0^2 + x_1^2} \end{array}$$

Counting function

$$N(B) := \#\{\mathbf{x} \mid H(\mathbf{x}) \le B\} \sim \qquad \pi \cdot B^2, \quad B \to \infty$$

$$\mathbb{P}^1(\mathbb{Q}) = \{ \mathsf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0) / \pm \ | \ \mathsf{gcd}(x_0, x_1) = 1 \}$$

Height function

$$\begin{array}{rcl} H \colon & \mathbb{P}^1(\mathbb{Q}) & \to & \mathbb{R}_{>0} \\ & \mathbf{x} & \mapsto & \sqrt{x_0^2 + x_1^2} \end{array}$$

Counting function

$$\mathsf{N}(\mathsf{B}) := \#\{\mathbf{x} \mid \mathsf{H}(\mathbf{x}) \leq \mathsf{B}\} \sim \ rac{1}{2} \cdot rac{1}{\zeta(2)} \cdot \pi \cdot \mathsf{B}^2, \quad \mathsf{B} o \infty$$

Leading constant

$$\frac{1}{\zeta(2)} = \prod_p (1+\frac{1}{p}) \cdot (1-\frac{1}{p})$$

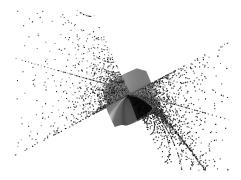
Leading constant

$\frac{1}{\zeta(2)} = \prod_{p} (1 + \frac{1}{p}) \cdot (1 - \frac{1}{p}) = \prod_{p} \frac{\#\mathbb{P}^{1}(\mathbb{F}_{p})}{p} \cdot (1 - \frac{1}{p})$

$$\frac{1}{\zeta(2)} = \prod_{p} (1 + \frac{1}{p}) \cdot (1 - \frac{1}{p}) = \prod_{p} \frac{\#\mathbb{P}^{1}(\mathbb{F}_{p})}{p} \cdot (1 - \frac{1}{p})$$

We will interpret this as a volume with respect to a natural regularized measure on the adelic space $\mathbb{P}^1(\mathbb{A}^{fin}_{\mathbb{Q}})$.

Cubic forms



Points of height \leq 1000 on the **E**₆ singular cubic surface $X \subset \mathbb{P}^3$

$$x_1x_2^2 + x_2x_0^2 + x_3^3 = 0,$$

with $x_0, x_2 > 0$.

Let $X^{\circ} := X \setminus \mathfrak{l}$, the unique line on X given by $x_2 = x_3 = 0$.

Derenthal (2005)

$$N(X^{\circ}(\mathbb{Q}),B) \sim c \cdot B \log(B)^{6}, \quad B \to \infty.$$

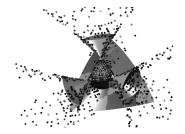
$$\mathbf{c} = \boldsymbol{\alpha} \cdot \boldsymbol{\beta} \cdot \boldsymbol{\tau}$$

where

•
$$\alpha = \frac{1}{6220800}$$

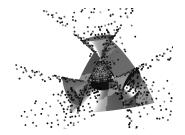
• $\beta = 1$
• $\tau = \prod_{p} \tau_{p} \cdot \tau_{\infty}$ with
 $\tau_{p} = \frac{(p^{2} + 7p + 1)}{p^{2}} \cdot (1 - \frac{1}{p})^{7} = \frac{\#X(\mathbb{F}_{p})}{p^{2}} \cdot (1 - \frac{1}{p})^{7}$
 $\tau_{\infty} = 6 \int_{|tv^{3}| \le 1, |t^{2} + u^{3}| \le 1, 0 \le v \le 1, |uv^{4}| \le 1} dt du dv$

Cubic forms



Points of height \leq 50 on the Cayley cubic surface (4**A**₁) $X \subset \mathbb{P}^3$

 $x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 + x_1x_2x_3 = 0$



Points of height \leq 50 on the Cayley cubic surface (4**A**₁) $X \subset \mathbb{P}^3$

$$x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 + x_1x_2x_3 = 0$$

Many recent results on asymptotics of points of bounded height on cubic surfaces and other Del Pezzo surfaces (Batyrev-Tschinkel, Browning, Derenthal, de la Breteche, Fouvry, Heath-Brown, Moroz, Salberger, Swinnerton-Dyer, ...)

Manin (1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding.

Manin (1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding. Then there exists a Zariski open subset $X^\circ \subset X$ such that

$$N(X^{\circ}(F),B) \sim c \cdot B \log(B)^{b-1}, \quad B \to \infty,$$

where $b = \operatorname{rk} \operatorname{Pic}(X)$.

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- ρ : $\mathsf{G} \to \operatorname{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(\mathsf{G}) \cdot x$
- H : $V(F) \to \mathbb{R}_{>0}$ height
- $\{\gamma \in \mathsf{G}(\mathfrak{o}_F) \mid H(\rho(\gamma) \cdot x) \leq B\}$

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- ρ : $\mathsf{G} \to \operatorname{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(\mathsf{G}) \cdot x$

•
$$H$$
 : $V(F)
ightarrow \mathbb{R}_{>0}$ - height

•
$$\{\gamma \in \mathsf{G}(\mathfrak{o}_F) \mid H(\rho(\gamma) \cdot x) \leq B\}$$

One can consider a similar setup for projective representations and rational points.

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- ρ : $\mathsf{G} \to \operatorname{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(\mathsf{G}) \cdot x$

•
$$H$$
 : $V(F)
ightarrow \mathbb{R}_{>0}$ - height

•
$$\{\gamma \in \mathsf{G}(\mathfrak{o}_F) \mid H(\rho(\gamma) \cdot x) \leq B\}$$

One can consider a similar setup for projective representations and rational points.

Arithmetic problem:

Count \mathfrak{o}_F -integral (or *F*-rational points) on G/H, where H is the stabilizer of *x*.

Rational points: (Franke-Manin-T.) G/P; (Strauch) twisted products of G/P; (Batyrev-T.) $X \supset T$; (Strauch-T.) $X \supset G/U$; (Chambert-Loir-T.) $X \supset \mathbb{G}_a^n$; (Shalika-T.) $X \supset U$ (bi-equivariant); (Shalika-Takloo-Bighash-T.) $X \supset G$, De Concini-Procesi varieties **Rational points:** (Franke-Manin-T.) G/P; (Strauch) twisted products of G/P; (Batyrev-T.) $X \supset T$; (Strauch-T.) $X \supset G/U$; (Chambert-Loir-T.) $X \supset \mathbb{G}_a^n$; (Shalika-T.) $X \supset U$ (bi-equivariant); (Shalika-Takloo-Bighash-T.) $X \supset G$, De Concini-Procesi varieties

In all cases, Manin's conjecture, and its refinements by Batyrev-Manin, Peyre, Batyrev-T. hold.

Integral points on G/H: Duke-Rudnick-Sarnak; Eskin-McMullen; Eskin-Mozes-Shah; Borovoi-Rudnick; Gorodnik, Maucourant, Oh, Shah, Nevo, Weiss

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Nevertheless, one has to address the following

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Nevertheless, one has to address the following

Problem

Compute these volumes.

Example

Consider the set $V_P(\mathbb{Z})$ of integral 2 × 2-matrices M with characteristic polynomial

$$P(X) := X^2 + 1.$$

Put

$$\|M\| = \|\begin{pmatrix} a & b \\ c & d \end{pmatrix}\| = \sqrt{a^2 + b^2 + c^2 + d^2}.$$

The volume of the "height ball" is given by $c \cdot B$, where

$$c=\zeta^*_{\mathbb{Q}(\sqrt{-1})}(1)\cdot rac{\pi^{1/2}}{\Gamma(3/2)}\cdot rac{\pi}{\Gamma(2/2)\zeta(2)}$$

Example

Consider the set $V_P(\mathbb{Z})$ of integral 2 × 2-matrices M with characteristic polynomial

$$P(X) := X^2 + 1.$$

Put

$$||M|| = ||\begin{pmatrix} a & b \\ c & d \end{pmatrix}|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

The volume of the "height ball" is given by $c \cdot B$, where

$$c = \zeta^*_{\mathbb{Q}(\sqrt{-1})}(1) \cdot \frac{\pi^{1/2}}{\Gamma(3/2)} \cdot \frac{\pi}{\Gamma(2/2)\zeta(2)}$$

The number of integral matrices in the ball of radius B converges to the volume.

Eskin-Moses-Shah (1996), Shah (2000)

For general

$$V_P := \{ M \in \operatorname{Mat}_n \mid \det(X \cdot Id - M) = P(X) \},\$$

where P has n distinct roots, one has

$$\#\{M \in V_P(\mathbb{Z}) \mid \|M\| \le B\} \sim c_P \cdot B^m, \quad m = n(n-1)/2,$$

where

$$c_P = \frac{2^{r_1}(2\pi)^{r_2}hR}{w\sqrt{D}} \cdot \frac{\pi^{m/2}/\Gamma(1+(m/2))}{\prod_{j=2}^n \pi^{-j/2}\Gamma(j/2)\zeta(j)}$$

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R} , and $\rho: G \to V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$\operatorname{vol}(B) = \mu(\{g \in G \mid \|\rho(g)\| \leq B\}) \sim c \cdot B^{a} \log(B)^{b-1}, \quad B \to \infty,$$

where a, b are defined in terms of the relative root system of G and the weights of ρ , and $1 \le b \le \operatorname{rank}_{\mathbb{R}}(G)$.

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R} , and $\rho: G \to V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$\operatorname{vol}(B) = \mu(\{g \in G \mid \|\rho(g)\| \leq B\}) \sim c \cdot B^{a} \log(B)^{b-1}, \quad B \to \infty,$$

where a, b are defined in terms of the relative root system of G and the weights of ρ , and $1 \le b \le \operatorname{rank}_{\mathbb{R}}(G)$. Moreover,

$$\mathrm{vol}(B)^{-1} \cdot \int_{\|
ho(g)\| \leq B} f(
ho(g)) \mathrm{d} \mu(g) o \int_{\mathbb{P}\mathrm{End}(V)} f(
ho(g)) \mathrm{d} \mu_\infty(g),$$

where the limit measure μ_{∞} is supported on a *G* bi-invariant submanifold of $\mathbb{P}\mathrm{End}(V)$.

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R} , and $\rho: G \to V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$\operatorname{vol}(B) = \mu(\{g \in G \mid \|\rho(g)\| \leq B\}) \sim c \cdot B^{a} \log(B)^{b-1}, \quad B \to \infty,$$

where a, b are defined in terms of the relative root system of G and the weights of ρ , and $1 \le b \le \operatorname{rank}_{\mathbb{R}}(G)$. Moreover,

$$\mathrm{vol}(B)^{-1} \cdot \int_{\|
ho(g)\| \leq B} f(
ho(g)) \mathrm{d}\mu(g) o \int_{\mathbb{P}\mathrm{End}(V)} f(
ho(g)) \mathrm{d}\mu_{\infty}(g),$$

where the limit measure μ_{∞} is supported on a *G* bi-invariant submanifold of $\mathbb{P}End(V)$.

The proof uses the Ka^+K -decomposition and integration formula.

The computation of asymptotics of volumes of adelic "height balls" was an open problem, in many cases.

Develop a geometric framework which is

• applicable in the analytic and adelic setup,

Develop a geometric framework which is

- applicable in the analytic and adelic setup,
- applicable to cubic surfaces and algebraic groups,

Develop a geometric framework which is

- applicable in the analytic and adelic setup,
- applicable to cubic surfaces and algebraic groups,
- applicable in the study of rational and integral points.

- F/\mathbb{Q} number field
- $X = X_F$ projective algebraic variety over F
- X(F) its F-rational points
- $\mathcal{L} = (L, (\|\cdot\|_v))$ adelically metrized very ample line bundle
- *H*_L : *X*(*F*) → ℝ_{>0} associated height, depends on the metrization (choice of norms)
- $H_{\mathcal{L}}$ is not invariant with respect to field extensions
- $H_{\mathcal{L}+\mathcal{L}'} = H_{\mathcal{L}} \cdot H_{\mathcal{L}'}$ (height formalism)

Tamagawa numbers / Peyre (1995)

Let X be a smooth projective Fano variety of dimension d over a number field F. Assume that $-K_X$ is equipped with an adelic metrization.

For $x \in X(F_v)$ choose local analytic coordinates x_1, \ldots, x_d , in a neighborhood U_x . In U_x , a section of the canonical line bundle has the form $s := dx_1 \wedge \ldots \wedge dx_d$. Put

$$\omega_{\mathcal{K}_X,\mathbf{v}} := \|\mathbf{s}\|_{\mathbf{v}} \mathrm{d} x_1 \cdots \mathrm{d} x_d,$$

where $dx_1 \cdots dx_d$ is the standard normalized Haar measure on F_v^d . This local measure globalizes to $X(F_v)$.

Tamagawa numbers / Peyre (1995)

Let X be a smooth projective Fano variety of dimension d over a number field F. Assume that $-K_X$ is equipped with an adelic metrization.

For $x \in X(F_v)$ choose local analytic coordinates x_1, \ldots, x_d , in a neighborhood U_x . In U_x , a section of the canonical line bundle has the form $s := dx_1 \wedge \ldots \wedge dx_d$. Put

$$\omega_{\mathcal{K}_X,\mathbf{v}} := \|\mathbf{s}\|_{\mathbf{v}} \mathrm{d} x_1 \cdots \mathrm{d} x_d,$$

where $dx_1 \cdots dx_d$ is the standard normalized Haar measure on F_v^d . This local measure globalizes to $X(F_v)$. For almost all v,

$$\int_{X(F_{\nu})} \omega_{\mathcal{K}_{X},\nu} = \frac{X(\mathbb{F}_{q})}{q^{d}}.$$

Choose a finite set of places S, and put

$$\omega_{\mathcal{K}_{X}} := \mathcal{L}_{S}^{*}(1, \operatorname{Pic}(\bar{X})) \cdot |\operatorname{disc}(F)|^{-1} \cdot \prod_{v} \lambda_{v} \omega_{\mathcal{K}_{X}, v},$$

with $\lambda_{\nu} = L_{\nu}(1, \operatorname{Pic}(\bar{X}))^{-1}$ for $\nu \notin S$ and $\lambda_{\nu} = 1$, otherwise. Put

$$\tau(\mathcal{K}_X) := \int_{\overline{X(F)} \subset X(\mathbb{A}_F)} \omega_{\mathcal{K}_X}.$$

Choose a finite set of places S, and put

$$\omega_{\mathcal{K}_X} := \mathcal{L}_{\mathcal{S}}^*(1, \operatorname{Pic}(\bar{X})) \cdot |\operatorname{disc}(F)|^{-1} \cdot \prod_{\nu} \lambda_{\nu} \omega_{\mathcal{K}_X, \nu},$$

with $\lambda_{\nu} = L_{\nu}(1, \operatorname{Pic}(\bar{X}))^{-1}$ for $\nu \notin S$ and $\lambda_{\nu} = 1$, otherwise. Put

$$\tau(\mathcal{K}_X) := \int_{\overline{X(F)} \subset X(\mathbb{A}_F)} \omega_{\mathcal{K}_X}.$$

This constant appears in the contant $c = c(-\mathcal{K}_X)$ in Manin's conjecture above.

A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.

A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.

A metrization of the canonical line bundle K_X gives a global measure on X(F)

 $\tau_X = |\omega| / \|\omega\|.$

A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.

A metrization of the canonical line bundle K_X gives a global measure on X(F)

$$\tau_{\boldsymbol{X}} = |\omega| / \|\omega\|.$$

A metrization of $K_X(D)$ defines a measure on U(F)

 $\tau_{(X,D)} = |\omega| / \|\omega f_D\|$

When X is an equivariant compactification of an algebraic group G and ω a left-invariant differential form on G, we have $\operatorname{div}(\omega) = -D$, so that $K_X(D)$ is a trivial line bundle, equipped with a canonical metrization. We may assume that its section ωf_D has norm 1. Then

$$\tau_{(X,D)} = |\omega| / \|\omega f_D\| = |\omega|$$

is a Haar measure on G(F).

Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{u \in U(F) \mid \|f_L(u)\| \ge 1/B\}$$

is a height ball, i.e., it is compact of finite measure vol(B).

Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{u \in U(F) \mid \|f_L(u)\| \ge 1/B\}$$

is a height ball, i.e., it is compact of finite measure vol(B).

To compute the volume, for $B \rightarrow \infty$, we use the Mellin transform

$$Z(s) := \int_0^\infty t^{-s} \mathrm{dvol}(t)$$

Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{u \in U(F) \mid ||f_L(u)|| \ge 1/B\}$$

is a height ball, i.e., it is compact of finite measure vol(B).

To compute the volume, for $B \rightarrow \infty$, we use the Mellin transform

$$Z(s) := \int_0^\infty t^{-s} \operatorname{dvol}(t) = \int_{U(F)} \|f_L\|^s \tau_{(X,D)}$$

combined with a Tauberian theorem.

$$D|=\cup_{\alpha\in\mathcal{A}}D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally.

$$D| = \cup_{\alpha \in \mathcal{A}} D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A \subset A$ let

$$D_A := \cap_{\alpha \in A} D_\alpha, \quad D_A^\circ = D_A \setminus \cup_{A' \supset A} D_{A'}.$$

$$D| = \cup_{\alpha \in \mathcal{A}} D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A \subset A$ let

$$D_A := \cap_{\alpha \in A} D_\alpha, \quad D_A^\circ = D_A \setminus \cup_{A' \supset A} D_{A'}.$$

By the transversality assumption, $D_A \subset X$ is smooth, of codimension #A (or empty).

$$D| = \cup_{\alpha \in \mathcal{A}} D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A \subset A$ let

$$D_A := \cap_{\alpha \in A} D_\alpha, \quad D_A^\circ = D_A \setminus \cup_{A' \supset A} D_{A'}.$$

By the transversality assumption, $D_A \subset X$ is smooth, of codimension #A (or empty). Write

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

The Mellin transform Z(s) can be computed in charts, via partition of unity. In a neighborhood of $x \in D^{\circ}_{A}(F)$ it takes the form

$$\int \prod_{\alpha} \|\mathsf{f}_{D_{\alpha}}\|(x)^{\lambda_{\alpha}s-\rho_{\alpha}} \, \mathrm{d}\tau_X(x) = \int \prod_{\alpha \in \mathcal{A}} |x_{\alpha}|^{\lambda_{\alpha}s-\rho_{\alpha}} \phi(x;y;s) \prod_{\alpha} \, \mathrm{d}x_{\alpha} \, \mathrm{d}y.$$

The Mellin transform Z(s) can be computed in charts, via partition of unity. In a neighborhood of $x \in D^{\circ}_{A}(F)$ it takes the form

$$\int \prod_{\alpha} \|\mathsf{f}_{D_{\alpha}}\|(x)^{\lambda_{\alpha}s-\rho_{\alpha}} \, \mathrm{d}\tau_{X}(x) = \int \prod_{\alpha \in A} |x_{\alpha}|^{\lambda_{\alpha}s-\rho_{\alpha}} \phi(x;y;s) \prod_{\alpha} \, \mathrm{d}x_{\alpha} \, \mathrm{d}y.$$

Essentially, this is a product of integrals of the form

$$\int_{|x| \le 1} |x|^{s-1} \mathrm{d}x.$$

Abscissa of convergence $= \max_{\substack{D_{\alpha}(F) \neq \emptyset \\ \lambda_{\alpha} > 0}} \frac{\rho_{\alpha} - 1}{\lambda_{\alpha}};$

Abscissa of convergence $= \max_{\substack{D_{\alpha}(F) \neq \emptyset \\ \lambda_{\alpha} > 0}} \frac{\rho_{\alpha} - 1}{\lambda_{\alpha}};$

Order of pole = number of α that achieve equality;

Abscissa of convergence $= \max_{\substack{D_{\alpha}(F) \neq \emptyset \\ \lambda_{\alpha} > 0}} \frac{\rho_{\alpha} - 1}{\lambda_{\alpha}};$

Order of pole = number of α that achieve equality;

Leading coefficient = sum of integrals over all D_A of minimal dimension where A consists only of such α s.

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$.

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau_{(X,D),v}$ on $U(F_v)$ for all v.

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau_{(X,D),v}$ on $U(F_v)$ for all v. Assume that

$$\mathrm{H}^{1}(X, \mathscr{O}_{X}) = \mathrm{H}^{2}(X, \mathscr{O}_{X}) = 0.$$

Let

$$\operatorname{EP}(U) = \Gamma(U_{\overline{\mathbb{F}}}, \mathscr{O}_X^*) / \overline{\mathbb{F}}^* - \operatorname{Pic}(U_{\overline{\mathbb{F}}}) / \operatorname{torsion}$$

be the virtual Galois module.

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau_{(X,D),v}$ on $U(F_v)$ for all v. Assume that

$$\mathrm{H}^{1}(X, \mathscr{O}_{X}) = \mathrm{H}^{2}(X, \mathscr{O}_{X}) = 0.$$

Let

$$\operatorname{EP}(U) = \Gamma(U_{\overline{\mathbb{F}}}, \mathscr{O}_X^*) / \overline{\mathbb{F}}^* - \operatorname{Pic}(U_{\overline{\mathbb{F}}}) / \operatorname{torsion}$$

be the virtual Galois module. Put

$$\lambda_{\mathbf{v}} = L_{\mathbf{v}}(1, \operatorname{EP}(U)), \quad \mathbf{v} \nmid \infty, \quad \lambda_{\mathbf{v}} = 1, \quad \mathbf{v} \mid \infty.$$

We have a global measure on $U(\mathbb{A}_F)$ given by

$$\tau_{(X,D)} = L^*(1, \operatorname{EP}(U))^{-1} \cdot \prod_{v} \lambda_v \tau_{(X,D),v}$$

Let $\mathcal{L} = (L, (\|\cdot\|_{v}))$ be an adelically metrized effective divisor supported on |D|. This defines a height function on $U(\mathbb{A}_{F})$

$$H_{\mathcal{L}}((x_{\nu})) = \prod_{\nu} \|\mathsf{f}_{L}(x_{\nu})\|_{\nu}^{-1}.$$

Let $\mathcal{L} = (L, (\|\cdot\|_{v}))$ be an adelically metrized effective divisor supported on |D|. This defines a height function on $U(\mathbb{A}_{F})$

$$H_{\mathcal{L}}((x_{\nu})) = \prod_{\nu} \|\mathsf{f}_{L}(x_{\nu})\|_{\nu}^{-1}.$$

To compute the volume of the height ball

$$\operatorname{vol}(B) := \{ x \in U(\mathbb{A}_F) \mid H_{\mathcal{L}}(x) \leq B \},$$

for \mathcal{L} and $\tau_{(X,D)}$, we use the adelic Mellin transform:

$$Z(s) = \int_0^\infty t^{-s} \operatorname{dvol}(t) = \int_{U(\mathbb{A}_F)} H_{\mathcal{L}}(x)^{-s} \operatorname{d}\tau_{(X,D)}(x) = \prod_v \int_{U(F_v)} \dots$$

Recall that

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Choosing adelic metrics on $\mathscr{O}_X(D_\alpha)$ one has:

Recall that

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Choosing adelic metrics on $\mathscr{O}_X(D_\alpha)$ one has:

$$Z_{\mathbf{v}}(s) = \int_{X(F_{\mathbf{v}})} \prod_{\alpha} \| \mathsf{f}_{D_{\alpha}} \|_{\mathbf{v}}^{s\lambda_{\alpha}-\rho_{\alpha}} \, \mathrm{d}\tau_{X,\mathbf{v}}(x).$$

Recall that

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Choosing adelic metrics on $\mathcal{O}_X(D_\alpha)$ one has:

$$Z_{\mathbf{v}}(s) = \int_{X(F_{\mathbf{v}})} \prod_{\alpha} \| f_{D_{\alpha}} \|_{\mathbf{v}}^{s\lambda_{\alpha}-\rho_{\alpha}} \, \mathrm{d}\tau_{X,\mathbf{v}}(x).$$

By the local analysis, this converges absolutely for

 $\Re(s) > \max((\rho_{\alpha} - 1)/\lambda_{\alpha}).$

Recall that

$$D = \sum \rho_{\alpha} D_{\alpha}, \quad L = \sum \lambda_{\alpha} D_{\alpha}.$$

Choosing adelic metrics on $\mathscr{O}_X(D_\alpha)$ one has:

$$Z_{\mathbf{v}}(s) = \int_{X(F_{\mathbf{v}})} \prod_{\alpha} \| \mathsf{f}_{D_{\alpha}} \|_{\mathbf{v}}^{s\lambda_{\alpha}-\rho_{\alpha}} \, \mathrm{d}\tau_{X,\mathbf{v}}(x).$$

By the local analysis, this converges absolutely for

$$\Re(s)> \max((
ho_lpha-1)/\lambda_lpha).$$

For almost all v and $\Re(s) > (
ho_lpha-1)/\lambda_lpha$, one has

$$Z_{\nu}(s) = \sum_{A} \frac{\# D^{\circ}_{A}(\mathbb{F}_{q})}{q^{\dim X}} \prod_{\alpha \in A} \frac{q-1}{q^{s\lambda_{\alpha}-\rho_{\alpha}+1}-1}$$

Analyzing the Euler product

Let $a := \max(\rho_{\alpha}/\lambda_{\alpha})$ and let A(L, D) be the set of α where equality is achieved; put b = #A(L, D).

Let $a := \max(\rho_{\alpha}/\lambda_{\alpha})$ and let A(L, D) be the set of α where equality is achieved; put b = #A(L, D). Let E be the divisor aL - D; it is effective with $|E| \subseteq |D|$. Then

Let $a := \max(\rho_{\alpha}/\lambda_{\alpha})$ and let A(L, D) be the set of α where equality is achieved; put b = #A(L, D). Let E be the divisor aL - D; it is effective with $|E| \subseteq |D|$. Then

$$\lim_{s\to a} Z(s)(s-a)^b \prod_{\alpha\in A(L,D)} \lambda_\alpha = \int_{X(\mathbb{A}_F)} H_E(x)^{-1} \,\mathrm{d}\tau_X(x).$$

Let $a := \max(\rho_{\alpha}/\lambda_{\alpha})$ and let A(L, D) be the set of α where equality is achieved; put b = #A(L, D). Let E be the divisor aL - D; it is effective with $|E| \subseteq |D|$. Then

$$\lim_{s\to a} Z(s)(s-a)^b \prod_{\alpha\in A(L,D)} \lambda_\alpha = \int_{X(\mathbb{A}_F)} H_E(x)^{-1} \,\mathrm{d}\tau_X(x).$$

A Tauberian theorem implies the volume asymptotics with respect to \mathcal{L} and $\tau_{(X,D)}$, for $B \to \infty$, of the form

$$B^{a} \log(B)^{b-1} \left(a(b-1)! \prod_{\alpha \in A(L,D)} \lambda_{\alpha} \right)^{-1} \int_{X(\mathbb{A}_{F})} H_{E}(x)^{-1} d\tau_{X}(x).$$

- F number field, \mathfrak{O}_F ring of integers
- S finite set of places of F, $S \supset S_\infty$
- X smooth projective variety over F, $D \subset X$ subvariety
- $\mathcal{D} \subset \mathcal{X}$ models over $\operatorname{Spec}(\mathfrak{O}_F)$

A rational point $x \in X(F)$ gives rise to a section

$$\sigma_{\mathsf{X}} : \operatorname{Spec}(\mathfrak{O}_{\mathsf{F}}) \to \mathcal{X}.$$

A (\mathcal{D}, S) -integral point on X is a rational point $x \in X(F)$ such that $\sigma_{x,v} \notin \mathcal{D}_v$ for all $v \notin S$.

A sample problem

Let X be a projective equivariant compatification of $G = \mathbb{G}_a^n$, and

$$\cup_{\alpha\in\mathcal{A}}D_{lpha}=X\setminus G$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_D \subseteq \mathcal{A}$ and put $U = X \setminus \bigcup_{\alpha \in \mathcal{A}_D} D_{\alpha}$.

A sample problem

Let X be a projective equivariant compatification of $G = \mathbb{G}_a^n$, and

$$\cup_{\alpha\in\mathcal{A}}D_{lpha}=X\setminus G$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_D \subseteq \mathcal{A}$ and put $U = X \setminus \bigcup_{\alpha \in \mathcal{A}_D} D_{\alpha}$. Then U is a (quasi-projective) equivariant compactification of G, and

$$X \setminus U = D = \sum_{\alpha \in \mathcal{A}_D} D_{\alpha}.$$

A sample problem

Let X be a projective equivariant compatification of $G = \mathbb{G}_a^n$, and

$$\cup_{\alpha\in\mathcal{A}}D_{lpha}=X\setminus G$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_D \subseteq \mathcal{A}$ and put $U = X \setminus \bigcup_{\alpha \in \mathcal{A}_D} D_{\alpha}$. Then U is a (quasi-projective) equivariant compactification of G, and

$$X \setminus U = D = \sum_{\alpha \in \mathcal{A}_D} D_{\alpha}.$$

Let \mathcal{L} be an adelically metrized line bundle on X.

Problem

Establish an asymptotic formula for

$$N(B) := \#\{\gamma \in G(F) \cap U(\mathfrak{O}_{F,S}) \mid H_{\mathcal{L}}(\gamma) \leq B\}.$$

Height pairing

$G(\mathbb{A}_F)$ × $\oplus_{\alpha} \mathbb{C} D_{\alpha} \to \mathbb{C}$

Integral points of bounded height

Height pairing

$$G(\mathbb{A}_F) \quad \times \quad \oplus_{\alpha} \mathbb{C} D_{\alpha} \to \mathbb{C}$$

Height zeta function

$$Z(g,\mathbf{s}) = \sum_{\gamma \in G(F) \cap U(\mathfrak{O}_{F,S})} H(\gamma g,\mathbf{s})^{-1},$$

is holomorphic for $\Re(\mathbf{s}) \gg 0$ and all g.

"Fourier" expansion - "Poisson formula"

$$Z(g, \mathbf{s}) = \sum_{\psi} \hat{H}(\mathbf{s}, \psi),$$

a sum over all (automorphic) characters of $G(\mathbb{A}_F)/G(F)$.

"Fourier" expansion - "Poisson formula"

$$Z(g, \mathbf{s}) = \sum_{\psi} \hat{H}(\mathbf{s}, \psi),$$

a sum over all (automorphic) characters of $G(\mathbb{A}_F)/G(F)$.

Main term = trivial character

$$\int_{G(\mathbb{A}_F)\cap U(\mathfrak{O}_{F,S})}H(g,\mathbf{s})^{-1},$$

"Fourier" expansion - "Poisson formula"

$$Z(g, \mathbf{s}) = \sum_{\psi} \hat{H}(\mathbf{s}, \psi),$$

a sum over all (automorphic) characters of $G(\mathbb{A}_F)/G(F)$.

Main term = trivial character

$$\int_{G(\mathbb{A}_F)\cap U(\mathfrak{O}_{F,S})}H(g,\mathbf{s})^{-1},$$

a volume integral computed above.

Asymptotics

For $L = -(K_X + D)$ we obtain

Chambert-Loir-T. (2009)

$$egin{aligned} \mathcal{N}(B) &\sim c \cdot B \log(B)^{b-1}, \ b &:= \mathrm{rk}(\mathrm{Pic}(U)) + \sum_{v \in \mathcal{S}} (1 + \dim \mathcal{C}_{F_v}^{\mathrm{an}}(D)), \end{aligned}$$

the analytic Clemens complex of the stratification of D, and

Asymptotics

For $L = -(K_X + D)$ we obtain

Chambert-Loir-T. (2009)

$$egin{aligned} \mathcal{N}(B) &\sim c \cdot B \log(B)^{b-1}, \ b &:= \mathrm{rk}(\mathrm{Pic}(U)) + \sum_{v \in \mathcal{S}} (1 + \dim \mathcal{C}_{F_v}^{\mathrm{an}}(D)), \end{aligned}$$

the analytic Clemens complex of the stratification of D, and

$$\boldsymbol{c} = \alpha \beta \tau,$$

•
$$\alpha \in \mathbb{Q}, \beta \in \mathbb{N};$$

• $\tau = \tau_{(X,D)}^{S}(U(\mathcal{O}_{S})) \cdot \prod_{v \in S} \left(\sum_{\sigma \in \mathcal{C}_{\max,F_{v}}^{\mathrm{an}}(D_{v})} \tau_{v}(\sigma) \right)$
• $\tau_{v}(\sigma)$ Tamagawa volume of σ_{v} (adjunction!).

Contributions from nontrivial characters

$$\hat{H}(\mathbf{s},\psi) = \int_{G(\mathbb{A}_F)} H(g,\mathbf{s})^{-1}\psi(g) \mathrm{d}g.$$

$$\hat{H}(\mathbf{s},\psi) = \int_{G(\mathbb{A}_F)} H(g,\mathbf{s})^{-1} \psi(g) \mathrm{d}g.$$

For $D = \emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

$$\hat{H}(\mathbf{s},\psi) = \int_{\mathcal{G}(\mathbb{A}_F)} H(g,\mathbf{s})^{-1}\psi(g) \mathrm{d}g.$$

For $D = \emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Only unramified ψ appear.

$$\hat{H}(\mathbf{s},\psi) = \int_{\mathcal{G}(\mathbb{A}_F)} H(g,\mathbf{s})^{-1}\psi(g) \mathrm{d}g.$$

For $D = \emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Only unramified ψ appear. Uniform bounds needed for summation over the lattice of these ψ are (relatively) easy to obtain.

Complications for integral points

Fourier transforms at $v \in S$ have poles interacting with the main term.

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_{\sigma} \prod_{\alpha} |x_{\alpha}|^{\mathbf{s}_{\alpha}} \psi(u(\mathbf{x})\mathbf{x}^{\lambda}) \phi(\mathbf{x}, \mathbf{s}, \psi) \mathrm{d}x,$$

where $\lambda = (\lambda_{\alpha})$ and σ is a certain cone in F_{ν}^{d} .

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_{\sigma} \prod_{\alpha} |x_{\alpha}|^{s_{\alpha}} \psi(u(\mathbf{x})\mathbf{x}^{\lambda}) \phi(\mathbf{x}, \mathbf{s}, \psi) \mathrm{d}x,$$

where $\lambda = (\lambda_{\alpha})$ and σ is a certain cone in F_{ν}^{d} .

We proved uniform bounds on (meromorphic continuations) of these integrals, in all parameters (2009).

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_{\sigma} \prod_{\alpha} |x_{\alpha}|^{s_{\alpha}} \psi(u(\mathbf{x})\mathbf{x}^{\lambda}) \phi(\mathbf{x}, \mathbf{s}, \psi) \mathrm{d}x,$$

where $\lambda = (\lambda_{\alpha})$ and σ is a certain cone in F_{ν}^{d} .

We proved uniform bounds on (meromorphic continuations) of these integrals, in all parameters (2009). Similar integrals appeared in the work of Cluckers (2010) on *Analytic van der Corput Lemma...* • Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.

- Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.
- The spectral method to establish asymptotics for the number of integral points of bounded height leads to interesting *v*-adic oscillatory integrals. This should allow to establish asymptotics for *D_{F,S}*-integral points on general quasi-projective embeddings of algebraic groups.

- Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.
- The spectral method to establish asymptotics for the number of integral points of bounded height leads to interesting v-adic oscillatory integrals. This should allow to establish asymptotics for \$\mathcal{D}_{F,S}\$-integral points on general quasi-projective embeddings of algebraic groups.
- A framework to generalize Manin's conjectures to integral points.