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Abstract. We study the weight 11 part of the compactly supported cohomology of the moduli
space of curves Mg,n, using graph complex techniques, with particular attention to the case
n = 0. As applications, we prove new nonvanishing results for the cohomology of Mg, and
exponential growth with g, in a wide range of degrees.

1. Introduction

The weight 0 and weight 2 graded parts of the compactly supported cohomology of the moduli
spaces of curves Mg,n are naturally identified with the cohomology of combinatorially defined
graph complexes [7, 8, 16] that resemble graph complexes arising in algebraic topology. Mean-
while, the graded parts in weights 1, 3, 5, 7, and 9 all vanish, because the rational cohomology
groups of the Deligne-Mumford compactificationsMg,n vanish in these degrees [4]. This paper is
devoted to studying the lowest nontrivial odd weight graded part of the cohomology of Mg,n, in
weight 11. Our main technical result (Proposition 1.7) identifies gr11H

•
c (Mg,n) with the cohomol-

ogy of another combinatorial graph complex resembling those arising in the embedding calculus
[11]. This is similar in spirit to the aforementioned results in weights 0 and 2, and yet the details
are substantially different in each weight.

As an application of this construction, we give new nonvanishing results for the cohomology
of Mg by showing that the 11th weight graded piece is nonzero. These results are proved by

relating the weight 11 cohomology to the weight 0 cohomology. Let ∆ := H11(M1,11), which we
view as a 2-dimensional Q-vector space with its Hodge structure or `-adic Galois representation
of weight 11. It follows from [5] that gr11H

•
c (Mg,n) is isomorphic to a direct sum of copies of ∆.

Theorem 1.1. Let V r,k
g denote the degree k and genus g part of the r-fold symmetric product

Symr

(⊕
h≥3

W0H
•
c (Mh)

)
.

Then there is an injective map

(1)
(
V 10,k−21
g−1 ⊕ V 10,k−22

g−2 ⊕ V 9,k−22
g−3 ⊕ V 6,k−22

g−5 ⊕ V 3,k−22
g−7

)
⊗∆→ gr11H

k
c (Mg).

It was previously known that dimQW0H
2g+k
c (Mg) grows at least exponentially with g for

k ∈ {0, 3} and is nonzero for k = 7 and g = 10 [7]. From this, together with previously known
nonvanishing results in weights 0 and 2, we have the following corollary.

Corollary 1.2. The dimension of H2g+k
c (Mg) grows at least exponentially with g for each fixed

0 ≤ k ≤ 53, except possibly for k ∈ {1, 4, 7, 20, 51}.

This corollary is proved using only what is already known about the nonvanishing and growth of
W0H

•
c (Mg); it is expected that the weight zero cohomology is much larger than what is currently
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known. By [16] and Theorem 1.1, each improvement in our understanding in weight zero will lead
to corresponding improvements in weights 2 and 11, respectively. Even a single new nonvanishing

weight zero cohomology group could significantly extend the range of k in which H2g+k
c (Mg) is

known to grow at least exponentially with g.

Conjecture 1.3. The dimension of H2g+k
c (Mg) grows at least exponentially with g for all but

finitely many non-negative integers k.

For k = 4 and 20, we note that H10
c (M3) and H34

c (M7) are nonzero. Each is Poincaré dual to
a corresponding H2, which contains a nonzero class κ. For k = 7, as noted above, H27

c (M10) is

nonzero in weight 0. However, there is no g for which H2g+1
c (Mg) is known to be nonzero.

Question 1.4. Does H2g+1
c (Mg) vanish for all g?

Remark 1.5. The cohomology group H2g+1(GCg-loop
0 ) of the loop order g part of Kontsevich’s

graph complex injects into H2g+1
c (Mg) [7], so a positive answer to Question 1.4 would imply that

this cohomology group vanishes for all g. This is equivalent to the vanishing of H1(GC2), the first
cohomology group of a degree shifted version of GC0. The vanishing of this cohomology group is a
well-known open problem in homological algebra and algebraic topology; it is of significant interest
because H1(GC2) is the space of obstructions to a variety of problems, including the existence of
Drinfeld associators [10], the existence of formality maps in deformation quantization [15], and
the rational intrinsic formality of the little disks operad [12].

We now explain how Corollary 1.2 follows from Theorem 1.1 before discussing the graph com-
plexes that arise in our study of the weight 11 cohomology.

Proof of Corollary 1.2. Recall that dimQW0H
2g+k
c (Mg) grows at least exponentially with g for

k ∈ {0, 3} and is equal to 1 for k = 7 and g = 10 [7, 16]. It then follows from Theorem 1.1 that,

for fixed k and r ≥ 2, dimQ V
r,2g+k
g grows at least exponentially with g whenever k is in the set

Ur = {0, 3, 6, . . . , 3r} ∪ {7, 10, 13, . . . , 4 + 3r}.
Note that, by the sign conventions for graded vector spaces recalled in §2.1, below, the image of
v ⊗ v in Sym2 V is zero when deg(v) is odd. In particular, since W0H

27
c (M10) is 1-dimensional

and of odd degree, its symmetric powers vanish.
Taking into account the degree shifts, the injection (1) yields at least exponential growth of

dimQH
2g+k
c (Mg) for k in the set

(19 + U10) ∪ (18 + U10) ∪ (16 + U9) ∪ (12 + U6) ∪ (8 + U3) .

Similarly, from [16] we know that the weight 2 cohomology contributes at least exponential growth

of dimQH
2g+k
c (Mg) for k in the set

(3 + U2) ∪ (2 + U2),

and the result follows. �

The following picture illustrates the values of k for which dimQH
2g+k
c (Mg) is now known to

grow at least exponentially with k, with dark grey boxes for the previously known cases (from
weight 0 and 2) and light grey boxes for the new contributions from weight 11.

0 10 20 30 40 50 60

Remark 1.6. Corollary 1.2 is only a rough summary of what one can deduce from Theorem 1.1
and previous known nonvanishing results in weights 0 and 2. One also gets specific bounds on the

genera for which H2g+k
c (Mg) is nonzero, and lower bounds on the dimensions of these groups.
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The results above are proved by identifying the weight 11 compactly supported cohomology
of Mg,n with the tensor product of ∆ = H11(M1,11) with the cohomology of a graph complex
that we now describe. The graph complex Bg,n is a differential graded vector space generated by
genus g graphs with n legs numbered 1, . . . , n, at least 11 legs labeled ω, and an arbitrary number
of legs labeled ε. Each connected component contains at least one ε- or ω-labeled leg. The genus
of a generating graph is the loop order of the connected graph obtained by gluing together all ε-
and ω-legs, plus one. The cohomological degree is:

22−#ω + #edges− n.
For example, the following graph is a degree 22 generator of B9,1.

ε 1 ω ω ω ω ω ω ω ω ω ω ω ω

The differential δ on Bg,n is a sum of three pieces,

δ = δω + δ•s + δ◦s .

The piece δω changes one ω- to an ε-label, the piece δ•s splits vertices, and the piece δ◦s joins
together a subset of the ε-legs with either 0 or 1 of the ω-legs, and attaches a new leg labeled ε
or ω, respectively. See §3.3 for details.

Proposition 1.7. The weight 11 compactly supported cohomology of Mg,n is isomorphic to the
tensor product of ∆ with the cohomology of Bg,n :

gr11H
•
c (Mg,n) ∼= H(Bg,n, δ)⊗∆.

When E(g, n) := 3g + 2n − 25 is small, the graph complex Bg,n is sufficiently simple that its
cohomology, and hence gr11H

•
c (Mg,n), can be computed by hand. We carry this through for

E(g, n) ≤ 3 in §4. We show that gr11H
•
c (Mg,n) vanishes when E(g, n) < 0. In particular,

gr11H
•
c (Mg) = 0 for g ≤ 8. In the first nontrivial case without marked points, we find that

gr11H
k
c (M9) ∼=

{
∆ for k = 22,

0 otherwise.

We also find large families of nontrivial graph cohomology classes for n = 0 that give rise to
Theorem 1.1. These families are constructed in §§5-6.

As another application of Proposition 1.7, we give a formula for a generating function for the
Sn-equivariant Euler characteristic of gr11(H•c (Mg,n)), analogous to the formulas in weights 0
and 2 proved in [6] and [17], respectively. This formula, along with numerical results for a range
of g, n, are presented in §7. For g = 2 and 3 and n ≤ 14, our results agree with data obtained
independently by Bergström and Faber using local systems and the trace of Frobenius [3]. For
g = 3, the computations of Bergström and Faber are conditional on a conjectural list of motives
of weight at most 22 that can appear in moduli spaces of curves, based on the work of Chenevier
and Lannes [9]. Our results confirm the weight 11 part of these computations unconditionally.

2. Preliminaries

2.1. Graded vector spaces, symmetric products, and differentials. Let V =
⊕

n∈Z V
n

denote a graded vector space over Q, with V n the subspace of degree n. We write |v| = n for the
degree of a homogeneous element v ∈ V n.

We follow the usual Koszul sign convention. In other words, the preferred isomorphism ex-
changing the factors in the tensor product of graded vector spaces V and W

V ⊗W ∼−→W ⊗ V
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is given on homogeneous elements v ∈ V and w ∈W by

v ⊗ w 7→ (−1)|v||w|w ⊗ v.
This convention induces an action of the symmetric group Sk on the tensor power

V ⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k

of a graded vector space V . We define

Symk V := V ⊗k/Sk
to be the space of coinvariants. For v1, . . . , vk ∈ V we write v1 · · · vk for the equivalence class of
v1 ⊗ · · · ⊗ vk in Symk V . Note that, by the Koszul sign convention, when k = 2 and v1, v2 ∈ V
are homogeneous elements

v1v2 = (−1)|v1||v2|v2v1.

In particular, if v is homogeneous of odd degree then v2 = 0 in Sym2 V .
Many of the graded vector spaces that we consider are also equipped with a differential.

Throughout, we follow cohomological conventions for these dg vector spaces, i.e., the differentials
increase the cohomological degree by 1.

2.2. The Getzler-Kapranov graph complex. The cohomology of the Deligne-Mumford com-
pactifications H•(Mg,n) of the moduli spaces of curves assemble to form a modular cooperad

H(M). The modular cooperad structure encapsulates the symmetric group actions and the
boundary-pullback operations

ξ∗ : H•(Mg1+g2,n1+n2)→ H•(Mg1,n1+1)⊗H•(Mg2,n2+1)

η∗ : H•(Mg+1,n)→ H•(Mg,n+2),

together with the natural compatibility relations among these pullbacks and group actions.
For any modular cooperad one can define its Feynman transform, following Getzler and Kapra-

nov [13], see also [16, §2.4]. We define the Getzler-Kapranov complex GK to be the Feynman
transform of the modular cooperad H(M)

GK := FH(M),

and write GKg,n for the part of genus g and arity n, as in [16, §2.5]. Generators of GKg,n are
dual graphs of stable curves of genus g with n numbered external legs, each of whose vertices v
is decorated by a copy of Hkv(Mgv ,nv), where gv and nv are the genus and valence of the vertex
v, respectively. The genus g is the loop order of the graph plus the sum of the numbers gv. The
cohomological degree of a generator is the number of structural edges (not counting numbered
legs) plus the sum of the degrees of decorations

∑
v kv; the differential δ on GKg,n is defined using

the modular cooperad operations ξ∗, η∗ and increases the cohomological degree by 1.
There is an additional grading of GKg,n by weight. The weight of a generator is

∑
v kv, the

sum of the degrees of the decorations, and the weight is preserved by the differential. We write
GKkg,n for the subcomplex generated by graphs of weight k, so (GKg,n, δ) splits as a direct sum

GKg,n ∼=
⊕
k

GKkg,n,

The cohomology of the weight k part of GKg,n is identified with the weight k graded part of
the compactly supported cohomology of the open moduli space

H•(GKkg,n, δ)
∼= grkH

•
c (Mg,n).

In this paper we study the weight 11 part GK11
g,n, whose cohomology computes gr11H

•
c (Mg,n).
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2.3. The weight 11 Getzler-Kapranov complex. The complex GK11
g,n has a relatively simple

description because Hk(Mg,n) vanishes for all odd k ≤ 9, by [4, Theorem 1.1]. It follows that, in

each generator for GK11
g,n, there is one vertex v, which we call the “special vertex” with kv = 11,

and all other vertices are decorated by H0. Since H0(Mgv ,nv) = Q these latter decorations are
essentially trivial and can be ignored.

The possibilities for the decoration at the special vertex are as follows [5]. Let Wn := V(n−10)110

be the irreducible Sn-representation corresponding to the Young diagram (n − 10)110, and let
∆ = H11(M1,11). Then

H11(Mg,n) ∼=

{
Wn ⊗∆ for g = 1 and n ≥ 11;

0 otherwise.

In particular, the special vertex v in each generator for GK11
g,n has genus gv = 1 and valence

nv ≥ 11. The following figure depicts a typical generator; the special vertex is indicated by a
double circle, and x ∈ H11(M1,n) is the decoration at the special vertex.

1 x

0 2 0 2 0 0 11

2 3 4 5

∈ GK11
14,5

The genus gv of each vertex v is inscribed in the corresponding node. Note that generators can
have tadpoles, i.e., edges connecting a vertex to itself.

3. A combinatorial graph complex for weight 11

In this section, we give a more precise description of the combinatorial graph complex Bg,n dis-
cussed in the introduction and prove Proposition 1.7. The proof is a zig-zag of quasi-isomorphisms
between GK11

g,n and Bg,n⊗∆. The first step in our zig-zag is a surjective quasi-isomorphism from

GK11
g,n to a quotient complex whose generators do not have tadpoles, except at the special vertex,

and whose non-special vertices are all of genus 0.

Definition 3.1. Let Ig,n ⊂ GK11
g,n be the dg subspace spanned by graphs with at least one non-

special vertex v that carries a tadpole or a positive genus gv ≥ 1. Then we define

GK11
g,n = GK11

g,n/Ig,n.

In other words, in GK11
g,n we set to zero all generators with tadpoles or positive genera at non-

special vertices. The special vertex nevertheless always has genus 1, and may also have tadpoles.

Proposition 3.2. The quotient map

GK11
g,n → GK11

g,n

is a quasi-isomorphism of dg vector spaces.

Proof. We endow both sides with the descending filtration on the number of vertices. The dif-
ferential on the associated graded of GK11

g,n is zero, while that on GK11
g,n is given by the part that

reduces the genus of a non-special vertex and adds a tadpole:

gv 7→ gv−1
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The cohomology of this differential is given by graphs in which every non-special vertex has genus
0 and no tadpoles. The proof is similar to (and simpler than) the arguments in [16, §4]. �

In pictures of generators for GK11
g,n, we omit the genus of the vertices. The special vertex is

indicated by a double circle and has genus 1. All other vertices are of genus 0. For instance, the
following depicts a generator for GK11

8,6.

x

1

2 3 4 5

6

To summarize, each generator of GK11
g,n has the following form:

• A connected graph Γ of loop order g − 1 with one special vertex v and n numbered legs,
in which all non-special vertices have valence at least 3.
• The special vertex has valence nv ≥ 11 and is decorated by an element x ∈ H11(M1,nv).

(The markings inM1,nv are implicitly identified with the half-edges at the special vertex.)
• There are no tadpoles at non-special vertices.
• The graph is equipped with an orientation o given by an ordering on the set of structural

edges (i.e., all edges other than the numbered legs).

We suggestively denote the orientation by o = e1 ∧ · · · ∧ ek with e1, . . . , ek the structural edges of
Γ. We impose two relations on these generators.

• First, we identify isomorphic graphs. That is, if φ : Γ→ Γ′ is an isomorphism, we set

(2) (Γ, e1 ∧ · · · ∧ ek, x) = (Γ′, φ(e1) ∧ · · · ∧ φ(ek), φ(x)),

with φ(x) relabeling the punctures in M1,nv according to the isomorphism φ.
• Second, we identify orderings up to sign. That is, for a permutation σ ∈ Sk we set

(3) (Γ, e1 ∧ · · · ∧ ek, x) = sgn(σ)(Γ, eσ(1) ∧ · · · ∧ eσ(k), x) .

The differential acts by splitting vertices. The vertex split of the special vertex uses the map

ξ∗ : H11(M1,r)→ H11(M1,r−s+1)⊗H0(M0,s+1).

Recall that the special vertex is decorated by Wnv ⊗ ∆, and ∆ = H11(M1,11) is a Q-vector
space of rank 2. This vector space does not have a canonical basis, but it does have a canonical
Hodge structure of weight 11. Its complexification ∆⊗ C splits canonically as

∆⊗ C ∼= ∆11,0 ⊕∆0,11,

where ∆0,11 is the complex conjugate of ∆11,0, and ∆11,0 is spanned by a canonical element ω
corresponding to the weight 12 cusp form for SL2(Z). The pullback maps ξ and η respect complex
conjugation. We can then decompose GK11

g,n as a tensor product

GK11
g,n
∼= GK11,◦

g,n ⊗∆

where GK11,◦
g,n is a simpler and more combinatorial complex in which the special vertex is decorated

by Wnv . To make the differential on GK11,◦
g,n explicit, we recall the description of generators,

relations, and boundary pullback maps for H11(Mg,n), from [5, §2].

The symmetric group S11 acts by the sign representation on H11,0(M1,11). For n > 11,

H11,0(M1,n) is generated by the pullbacks

ωA := ι∗Aω
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of the canonical generator ω of H11,0(M1,11) under the forgetful maps

ιA : M1,n →M1,11,

given by forgetting all punctures except those in the set A ⊂ {1, . . . , n} of cardinality 11. More-
over, the pullbacks {ωA : 1 ∈ A} form a basis.

Let ξC : M1,B∪{p} ×M0,C∪{q} →M1,B∪C be the boundary inclusion and let

ξ∗C : H11(M1,B∪C)→ H11(M1,B∪{p})⊗H0(M0,C∪{q}) ∼= H11(M1,B∪{p})

be the corresponding pullback operation. Then

(4) ξ∗CωA =


ωA if C ∩A = ∅
ω(A\c)∪p if C ∩A = {c}.
0 otherwise.

The differential on GK11,◦
g,n hence has the form

δ = δ•s + δ◦s ,

with δ•s splitting non-special vertices and δ◦s splitting the special vertex. Concretely, we have

(5) δ•s(Γ, e1 ∧ · · · ∧ ek, x) =
∑
v∈V•Γ

∑
split v

(Γ′, e0 ∧ e1 ∧ · · · ∧ ek, x)

with the outer sum running over non-special vertices of Γ. The inner sum is over all admissible
ways of replacing the vertex v by two vertices connected by a new edge e0, distributing the
incident half-edges at v on the new vertices, thus forming a graph Γ′. Pictorially:

δ•s : 7→
∑

Similarly, the operation δ◦s splits the special vertex,

(6) δ◦s(Γ, e1 ∧ · · · ∧ ek, x) =
∑

B⊂H∗,|B|≥2

(splitBΓ, e0 ∧ e1 ∧ · · · ∧ ek, ξ∗Bx),

where the sum is running over subsets B of the set of half-edges at the special vertex, and splitBΓ
is the graph obtained by adding an additional non-special vertex to the graph, to which we
connect the half-edges in B, and a new edge to the special vertex. Pictorially:

δ◦s :
x
7→
∑
B

ξ∗Bx

B

To compute the pullback for the decoration at the special vertex one uses (4). In the definitions
of both δ•s and δ◦s , the newly added edge e0 comes first in the edge ordering, and the relative
order of the other edges is preserved.

Remark 3.3. Note that the formal linear combinations of expressions ωA for A ⊂ {1, . . . , n}
with |A| = 11 form a representation of the symmetric group Sn of the form

IndSn
S11×Sn−11

sgn11⊗Q,

i.e., the induced representation from the product of the sign representation sgn11
∼= V111 of

S11 and the trivial representation Q ∼= Vn−11 of Sn−11. By Pieri’s rule (or the more general
Littlewood-Richardson rule) this representation decomposes into irreducibles as

V(n−10)110 ⊕ V(n−11)111 .
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The image of the subspace V(n−11)111 in H11,0(M1,n) is zero, so H11,0(M1,n) ∼= V(n−10)110 . A
complete set of relations spanning V(n−11)111 is

(7)

12∑
j=1

(−1)j+1ω{b1,...,b̂j ,...,b12},

with B = {b1, . . . , b12} ⊂ {1, . . . , n} running over subsets of cardinality 12.

3.1. An acyclic auxiliary graph complex. We now describe an auxiliary graph complex Xg,n

in which each generator has a special vertex decorated by an arbitrary subset of its incident
half-edges (not necessarily of size 11). We include an ordering of these half-edges as part of
the orientation, so permuting these half-edges induces a sign representation, consistent with the
antisymmetric properties of the generators ωA discussed above. The resulting graph complex is
acyclic, and hence gives rise to two resolutions of GK11,◦

g,n , by truncating according to the number
of marked half-edges at the special vertex.

The generators of Xg,n are of the following form:

• A connected graph Γ of loop order g − 1, with one distinguished special vertex, a distin-
guished subset of r half-edges at the special vertex, and n numbered legs.
• All non-special vertices have valence at least 3, the special vertex has valence at least one,

and there are no tadpoles at the non-special vertices.
• The cohomological degree of a generator is #structural edges−#marked half-edges.
• The graph is equipped with an orientation o consisting of a total ordering of the set
{e1, . . . , ek, h1, . . . , hr} of structural edges e1, . . . , ek of Γ and the distinguished subset of
half-edges incident to the special vertex h1, . . . , hr.

Here, again, the structural edges are all edges other than the numbered legs. We suggestively
write o = a1 ∧ · · · ∧ ak+r to indicate the order on the set of edges and the distinguished half-
edges, with a1, . . . , ak+r being some ordering of the elements of the set {e1, . . . , ek, h1, . . . , hr}.
We impose two relations.

• First, we identify isomorphic graphs: if φ : Γ→ Γ′ is an isomorphism, we set

(8) (Γ, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) = (Γ′, φ(e1) ∧ · · · ∧ φ(ek) ∧ φ(h1) ∧ · · · ∧ φ(hr)).

• Second, we identify orderings up to sign: for a permutation σ ∈ Sk+r we set

(9) (Γ, a1 ∧ · · · ∧ ak+r) = sgn(σ)(Γ, aσ(1) ∧ · · · ∧ aσ(k+r)) .

This second relation allows one to put the edges before the half-edges, e1 ∧ · · · ∧ ek ∧h1 ∧ · · · ∧hr.
The following figure depicts a generator for X5,1. The special vertex is indicated by a double

ring, and the marked half-edges at the special vertex are indicated by arrows:

1 .

The differential on Xg,n is the sum of two pieces

δ = δs + δω.

The piece δω simply removes one distinguished half-edge from the orientation.

δω(Γ, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =

r∑
j=1

(−1)k+j−1(Γ, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ĥj · · · ∧ hr)
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Pictorially:

δω : 7→
∑
± .

The piece δs acts by splitting vertices. For convenience we shall further decompose δs = δ•s + δ◦s
into a piece δ◦s splitting the special vertex and δ•s splitting the other vertices. Concretely, the
operation δ•s is defined analogously to (5),

(10) δ•s(Γ, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =
∑
v∈V•Γ

∑
split v

(Γ′, e0 ∧ e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) .

The outer sum is again over all non-special vertices v of Γ. The inner sum is over all admissible
ways of replacing the vertex v by two vertices connected by an edge, distributing the incident
half-edges at v on the new vertices, thus forming a graph Γ′. Pictorially:

δ•s : 7→
∑

.

Similarly, we define δ◦s analogously to (6),

(11) δ◦s(Γ, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =
∑
B⊂H∗
|B|≥2

(splitBΓ, e0 ∧ e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) ,

with the sum running over subsets B of the set H∗ of half-edges incident at the special vertex,
such that |B| ≥ 2 and B contains at most one of the distinguished half-edges. The graph splitBΓ
is built by adding a new non-special vertex v to the graph Γ, with an edge to the special vertex,
and reconnecting the half-edges B to v. If B contains a marked half-edge, then the marking is
removed and put on the half-edge connecting the special vertex to v instead. Pictorially:

δ◦s : 7→
∑

+
∑

.

Lemma 3.4. The differential δ satisfies δ2 = 0, and the dg vector space (Xg,n, δ) is acyclic.

Proof. The verification that δ2 = 0 is by direct computation, as follows. Expand δ2 as

(δ•s + δ◦s + δω)2 = (δ•s)
2 + (δ◦s)

2 + (δω)2 + [δ•s , δ
◦
s ] + [δ•s , δω] + [δ◦s , δω],

with [−,−] denoting the anticommutator.
It is clear that (δω)2 = 0 since the operations of removing two different markings commute,

and the terms come with opposite sign. Similarly, [δ•s , δω] = 0 since the markings at the special
vertex do not interfere with the edge splitting operation, and matching terms again come with
opposite sign.

To check that (δ•s)
2 = 0 consider a graph Γ ∈ X and compute δ•sδ

•
sΓ. Say the first application

of δ•s splits a vertex v into vertices v′, v′′, and the second application split a vertex w. Clearly,
if w 6= v′, v′′ then the splittings of first v then w cancels the similar term corresponding to first
splitting w and then v. There remain the terms for which w = v′ and w = v′′, schematically
depicted as follows:

v δ•s−→
∑ v′ v′′

1

δ•s−→
∑

1 2
+

2 1
.

The numbers below the edges indicate the position of the edge in the ordering that makes up the
orientation of the graph. The two terms on the right (from splitting v′ and v′′) are the same, up
to the sign from swapping the edge order, and hence cancel.

By essentially the same argument, with one of the vertices replaced by the special vertex,

(δ◦s)
2 + [δ•s , δ

◦
s ] = 0.
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It remains to check that [δ◦s , δω] = 0. To this end fix a graph Γ ∈ X and look at those terms in
[δ◦s , δω]X in which a subset B of the half-edges at the special vertex is split off, and the marking
of half-edge h is removed. Such terms can potentially be produced twice, corresponding to the
two paths from top left to bottom right in the following diagram:

h

}
B

}
B

}
B

}
B

splitB

remove h remove h

splitB

.

We distinguish 4 cases.

• If the half-edge h is not in B, as in the picture above, the two terms produced from δ◦sδωΓ
and δωδ

◦
sΓ are isomorphic but come with opposite signs and hence cancel.

• If h ∈ B, and B contains exactly one marked half-edge, then the two terms again cancel:}
B

}
B

}
B

}
B

splitB

remove h remove h

splitB

.

• If h ∈ B and B contains at least 3 marked half-edges, then none of the splitting terms
yields a contribution (i.e., those B do not appear in the sum (11)).
• Finally, if h ∈ B and B contains exactly two marked half-edges, say h and h′, then the

terms corresponding to removing h and h′ match and cancel:}
B 0

− (+1− 1) · = 0

splitB

remove h,h′

splitB

.

To show acyclicity we consider the filtration on X by the number of vertices. The E0-page of
the associated spectral sequence may be identified with the complex (Xg,n, δω). Hence it suffices
to check that H(Xg,n, δω) = 0. To this end consider the degree −1-operation h : Xg,n → Xg,n

that sums over all ways of adding a half-edge to the distinguished set,

h(Γ, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =
1

|H∗|
(−1)k

∑
h∈H∗\{h1,...,hr}

h(Γ, e1 ∧ · · · ∧ ek ∧ h ∧ h1 ∧ · · · ∧ hr).

Then δωh + hδω is the identity map. It follows that h is a contracting homotopy for δω, and
H(Xg,n, δω) = 0. Since Xg,n is finite dimensional, the filtration is bounded and our spectral
sequence converges to the cohomology. Hence H(Xg,n, δs + δω) = 0 as claimed. �
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3.2. Blown-up picture. We now introduce an alternative graphical depiction of generators for
Xg,n that we call the blown-up picture. This equivalent encoding of the same information is
obtained by “blowing-up” the special vertex, i.e., removing the special vertex and making the
incident half-edges into external legs, which we label by a special symbol ω (resp. ε) according
to whether the half-edges are marked or not. For example

1 7→

ω

ω

ε

ε ε1 .

Note that the graph on the right may be disconnected, though every connected component must
contain at least one ε- or ω-leg. When we talk about the blown-up components of a graph in
Xg,n below, we refer to the connected components of the blown-up picture.

The differential has an equivalent description in the blown-up picture, as follows. The piece

δω : ω · · · 7→ ε · · ·

replaces one ω-decoration by ε. The piece δ◦s joins together a subset S of the ε- and ω-legs,
containing at most one ω-leg, and attaches a new leg that is decorated by ω if S contains an ω
leg and ε otherwise:

δ◦s
Γ

=
∑
B

Γ

ε or ω

.

3.3. Truncations of Xg,n and resolutions of GK11,◦
g,n . We now show that two truncations of

Xg,n give natural resolutions of GK11,◦
g,n .

Definition 3.5. Let C̃g,n ⊂ Xg,n be the dg subspace spanned by graphs that have at most 10
distinguished half-edges at the special vertex, and define

B̃g,n := Xg,n/C̃g,n.

to be the quotient complex. We also denote appropriate degree shifted versions by

Bg,n = B̃g,n[−22]

Cg,n = C̃g,n[−21].

We now show that Bg,n and Cg,n are resolutions of GK11,◦
g,n . Consider P : Bg,n → GK11,◦

g,n , given by

P (Γ, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ∧ hr) =

{
(Γ, e1 ∧ · · · ∧ ek, ω{h1,...,h11}) if r = 11,

0 otherwise;

and I : GK11,◦
g,n → Cg,n, given by

I(Γ, e1 ∧ · · · ∧ ek, ω{h1,...,h11}) =

11∑
j=1

(−1)k+j−1(Γ, e1 ∧ · · · ∧ ek ∧ h1 ∧ · · · ĥj · · · ∧ h11).

Proposition 3.6. The maps P and I above are well-defined maps of dg vector spaces and induce
isomorphisms on cohomology.
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Proof. We start by checking that P intertwines the differentials. First, we show that P (δωΓ) = 0.
If Γ has 11 or more than 12 distinguished half-edges then this is clear by degree reasons. If Γ has
exactly 12 distinguished half-edges then P (δωΓ) = 0 by Remark 3.3, since δω produces expressions

of the form (7), which vanish in GK11,◦
g,n . Next, we have P (δ•sΓ) = δ•sP (Γ), since the splitting of the

non-special vertices is the same on both sides; see (5) and (10). Finally, comparing (6) and (11)
we see that P (δ◦sΓ) = δ◦s(Γ), because the handling of the marked half-edges in δ◦s on Bg,n reflects
the pullback operation ξ∗B of (4). It follows that P intertwines the differentials, as required.

Next, note that the maps P and I fit into a commutative diagram

Bg,n GK11,◦
g,n

Cg,n

P

δω
I

.

Since P is surjective and both P and δω intertwine the differentials, so does I.
It remains to show that P and I are quasi-isomorphisms. Since Xg,n is acyclic, δω : Bg,n → Cg,n

is a quasi-isomorphism. Since the above diagram commutes, it therefore suffices to show that P
is a quasi-isomorphism. To this end we first note that by Remark 3.3

GK11,◦ ∼= Bg,n/(Bg,n,≥12ω ⊕ δωBg,n,12ω),

where Bg,n,12ω (resp. Bg,n,≥12ω) is the subspace of Bg,n spanned by graphs with 12 (resp. ≥ 12)
ω-legs. We hence need to show that the projection

(12) Bg,n → Bg,n/(Bg,n,≥12ω ⊕ δωBg,n,12ω)

is a quasi-isomorphism. To this end we follow the argument for acyclicity of Xg,n in the proof
of Lemma 3.4. We consider on both sides of (12) the spectral sequences from the filtration by
the numbers of vertices in graphs. On the first page of the spectral sequence, the differential on
the left-hand side of (12) is given by δω, and on the right-hand side it is zero. Since (Xg,n, δω) is
acyclic and Bg,n is the a truncation at 11 ω-legs, we have

H(Bg,n, δω) = Bg,n,11ω/im(Bg,n,12ω
δω−→ Bg,n,1ω) ∼= Bg,n/(Bg,n,≥12ω ⊕ δωBg,n,12ω).

Hence (12) induces an isomorphism on the E1-page of the spectral sequence, and is a quasi-
isomorphism by the spectral sequence comparison lemma. �

Corollary 3.7. There are natural isomorphisms

Hk(Bg,n)⊗∆ ∼= gr11H
k
c (Mg,n) ∼= Hk(Cg,n)⊗∆.

4. Explicit computations in low excess

In order to study the cohomology of Bg,n, we introduce a statistic on graph generators that we
call excess. Most importantly for our purposes, the excess is non-negative, additive on blown-up
components, and graphs with small excess are relatively simple and easy to classify.

Definition 4.1. The excess of a generator Γ of Xg,n is

E(Γ) = 3(g − 1) + 2n− 2#ω,

where #ω is the number of ω-legs of Γ.

We also define
E(g, n) := 3g + 2n− 25.

Any generator Γ for Bg,n has #ω ≥ 11, and hence

E(Γ) ≤ E(g, n).
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Note that E(Γ) ≡ E(g, n) mod 2, so all generators for Bg,n have even or odd excess, when g is
odd or even, respectively. Also, for each fixed k, there are only finitely many pairs (g, n) such
that E(g, n) = k.

Write each generator Γ for Bg,n as a union of its blown-up components:

Γ = C1 ∪ · · · ∪ Ck.

Let gi be the contribution of Ci to the genus of Γ. More precisely,

gi = h1(Ci) + #ε+ #ω − 1,

i.e., the loop order of Ci plus the number of its ε and ω labeled legs minus one. Then the excess
of Ci is

E(Ci) := 3gi + 2ni − 2#ω

Lemma 4.2. The excess is additive over blown-up components, i.e.

(13) E(Γ) = E(C1 ∪ · · · ∪ Ck) = E(C1) + · · ·+ E(Ck),

and the excess of each blown-up component is nonnegative.

Proof. The formula (13) for E(Γ) is evident since the genus of Γ is the sum over the genus
contributions of the blown-up components, plus one to take into account that the special vertex
has genus one.

If either h1(Ci) ≥ 1 or #ε ≥ 1 then

E(Ci) = 3h1(Ci) + 3#ε+ 2ni + #ω − 3 ≥ 0.

It remains to show that E(Ci) ≥ 0 when h1(gi) = #ε = 0. Suppose Ci is a tree with m leaves
that can be either numbered or ω-decorated. If the tree has at least 3 leaves, then E(Ci) is at
least 2ni + #ω − 3 ≥ 0. Any tree has at least two leaves, and the remaining cases are:

ω ω or ω j .

The first graph vanishes by symmetry and for the second we have E(Ci) = 0. �

Corollary 4.3. If E(g, n) < 0 then gr11H
•
c (Mg,n) = 0.

Proof. By Lemma 4.2, if E(g, n) is negative, the complex Bg,n is 0. �

Lemma 4.4. If h1(Ci) ≥ 1 then E(Ci) ≥ 5.

Proof. The argument is similar to the proof of Lemma 4.2. First, note that if h1(Ci) ≥ 3 then
E(Ci) ≥ 5. If h1(Ci) = 2, then the only graphs that would produce E(Ci) < 5 need to have
#ε = 2ni = 0 and #ω = 1. But there is no such (non-vanishing) loop order 2 graph. Finally,
suppose h1(Ci) = 1. The general loop order one graph has the form

· · ·

??

?

? ?

with the ? representing an ε, ω, a numbered leg or a tree or forest to be attached. Clearly, if the
graph has ≥ 5 legs then E(Ci) ≥ 5. Also note that the length of the inner loop must be at least
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three, otherwise the graph has a double edge and vanishes. If the graph has loop length 4, the
only case to be considered is that of all 4 legs being ω-legs.

ω

ω

ω

ω

This graph has an odd symmetry and vanishes in Bg,n. For loop length three we have the graph

ω

ω

ω

,

and its variants in which one ω is replaced by a number or a forest with 2 ω-legs. In each case,
the graph has an odd symmetry and vanishes in Bg,n. �

Using Lemma 4.4, the cohomology of Bg,n can be computed relatively easily as long as E(g, n) ≤ 4,
since the generating graphs are forests. We now carry through the details for E(g, n) ≤ 3.

4.1. Excess 0. By Lemma 4.2, the blown-up picture of a graph of excess zero is a union of
connected components of excess zero. The only such components are of the form

ω j or ω ω ω .

Thus, if E(g, n) = 0, the generators of Bg,n have the following form:

Γ(0) = ω 1 · · · ω n
ω ω ω · · · ω ω ω

Note that there are n (ω − j)-edges and g−1
2 tripods with three ω-legs each. The cohomological

degree of such a generator is k = 11 + 3
2(g − 1).

One hence arrives at the following list of cases in which gr11H
k
c (Mg,n) is concentrated in a

single degree k, and isomorphic to ∆. The Sn-action is by the sign representation in each case.

Hk(B1,11) =

{
V111 for k = 11

0 otherwise
Hk(B3,8) =

{
V18 for k = 14

0 otherwise

Hk(B5,5) =

{
V15 for k = 17

0 otherwise
Hk(B7,2) =

{
V12 for k = 20

0 otherwise

4.2. Excess 1. Suppose E(g, n) = 1. Each generator for Bg,n has all connected components of
excess 0, except for one of excess 1. The connected graphs of excess 1 are of the form:

(14) ω ε or j ω ω or ω ω ω ω or ω ω ω ω .

The third graph maps to the fourth under the vertex splitting differential, and hence graphs with
these components do not contribute to cohomology; we may simplify Bg,n by killing these terms.
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The remaining excess 1 graphs are of the form

Γ(1) = ω 1 · · · ω n
ω ω ω · · · ω ω ω

ω ε

or

Γ
(1)
j = ω 1 · · · ω n

ω ω ω · · · ω ω ω j ω ω ,

with the understanding that there is no (ω − j)-edge in Γ
(1)
j . Modulo terms involving the fourth

graph in (14), which we ignore, the differential is given by

(15) Γ(1) 7→ ±
n∑
j=1

(−1)jΓ
(1)
j .

It follows that the cohomology of Bg,n (with E(g, n) = 1) is one copy of the irreducible Sn-
representation V21n−2 in degree k = 10 + 3

2g, given by the cokernel of (15). Concretely, this
applies to the cases:

Hk(B2,10) =

{
V218 for k = 13

0 otherwise
Hk(B4,7) =

{
V215 for k = 16

0 otherwise

Hk(B6,4) =

{
V212 for k = 19

0 otherwise
Hk(B8,1) = 0.

4.3. Excess 2. Suppose E(g, n) = 2. A generator for Bg,n of excess 2 has either two connected
components of excess 1, or one of excess 2. The connected components of excess 2 are

(16) j ε or ε ω ω or
i j ω or trees with at least 4 leaves .

As in the case E(g, n) = 1, one readily checks that trees with at least 4 leaves do not contribute
to the cohomology of Bg,n, and can be killed by a chain homotopy. Thus we ignore such terms.

The remaining reduced version of Bg,n is generated by the single graph Γ(0) of excess 0 in degree
10 + 3

2(g − 1), along with the following graphs of excess 2:

Γ(2)
ε := ω 1 · · · ω n

ω ω ω · · · ω ω ω ε ω ω

Γ
(2)
εj := ε j ω 1 · · · ω n

ω ω ω · · · ω ω ω

Γ
(2)
ij := ω 1 · · · ω n

ω ω ω · · · ω ω ω i j ω

Γ(2)
ωεωε = ω 1 · · · ω n

ω ω ω · · · ω ω ω
ω ε ω ε

Γ
(2)
ωεj = ω 1 · · · ω n

ω ω ω · · · ω ω ω j ω ω
ω ε

Γ
(2)
i;j := ω 1 · · · ω n

ω ω ω · · · ω ω ω i ω ω j ω ω
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After killing terms involving trees with at least 4 leaves, the differential maps Γ
(2)
ε , Γ

(2)
ij , and Γ

(2)
i;j

to 0. On the remaining generators, it is given by:

Γ(0) 7→
∑
j

±Γ
(2)
εj + (const)Γ(2)

ε Γ
(2)
εj 7→

∑
i

±Γ
(2)
ij

Γ(2)
ωεωε 7→ ±Γ(2)

ε +
∑
j

±Γ
(2)
ωεj Γ

(2)
ωεj 7→

∑
i

±Γ
(2)
i;j .

Here one needs to take care that when n = 0 or g = 1, some of these generators are absent. More

precisely, the generators Γ
(2)
εj , Γ

(2)
ωεj ,Γ

(2)
ij , Γ

(2)
i;j are not present when n = 0, nor are Γ

(2)
ε , Γ

(2)
i;j , Γ

(2)
ωεωε,

Γ
(2)
ωεj when g = 1. When all of the generators are present, the cohomology consists of one copy

of the sign representation V1n of Sn, represented by Γ
(2)
ε + · · · , and two copies of the irreducible

representation V31n−3 , represented by linear combinations of graphs of the form Γ
(2)
ij and Γ

(2)
i;j

respectively. Taking into account the special cases n = 0 and g = 1, we arrive at the following:

Hk(B1,12) =

{
V319 for k = 12

0 otherwise
Hk(B3,9) =


V19 for k = 14

V316 ⊕ V316 for k = 15

0 otherwise

Hk(B5,6) =


V16 for k = 17

V313 ⊕ V313 for k = 18

0 otherwise

Hk(B7,3) =


V13 for k = 20

V3 ⊕ V3 for k = 21

0 otherwise

Hk(B9,0) =

{
Q for k = 22

0 otherwise.

4.4. Excess 3. Suppose E(g, n) = 3. Then each generator Γ for Bg,n has excess 1 or 3, and
the contributions of the blown up components determine a partition λ of E(Γ). We filter Bg,n
according to the lexicographic ordering on these partitions, and consider the associated spectral
sequence. On the first page, the differential only relates generators with the same partition.

• λ = 1. The graphs of excess 1 and the complex that they generate on the first page
are exactly as in §4.2. In particular, the cohomology is one copy of V21n−2 in degree
3
2(g − 4) + 15, represented by linear combinations of the graphs of type Γ

(1)
j .

• λ = 13. The contribution of graphs with the blown-up components of excess 1 is similar
to the excess 2 case computed in §4.3. The resulting cohomology on the first page is one
copy of V41n−4 in degree 3

2(g − 3) + 17 represented by linear combinations of graphs

Γ
(3)
i;j;k := ω 1 · · · ω n

ω ω ω · · · ω ω ω i ω ω j ω ω k ω ω

• λ = 21. Here we have 6 types of graphs to consider, coming from 3 types of components
of excess 2 (16) and 2 types of components of excess 1 (14). The cohomology consists of:

– A copy of V41n−4⊕V321n−5 in degree 3
2(g−4)+17 represented by linear combinations

of graphs

Γ
(3)
ij;k := ω 1 · · · ω n

ω ω ω · · · ω ω ω i j ω k ω ω
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– Two copies of V21n−2 in degree 3
2(g − 4) + 16 one represented by graphs of the form

Γ
(3)
ε;j = ω 1 · · · ω n

ω ω ω · · · ω ω ω j ω ω ε ω ω

and another by graphs of the form:

Γ
(3)
εi;j = ω 1 · · · ω n

ω ω ω · · · ω ω ω j ω ω i ε

• λ = 3. The relevant trees of excess 3 are:

ε ε or ε i ω or
i ω ω j .

The cohomology of the resulting 3-term complex is V31n−3 in degree 3
2(g − 4) + 17 repre-

sented by linear combinations of graphs of the form

Γ
(3)
i·j = ω 1 · · · ω n

ω ω ω · · · ω ω ω i ω ω j

The only possible cancellations on later pages of the spectral sequence are between the copies

of V21n−2 . And indeed δωΓ
(1)
i =

∑
j ±Γ

(3)
εi;j+(· · · ), and thus the two corresponding copies of V21n−2

do cancel on the second page of the spectral sequence. Taking into account the cases of low g ≤ 2
and low n ≤ 3 one arrives at the following expressions for the cohomology of Bg,n:

Hk(B2,11) =

{
V417 ⊕ V3216 ⊕ V318 for k = 14

0 otherwise

Hk(B4,8) =


V216 for k = 16

V414 ⊕ V414 ⊕ V3213 ⊕ V315 for k = 17

0 otherwise

Hk(B6,5) =


V213 for k = 19

V41 ⊕ V41 ⊕ V32 ⊕ V312 for k = 20

0 otherwise

Hk(B8,2) =

{
V2 for k = 22

0 otherwise.

5. The case n = 0: first injection

We now restrict attention to the special case where n = 0, allowing the genus g (and hence
the excess E) to be arbitrarily large. Following the standard notational convention for moduli of
curves, we write:

Xg := Xg,0, Bg := Bg,0, Cg := Cg,0.

In this section and the next, we identify several nontrivial families of cohomology classes in Cg
and Bg, respectively, built from the weight 0 compactly supported cohomology of Mh for h < g.

Let GC0 be the graph complex generated by connected graphs without tadpoles in which every
vertex has valence at least 3. Each generator comes with an orientation, which is a total ordering
of the edges. As before, we identify isomorphic graphs, and we identify two orientations up to
sign, cf. (2) and (3), and (8) and (9). The cohomological degree of a generator is the number of
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edges, and the differential δ is given by vertex splitting, as in (10). The differential preserves the

loop order (first Betti number) and we write GC
(g)
0 for the part of loop order g.

Recall that GC
(g)
0 is quasi-isomorphic to the Feynman transform of the modular co-operad

H0(M), evaluated at (g, 0); more precisely, it is the quotient of FH0(M)(g, 0) by the acyclic
subcomplex generated by graphs with tadpoles or vertices of positive genus [7]. As a consequence,
there is a canonical isomorphism

W0H
•
c (Mg) ∼= H•(GC

(g)
0 ).

The symmetric product Symk(GC0) inherits a loop order grading from GC0 and we denote by

Symk(GC0)(g) ⊂ Symk(GC0) the part of loop order g.

Theorem 5.1. There is a map of complexes

F : Sym10(GC0)(g−1)[−21]⊕ Sym10(GC0)(g−2)[−22]→ Cg

that induces an injective map on the level of cohomology

Hk−21(Sym10(GC0)(g−1))⊕Hk−22(Sym10(GC0)(g−2))→ Hk(Cg).

Corollary 5.2. There is a natural injection(
Hk−21(Sym10(GC0)(g−1))⊕Hk−22(Sym10(GC0)(g−2))

)
⊗∆→ gr11H

k(Mg).

5.1. A homotopy trivial Lie bracket on GC0. The graph complex GC0 is a dg Lie algebra
with the Lie bracket [−,−] defined by inserting one graph into a vertex of the other. This primary
Lie bracket has degree 0; it leaves the number of edges invariant and removes one vertex.

There is also a secondary Lie bracket of degree +1 on GC0 which, we denote {−,−}, defined
by gluing two graphs together by attaching a new edge between them:

{γ1, γ2} :=
∑
v∈V γ1
w∈V γ2

(v, w) ∪ γ1 ∪ γ2 =
∑

γ1 γ2

To fix the sign, the newly added edge comes first in the ordering, followed by the edges of γ1, and
then those of γ2. This secondary Lie bracket {−,−} is homotopy trivial.

Proposition 5.3 ([20]). There is an L∞-isomorphism

(GC0, δ, 0)→ (GC0, δ, {−,−})

between the abelian Lie algebra GC0 and the dg Lie algebra GC0 equipped with the Lie bracket
{−,−}. This L∞-isomorphism preserves the grading by loop order on both sides.

The Chevalley-Eilenberg complex of the dg Lie algebra GC0 with the homotopy trivial Lie
bracket {−,−} of degree +1 is the graded vector space

CE(GC0, δ, {−,−}) = Sym(GC0)

with the differential δ + δ{,} such that

δ{,}(γ1 · · · γk) =
∑
i<j

(−1)|γi|(|γ1|+···+|γi−1|)+|γj |(|γ1|+···+|γj−1|)−|γi||γj |{γi, γj}γ1 · · · γ̂i · · · γ̂j · · · γk.

Combinatorially, if we think of the product γ1 · · · γk as the union of the graphs γ1, . . . , γk, then
δ{,} adds a new edge between any pair of vertices that belong to different connected components.
Any L∞-morphism induces a morphism on the Chevalley-Eilenberg complexes. Hence we obtain
from Proposition 5.3 the following result.
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Corollary 5.4. There is an isomorphism between the Chevalley-Eilenberg complexes of the abelian
dg Lie algebra GC0 and the dg Lie algebra GC0 with the bracket {−,−}.

Φ: CE(GC0, δ, 0) = (Sym(GC0), δ)→ CE(GC0, δ, {−,−}) = (Sym(GC0), δ + δ{,}).

5.2. Some combinatorial operations. We consider the tadpole-free version of the Kontsevich
graphical operad Graphs0 [14]. As for any operad, its unary operations G1 := Graphs0(1) form a
dg associative algebra with the operadic composition ◦ as the product. Concretely, elements of
G1 are linear combinations of pairs (Γ, o) with Γ a connected graph with one special “external”
vertex, and an orientation o = e1 ∧ · · · ∧ ek given by ordering the edges.

The external vertex may have any valence; all other vertices must have valence at least 3.
The product (i.e., the operadic composition) is defined by inserting one graph into the other

and summing over all ways of reconnecting the incident edges to vertices of Γ2.

Γ1

◦
Γ2

=
∑ Γ1

Γ2Γ2

The differential δ on G1 is given by splitting vertices of graphs, as in (10), (11).

δ : 7→
∑

7→
∑

Next, we define the vector space

X := Q ∅ ⊕
⊕
g≥1

Xg.

It is generated by the generators of the Xg of arbitrary genus, plus an additional generator ∅. We
think of ∅ as the empty graph in the blown-up picture, or the graph with a single special vertex
in the original picture.

There is a left action of the dg algebra G1 on the complex X defined as follows:

(17)

G1 ⊗X → X

(Γ, ν) 7→ Γ ◦ ν =
∑ Γ

ν

Here again one inserts the graph ν into the external vertex of Γ, and reconnects the incident
half-edges in all possible ways to vertices of ν. If a half-edge of Γ is reconnected to the special
vertex of ν, then the rule is that the half-edge becomes non-marked. Equivalently, in the blown-
up picture, each half-edge of Γ incident to the special vertex is either reconnected to an internal
vertex of ν or else decorated by ε. In particular, if ν = ∅, then one just labels all of the half-edges
of Γ incident to the external vertex by ε.

Lemma 5.5. The operation ◦ above is a well defined left action of the dg associative algebra G1

on the dg vector space X.
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Proof. First, let us check that for graphs Γ1,Γ2 ∈ G1 and ν ∈ X we have

Γ1 ◦ (Γ2 ◦ ν) = (Γ1 ◦ Γ2) ◦ ν.
Each side is the sum of graphs obtained by reconnecting the half-edges incident at the external
vertex of Γ1 to internal vertices of Γ2 or vertices of ν, and half-edges incident to the external
vertex of Γ2 to vertices of ν. Hence both sides agree.

Next, we have to check compatibility with the differentials, that is

δ(Γ ◦ ν) = (δΓ) ◦ ν + (−1)|Γ|Γ ◦ δν.
This verification is straightforward. We outline the argument. First, note that

δω(Γ ◦ ν) = (−1)|Γ|Γ ◦ δων,
since Γ ◦ (−) does not interact with the decorations ε or ω. It remains to show that

(18) δs(Γ ◦ ν) = (δΓ) ◦ ν + (−1)|Γ|Γ ◦ δsν.
The terms appearing on either side are of one of four types:

• (A) Terms arising from splitting an internal vertex of Γ. Those are the same on both
sides and can be ignored.
• (B) Terms arising from splitting a non-special vertex v of ν. On the left-hand side of

(18) the splitting is performed after (possibly) some edges of Γ have been connected to v.
Pictorially,

with the new edges drawn dotted. The same terms are produced on the right-hand side
of (18), except for graphs for which there are 0 (say type (B0)) or 1 (say type (B1)) old
edges incident to one of the vertices.

(B0) : (B1) :

• (C) There are terms arising from splitting the special vertex of ν on the left- and right-
hand side of (18). They are handled just as those of type (B) above, and match except
for terms of types

(C0) : (C1) :

that appear on the left-hand side of (18), but (a priori) not on the right.
• (D) Finally, we have terms on the right-hand side of (18) from splitting the external

vertex of Γ. Those are of course absent from the left-hand side, because the operation
Γ ◦ (−) removes the external vertex of Γ. However, upon inspection these terms of type
(D) on the right-hand side exactly match the terms of type (B0) and (C0) above on the
left-hand side.

It remains to show that the yet unmatched terms (B1) and (C1) on the left-hand side of (18) all
cancel in pairs. To see this mind that each such term appears twice, once from either side of the
“old” edge attached to the vertex that was split off:

and

or and .
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The two terms cancel in each case. To see this, recall that the newly produced edge from the
splitting is always the first in the ordering. From this, one deduces that the two terms have
opposite signs, and the lemma follows. �

Next, let γ ∈ GC0 be a graph. Then we define the element γ1 ∈ G1 by summing over all ways
of making one vertex of γ external. For example:

γ = 7→ γ1 = 4

We also define γ◦ ∈ G1 by attaching one edge and the external vertex. Similarly, we define γε ∈ X
by adding one ε-leg and γω ∈ X by adding one ω-leg. For example, with γ as above:

γ◦ = 4 , γε = 4

ε

, γω = 4

ω

.

To fix the signs, the newly added edge becomes the first in the ordering of edges. In the case of
γω the new (distinguished half-edge) ω stands right after the newly added edge in the ordering
of edges and ωs. Note that δωγ

ω = −γε.

Lemma 5.6. The above operations satisfy the following compatibility relations for γ, ν ∈ GC0:

δ(γ1)− (δγ)1 = γ◦(19)

({γ1, γ2})1 = γ◦1 ◦ γ1
2 + (−1)|γ1||γ2|γ◦2 ◦ γ1

1(20)

Proof. For (19) note that marking one vertex commutes with vertex splitting, except that split-
tings of the external vertex can be such that the external vertex has valence 1 or 2 afterwards.
The terms with valence 1 are γ◦. The terms of valence 2 cancel by an argument similar to that
at the end of the proof of Lemma 5.5.

For (20) note that ({γ1, γ2})1 is a linear combination of graphs obtained by connecting γ1 and
γ1 by one edge, and marking one vertex of γ1 or γ2 as external. The terms in which the external
vertex is in γ2 are the same as γ◦1 ◦ γ1

2 , and the terms in which the external vertex is in γ1 are the

same as (−1)|γ1||γ2|γ◦2 ◦ γ1
1 . �

For graphs x1, . . . , xk ∈ X let us denote by x1 ∪ · · · ∪ xk their union. For γ ∈ GC0 and x ∈ X
define the operation

λ(γ, x) := γ◦ ◦ x− γε ∪ x.
Concretely, this operation connects γ and x by an edge (v, w), summing over all vertices of v and
all non-special vertices w of x.

λ(γ, x) =
∑ γ x

Lemma 5.7. The operation λ(γ,−) is a derivation, i.e.,

(21) λ(γ, x1 ∪ · · · ∪ xk) =

k∑
j=1

±x1 ∪ · · · ∪ λ(γ, xj) ∪ · · · ∪ xk.

Furthermore, for γ, ν ∈ GC0

{γ, ν}ε = −λ(γ, νε)− (−1)|γ||ν|λ(ν, γε), and(22)

{γ, ν}ω = λ(γ, νω) + (−1)|γ||ν|λ(ν, γω) .(23)
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Proof. The derivation property (21) is clear from the pictorial description of λ above the lemma.
We hence focus on (22), (23). The element {γ, ν}ε is obtained by connecting γ and ν by one

edge and adding an ε-leg at a vertex of either γ or ν.

{γ, ν}ε =
γ ν

ε
+
γ ν

ε

To fix the sign, note that in the implicit ordering of edges, the ε-edge is first, then the horizontal
edge, then the edges of γ, then those of ν. On the other hand

λ(γ, νε) =
γ ν

ε

with the ordering of edges such that the horizontal edge is first and the ε-edge second, then the
edges of γ, then those of ν. Finally

λ(ν, γε) =
ν γ

ε

with the analogous ordering of edges. Hence (22) follows. Equation (23) is shown similarly,
with the caveat that there is an extra sign due to the ω-decoration being of odd degree, i.e., the
assignment γ 7→ γω is of even degree zero. �

5.3. The map G. Let J = {j1, . . . , jk} denote an ordered subset of {1, . . . , n}, i.e., with indices
chosen so that j1 < · · · < jk. We define a linear map

G : (Sym(GC0), δ + δ{,})→ X

by the formula

G(γ1 · · · γn) =
∑
|J |=k

∑
σ∈Sk

±γ1
jσ(1)
◦ · · · ◦ γ1

jσ(k)
◦ ∪i/∈Jγωi

= ∪ni=1γ
ω
i +

n∑
`=1

±γ1
` ◦ (∪ni=1

i 6=`
γωi ) + · · · .

The sign reflects the permutation of the symbols γj in the formula. The term with J = {1, . . . , k}
and σ the identity comes with sign +. This, together with the conventions on permuting factors
in the symmetric product discussed in §2.1, determines all of the other signs.

Proposition 5.8. The linear map G is a map of dg vector spaces, i.e. (δs+δω)◦G = G◦(δ+δ{,}).

Proof. We have that δωγ
ω = −γε and hence

δωG(γ1 · · · γn) = δω
∑
|J |=k

∑
σ∈Sk

±γ1
jσ(1)
◦ · · · ◦ γ1

jσ(k)
◦ ∪i/∈Jγωi

= −
∑
|J |=k

∑
σ∈Sk

±γ1
jσ(1)
◦ · · · ◦ γ1

jσ(k)
◦
∑
`/∈J

γε` ∪ i/∈J
i6=`

γωi .

On the other hand, using (19) above

δsG(γ1 · · · γn)−
n∑
r=1

±G(γ1 · · · δγr · · · γn) =
∑
|J |=k

∑
σ∈Sk

±
k∑
`=1

±γ1
jσ(1)
◦ · · · γ◦jσ(`) · · · ◦ γ

1
jσ(k)
◦ ∪i/∈Jγωi .
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Next, using (20) and (23), we have

G(δ{,}(γ1 · · · γn)) =
1

2

∑
|J |=k

k−1∑
r=1

∑
σ∈Sk

±γ1
jσ(1)
◦ · · · {γjσ(r) , γjσ(r+1)

}1 · · · ◦ γ1
jσ(k)
◦ ∪i/∈Jγωi

+
1

2

∑
|J |=k

∑
σ∈Sk

±γ1
jσ(1)
◦ · · · ◦ γ1

jσ(k)
◦
∑
a,b/∈J

{γa, γb}ω ∪ i/∈J
i 6=a,b

γωi

=
∑
|J |=k

∑
σ∈Sk

±γ1
jσ(1)
◦ · · · γ◦jσ(r) ◦ γ

1
jσ(r+1)

· · · ◦ γ1
jσ(k)
◦ ∪i/∈Jγωi

+
∑
|J |=k

∑
σ∈Sk

±γ1
jσ(1)
◦ · · · ◦ γ◦jσ(k) ◦ ∪i/∈Jγ

ω
i

−
∑
|J |=k

∑
σ∈Sk

±γ1
jσ(1)
◦ · · · ◦ γ1

jσ(k)
◦
∑
a/∈J

γεa ∪ i/∈J
a6=i

γωi .

The proposition follows by summing the expressions above. �

5.4. Operation ∇. Consider the degree +1 operation

∇ : X[−1]→ X

ν 7→
∑

ν
,

defined by summing over all ways of attaching one new edge to the graph ν, between an arbitrary
pair of vertices. Comparing to (17) this can be identified as the extension of the action ◦ to the
tadpole graph

τ ′ =

so that

∇ν = τ ′ ◦ ν.

As in Lemma 5.5 we then have that

δ∇ν +∇δν = (δτ ′) ◦ ν = 0,

since δτ ′ = has a tadpole at an internal vertex and thus acts as zero. Hence the operation ∇
anti-commutes with the differential on X and is a map of complexes.

5.5. Construction of the map F of Theorem 5.1. We define a map Sym(GC0)→ X as the
composition of the isomorphism Φ of Corollary 5.4 and the map G above:

(Sym(GC0), δ)
Φ−→ (Sym(GC0), δ + δ{,})

G−→ X.

Note that if the argument on the left-hand side is in the subspace S10(GC0), then the image lies
in the subspace C[21] ⊂ X spanned by graphs with at most 10 ω-legs. We hence can define the
map F of Theorem 5.1 by restricting G ◦ Φ. More precisely, F is the composition

F : Sym10(GC0)(g−1)[−11]⊕ Sym10(GC0)(g−2)[−12]
(G◦Φ)⊕(G◦Φ)−−−−−−−−−→ Cg ⊕ Cg−1[−1]

id+∇−−−→ Cg.
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5.6. Hairy graph complex and (X, δs). Our final goal is to show the injectivity claim of
Theorem 5.1. To this end it will be necessary to study the cohomology of the complex (X, δs).
This can equivalently be identified with the associated graded complex of (X, δω + δs) under the
filtration by number of ω-legs.

We consider a graph complex fHGC generated by linear combinations of pairs (Γ, o) with Γ a
possibly disconnected tadpole-free graph with (non-numbered) external legs.

We require that each vertex has valence ≥ 3. The orientation o = e1∧· · ·∧ek is an ordering of the
set of structural (i.e., non-leg) edges, and we again identify isomorphic graphs and orderings up
to sign, cf. (2), (3). By convention, we allow the graph Γ to be the empty graph for convenience,
but we forbid connected components that are just a single edge and do not contain a vertex. The
differential δ on fHGC is again given by vertex splitting

δ : 7→
∑

.

The degree of a graph is the number of structural edges. The graph complex (fHGC, δ) is well
known in the literature. By [8] the cohomology of the connected part of loop order g with n legs
(for 2g+n ≥ 3) computes the symmetric weight 0 part of the compactly supported cohomology of
the moduli spaces of curves W0H

•
c (Mg,n)Sn . Closely related complexes also compute the rational

homology of spaces of long knots [2].
We then define a map of dg vector spaces

K : (Q⊕Qα⊕Qβ ⊕Qαβ)⊗ fHGC→ (X, δs),(24)

with α representing an (ε− ε)-edge and β representing an (ε−ω)-edge. More concretely, the map
K acts on the four summands as follows:

• On the first summand fHGC the map K just acts as the natural inclusion:

7→

ω ω ω

ω

ω

.

• On Qα⊗ fHGC the map K applies the natural inclusion followed by ∇:

7→ ∇


ω ω ω

ω

ω

 .
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• On Qβ ⊗ fHGC the map K adds one (ε− ω)-edge, plus connects an additional ω-leg.

7→ ω ε

ω

ω

+
∑

ω

ω

ω

= ω ε

ω

ω

+ 2

ω ω

ω

+ 2

ω ω

ω

Here the sum is over all ways of connecting a new ω-leg to an internal vertex.
• On the summand Qαβ ⊗ fHGC the map K acts as above, followed by ∇:

7→ ∇

 ω ε

ω

ω

+
∑

ω

ω

ω


Proposition 5.9. The map K is a quasi-isomorphism of dg vector spaces.

Proof. First one checks that K commutes with the differentials. For the summands fHGC and
Qβ ⊗ fHGC this is straightforward. For the other two summands, one uses the fact that ∇
commutes with the differentials.

It remains to check that the dg map K is a quasi-isomorphism. That is, we want to check that
the mapping cone of K is acyclic. We filter both domain and target, and hence also the mapping
cone by the number of connected components of graphs. On the associated graded we see only
those parts of the differential that leave the number of connected components the same. A close
variant of the resulting complex has been studied by Turchin and the second author [19]. We
recall their main result in Appendix A below, along with a slight variation (Corollary A.2) that
implies that the E1 page of our spectral sequence has the form

E1 = (QT ⊗ Sym≥0 QLω ⊕ Sym≥2 QLω)⊗ (Q⊕QLε)⊗H(fHGC)⇒ H(cone(K)),

with T, Lε, Lω the graphs of Appendix A. The differential on the E1 page corresponds to those
terms of δs that reduce the number of connected components by exactly one. The key observation
is that the component mapping the first tensor factor above to itself,

Sym≥2 QLω → QT ⊗ Sym≥0 QLω

has the form

Lω ∪ · · · ∪ Lω︸ ︷︷ ︸
k

7→ −
(
k

2

)
Lω ∪ · · · ∪ Lω︸ ︷︷ ︸

k−2

∪T.

This obviously makes the first tensor factor acyclic. By a simple spectral sequence argument it
then follows that H(E1) = 0 and hence H(cone(K)) = 0 as desired. �

5.7. Injectivity on cohomology and proof of Theorem 5.1. The projection to the subspace
Cg,10ω ⊂ Cg spanned by graphs with exactly 10 ω-legs is a map of dg vector spaces

π : (Cg, δs + δω)→ (Cg,10ω, δs).

To show that F induces an injective map on cohomology it hence suffices to show that π ◦ F
induces an injective map on cohomology. But π ◦F is precisely the same as the map K from the
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previous section restricted to a subspace of the 10-hair part of the summand (Q⊕Qα)⊗ fHGC.
More precisely, π ◦ F fits into a commutative diagram

Sym10(GC0)[−11]⊕ Sym10(GC0)[−12]
⊕

g Cg,10ω

(fHGC[−11]⊕Qα⊗ fHGC[−12])10-hair

π◦F

ι⊕ι K

with the map ι sending γ1 · · · γ10 ∈ Sym10(GC0) to the hairy graph

γ1
· · ·

γ10
∈ (fHGC)10-hair

The map ι induces an injection on cohomology by [18, Theorem 1].
But by Proposition 5.9 the (restriction of the) map K is also an injection on cohomology, and

hence so is π ◦ F . �

6. Case n = 0 – second injection

In this section we shall describe a second family of nontrivial cohomology classes in gr11H
•
c (Mg)

that are built from cocycles in GC0. More concretely, we will show the following result.

Theorem 6.1. There is a map of dg vector spaces

E : Sym9(GC0)(g−3)[−22]⊕ Sym6(GC0)(g−5)[−22]⊕ Sym3(GC0)(g−7)[−22]→ Bg

that gives rise to an injective map on cohomology

E : Hk−22(Sym9(GC0))(g−3) ⊕Hk−22(Sym6(GC0))(g−5) ⊕Hk−22(Sym3(GC0))(g−7) → Hk(Bg).

The remainder of this section is concerned with the construction of the map E and the proof that
it induces an injection on cohomology.

Since the construction is fairly technical and ad hoc, we shall first describe the idea here.
Recall that in the previous section we were able to construct explicit cocycles (say x ∈ Cg)
in the graph complex (Cg, δs + δω) consisting of graphs with at most ten ω-legs. The idea to
show that x indeed represents a non-trivial cohomology class was to consider the projection
π : (Cg, δs+ δω)→ (Cg,10ω, δs), and use that the cohomology of the latter complex is computable.
Concretely,by Proposition 5.9 it agrees with the genus g- and 10-hair part of

(Q⊕Qα⊕Qβ ⊕Qαβ)⊗H(fHGC),(25)

and we know many non-trivial classes in the hairy graph cohomology H(fHGC) from previous
work in the literature.

Let us split x =
∑10

j=0 xj into components xj with j many ω-legs, then the top piece x10

represents a non-trivial cohomology class in Cg,10ω (i.e., in (25)). Conversely, we may ask for
a given cocycle x10 ∈ Cg,10ω whether it can be extended into a cocycle x10 + x9 + · · · + x0 ∈
(Cg, δs + δω). Unfortunately, this extension problem is non-trivial, and we could only provide a
solution for specific types of x10 in the previous section above, and these come from the summand
Q⊕Qα in (25). The idea underlying Theorem 6.1 is to consider the summand Qαβ instead. In
that case the most natural approach turned out to not try to construct the x0, . . . , x9, but rather
construct a cocycle x12 + x11 ∈ (Bg, δs + δω) whose image under the map δω : Bg → Cg is
the required x10. This is the idea of the construction of the present section. The advantage is
that we only need to consider two summands, x12 and x11, and they will have a more natural
combinatorial form than δω(x12 + x11).
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6.1. Some combinatorial constructions. Our map E will be a linear combination of several
pieces, that we shall introduce next. First, for k = 0, 1, . . . we consider the maps

Φk : Sym(GC0)→ X

Φk(γ1 · · · γr) = τ ∪ · · · ∪ τ︸ ︷︷ ︸
k

∪γω1 ∪ · · · ∪ γωr = ω ω ω · · · ω ω ω

γ1

ω · · ·
γr

ω ,

with

τ = ω ω ω

the tripod graph. Since the differential δs distributes over the operation ∪ as long as there are
no ε-legs we have that

(26) δsΦk(γ1 · · · γr) =

r∑
j=1

(−1)|γ1|+···+|γj−1|Φk(γ1 · · · (δγj) · · · γr).

On the other hand, we have

(27) δωΦk(γ1 · · · γr) = 3k ε ω ω · · · ω ω ω

γ1

ω · · ·
γr

ω +
∑r

j=1± ω ω ω · · · ω ω ω

γ1

ω · · ·
γj

ε · · ·
γr

ω .

We also define the similar operation

Φ̂k : Sym(GC0)→ X

Φ̂k(γ1 · · · γr) = ω ω ω ω ω ω ω ω · · · ω ω ω︸ ︷︷ ︸
k

γ1

ω · · ·
γr

ω ,

It satisfies

(28)

δsΦ̂k(γ1 · · · γr)−
r∑
j=1

(−1)|γ1|+···+|γj−1|Φ̂k(γ1 · · · (δγj) · · · γr)

= 10 ω ω ω ω ω ω ω ω · · · ω ω ω︸ ︷︷ ︸
k

γ1

ω · · ·
γr

ω .

Next we define the degree zero operation

Ψ: X → X

Γ 7→
∑

Γω ω ,

where we sum over all ways of attaching two ω-legs to the graph Γ, in the blown-up picture. This
means that the half-edges are attached to an internal vertex, or become an ε-leg. (This can be
seen as attaching to the special vertex.)

Lemma 6.2. If a graph Γ ∈ X does not contain any ε-legs, then we have that

δsΨ(Γ)−Ψ(δsΓ) = −
∑

Γ

ω ω

=: −Ξ(Γ),

where on the right-hand side we again sum over all ways of attaching the leg to Γ, with the
attachment to the special vertex being the same as introducing an ε-marking at the leg.
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Proof. The computation is similar to the proof of Lemma 5.6. �

Furthermore, we use the pre-Lie product • on GC0. For γ1, γ2 ∈ GC0

γ1 • γ2 =
∑ γ1

γ2

∈ GC0,

where the sum is over all ways of inserting γ2 into a vertex of γ1. We shall only need to use the
following property of •, which is a special case of Proposition 5.3 (proved in [20]):

(29) δ(γ1 • γ2)− (δγ1) • γ2 − (−1)|γ1|γ1 • (δγ2) = {γ1, γ2}.

Finally, we define the operation

Φ̃k : Sym(GC0)→ X

Φ̃k(γ1 · · · γr) =
r∑
j=1

± ω ω ω · · · ω ω ω

γ1

ω · · ·
γj

ω ω ω · · ·
γr

ω .

In other words, Φ̃k is defined similarly to Φk, except that we attach 3 ω-legs to one of the γj
instead of one.

Lemma 6.3. The expression δsΦ̃k(γ1 · · · γr)−
∑r

j=1(−1)|γ1|+···+|γj−1|Φ̃k(γ1 · · · (δγj) · · · γr) equals:

(30) r∑
j=1

± ω ω ω · · · ω ω ω

γ1

ω · · ·

γj

ω ω ω · · ·
γr

ω + 3 ω ω ω · · · ω ω ω

γ1

ω · · ·

γj

ω ω ω · · ·
γr

ω .

Proof. The verification is a similar graphical computation to those above. We omit the details. �

6.2. Definition of the map E. We then define the maps of graded vector spaces

Ek : Sym(GC0)→ X

γ1 · · · γr 7→ Φk(γ1 · · · γr) + kΦ̃k−1(γ1 · · · γr) +
3k

10
Φ̂k−1(γ1 · · · γr) + 3kΨ(Φk−1(γ1 · · · γr))

−
r∑
i=1

γ1
i ◦ Φk(γ1 · · · γ̂i · · · γr) +

∑
i<j

±Φk(γ1 · · · (γi • γj) · · · γr).

The map Ek is not a morphism of dg vector spaces; it does not commute with the differentials.
However, we have the following result:

Lemma 6.4. For γ1, . . . , γr ∈ GC0, the commutator of Ek with the differential

δEk(γ1 · · · γr)−
∑
j

±Ek(γ1 · · · δγj · · · γr)

is a linear combination of graphs with at most r + 3k − 2 legs decorated by ω.

Proof. First note that Φk(γ1 · · · γr) is the only term in the definition of Ek that has r+ 3k ω-legs.
The remaining terms, call them X(γ1 · · · γr) temporarily, all have r+ 3k− 1 many ω-legs. Given
(26) the assertion of the lemma hence is equivalent to the statement that

(31) [δs, X](γ1 · · · γr) := δsX(γ1 · · · γr)−
∑
j

±X(γ1 · · · δγj · · · γr) = −δωΦk(γ1 · · · γr).
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To show this we investigate the terms contributing to [δs, X] separately. First, by Lemma 6.2

[δs,Ψ ◦ Φk−1](γ1 · · · γr) = −Ξ(Φk−1(γ1 · · · γr)).

The terms contributing to Ξ(Φk−1(γ1 · · · γr)) are of three sorts: (Ξ1) the terms for which there is
a new ε-leg and (Ξ2) the terms for which the new leg is connected to a vertex of one γj and (Ξ3)
the terms for which the new leg is connected to a vertex of another tripod.

Ξ1 = ε ω ω ω ω ω · · · ω ω ω

γ1

ω · · ·
γr

ω

Ξ2 =
∑

ω ω ω · · · ω ω ω

γ1

ω · · ·
γj

ω · · ·

ω ω
γr

ω

Ξ3 = (k − 1) ω ω ω ω ω ω ω ω · · · ω ω ω

γ1

ω · · ·
γr

ω

The terms Ξ1 cancel the left-hand terms of δΦk(· · · ) in (27), in which one ε is put on a tripod

leg. The terms Ξ3 cancel with the terms [δs, Φ̂k−1](γ1 · · · γr) by (28).
Next denote temporarily

Y (γ1 · · · γr) :=
r∑
i=1

γ1
i ◦ Φk(γ1 · · · γ̂i · · · γr).

Then we use (19) to compute that

[δs, Y ](γ1 · · · γr) =

r∑
i=1

γ◦i ◦ Φk(γ1 · · · γ̂i · · · γr).

The terms on the right-hand side may be again split into terms (Y1) in which γi is attached to
an ε-leg and terms (Y2) for which γi is attached to a vertex of some other γj and (Y3) terms for
which γi is attached to a vertex of some tripod.

Y1 =
∑
i

ω ω ω · · · ω ω ω

γ1

ω · · ·
γi

ε · · ·
γr

ω

Y2 =
∑
i,j

ω ω ω · · · ω ω ω

γ1

ω · · ·

γi

γj

ω · · ·
γr

ω

Y3 =
∑
i

γi

ω ω ω ω ω ω · · · ω ω ω

γ1

ω · · ·
γr

ω

The terms Y1 cancel the remaining terms of δΦk(· · · ), see (27), in which one ε-leg is attached to
γi. The terms Y2 cancel the terms arising from the commutator of

∑
i<j Φk(γ1 · · · (γi • γj) · · · γr)

with the differential by (29).

The commutator Z := [δs, Φ̃k](γ1 · · · γr) is computed in (30) and we denote by Z1 the first
summand and by Z2 the second summand on the right-hand side of (30). Then the second
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summand Z2 cancels the terms Ξ2 above. At the same time the terms Z1 cancel the terms Y3

above. Thus all terms have been taken care of and (31) and the lemma is proved. �

As an immediate consequence we can finally define the map E of Theorem 6.1.

Corollary 6.5. The map

E : Sym9(GC0)(g−3)[−22]⊕ Sym6(GC0)(g−5)[−22]⊕ Sym3(GC0)(g−7)[−22]→ Bg

defined such that

(γ1 · · · γ9)⊕ (µ1 · · ·µ6)⊕ (ν1ν2ν3) 7→ π (E1(γ1 · · · γ9) + E2(µ1 · · ·µ6) + E3(ν1ν2ν3)) ∈ Bg ,

with π : Xg[−22]→ Bg the projection, is a map of dg vector spaces.

Proof. By Lemma 6.4 the commutator of Ek with the differential only has terms with ≤ 10 ω-legs,
and these are killed by π. �

6.3. Proof of Theorem 6.1. It remains to check that the cohomology map of the map E of
Theorem 6.1 (see the definition in Corollary 6.5) is in fact injective. Similarly to the proof
of Theorem 5.1 above it suffices to check that the composition π ◦ δω ◦ E of E with the map
π : H(Cg, δ) → H(Cg.10ω, δs) and the quasi-isomorphism δω : Bg → Cg is injective. However, in
contrast with the proof of Theorem 5.1, the composition π ◦ δω ◦ E does not factorize through
the cohomology isomorphism K of Proposition 5.9. Hence we need to trace through the proof of
Proposition 5.9, in which the cohomology H(Cg,10ω, δs) is computed, and identify the subspace of
the cohomology that is in the image of π◦δω ◦E. As in that proof, we hence consider the filtration
by the number of connected components in graphs, and the corresponding spectral sequence. We
need to trace our images π ◦ δω ◦ E(γ1 · · · γr) through this spectral sequence. Hence we consider
the leading order term of π◦δω ◦E(γ1 · · · γr), i. e., the term with the most connected components.
This is easily seen to be

ω ε ε ε
ω ω ω · · · ω ω ω

γ1

ω · · ·
γr

ω

But this leading order term is the same as produced by the map K of Proposition 5.9, acting on
the summand Qαβ ⊗ fHGC on the left-hand side of (24), and specifically on the element

ι(γ1 · · · γr) := ω ω ω · · · ω ω ω

γ1

ω · · ·
γr

ω ∈ fHGC.

But since the map ι is an injection on cohomology, and the map K is an injection on cohomology,
so must be π ◦ δω ◦ E. Hence also E is an injection on cohomology as claimed. �

6.4. Proof of Theorem 1.1. To show Theorem 1.1 of the introduction we need to check that
the images of the maps E and F of Theorems 6.1 and Theorem 5.1 inside the cohomology of
(Cg, δs + δω) are linearly independent. As in the preceding proof, it suffices to check that the
images of π ◦ E and π ◦ F are linearly independent in H(Cg,10ω, δs). But the latter cohomology
is computed in Propsition 5.9 and identified with the genus g part of

H(fHGC)10-hair ⊕Qα⊗H(fHGC)10-hairQβ ⊗H(fHGC)9-hair ⊕Qαβ ⊗H(fHGC)9-hair.

Under this identification we saw in the proof of Theorem 5.1 that the image of the map π ◦ F is
a subspace of the first two summands

H(fHGC)10-hair ⊕Qα⊗H(fHGC)10-hair.
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Likewise, we saw in the proof of Theorem 6.1 that the composition of π ◦E with a projection to
the summand Qαβ ⊗H(fHGC)9-hair is an injection. Hence, since the two previous subspaces are
linearly independent by Proposition 5.9, so must be the images of π ◦ E and π ◦ F . �

7. Euler characteristic

The Sn-equivariant Euler characteristic of a complex very similar to Xg,n was computed in
[17]; the difference here is that the ω-legs are odd instead of even. We recall the results from [17]
and then apply the necessary modifications to account for this degree shift.

First, we introduce the functions

E` :=
1

`

∑
d|`

µ(`/d)
1

ud
, λ` := u`(1− u`)`,

B(z) :=
∑
r≥2

Br
r(r − 1)

1

zr−1
,

and U`(X,u) such that

logU`(X,u) = log
(−λ`)XΓ(−E` +X)

Γ(−E`)
= X (log(λ`E`)− 1) + (−E` +X − 1

2) log(1− X
E`

) +B(−E` +X)−B(−E`).

Denote by X̃ev
g,n a graded vector space defined in the same manner as Xg,n but with even ω-

decorations instead of odd, and with all edges (structural or not) odd. Let X̃ev
g,n,rω ⊂ X̃ev

g,n be the
subspace with r legs decorated by ω. By [17, §4.3], the generating function for the equivariant
Euler characteristic is1∑

g,n,r

ug+n−1wrχSn(X̃ev
g,n,rω) =

∏
`

U`(
1
`

∑
d|` µ(`/d)(pd + 1 + wd), u)

U`(
1
`

∑
d|` µ(`/d)pd, u)

− 1 ,

with w the formal variable taking care of the number of ω-legs and u the formal variable counting
genus plus the number of punctures. Looking at the derivation in loc. cit. one sees that the only
change required from even to odd ω decorations is the sign in front of the term wd. We obtain∑

g,n,r

ug+n−1wrχSn(X̃g,n,rω) =
∏
`

U`(
1
`

∑
d|` µ(`/d)(pd + 1− wd), u)

U`(
1
`

∑
d|` µ(`/d)pd, u)

− 1,

with X̃g,n being a slightly modified version of Xg,n in which all edges, are considered odd, not
just structural ones. This mis-treatment of non-structural edges may be undone by replacing
pd → −pd, which is the equivalent on the character of multiplying the underlying representation
of the symmetric group by a degree shifted sign representation. We hence obtain:∑

g,n,r

ug+n−1wrχSn(Xg,n,rω) =
∏
`

U`(
1
`

∑
d|` µ(`/d)(−pd + 1− wd), u)

U`(
1
`

∑
d|` µ(`/d)(−pd), u)

− 1.

We are interested in the truncation of the complex Xg,n, concretely in the subcomplex

Cg,n =

10⊕
r=0

Xg,n,rω[−21]

1We subtract 1 relative to loc. cit. since we do not include the empty graph in our complex.
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spanned by graphs with at most ten ω-legs. Let

T≤10

 ∞∑
j=0

ajw
j

 =
10∑
j=0

aj

be the operator that sums the first 10 coefficients of a formal power series in w. Thus we find:

∑
g,n

ug+nχSn(Cg,n) = −u T≤10

(∏
`

U`(
1
`

∑
d|` µ(`/d)(−pd + 1− wd), u)

U`(
1
`

∑
d|` µ(`/d)(−pd), u)

− 1

)
,

with the factor −u accounting for the overall degree and genus shift due to the special vertex.

Theorem 7.1. The equivariant Euler characteristic of the weight 11 compactly supported coho-
mology of the moduli space of curves is computed by the following generating function:

1

2

∑
g,n≥0

2g+n≥3

ug+nχSn(gr11Hc(Mg,n)) =
∑
g,n

ug+nχSn(Cg,n)

= −u T≤10

(∏
`≥1

U`(
1
`

∑
d|` µ(`/d)(−pd + 1− wd), u)

U`(
1
`

∑
d|` µ(`/d)(−pd), u)

− 1

)
.

Specializing to n = 0, we obtain:

1

2

∑
g≥2

ugχ(gr11Hc(Mg)) = u9 − 2u10 + 2u11 + 8u13 − 17u14 − 14u15 − 20u16 + 29u17 + 85u18

+ 178u19 + 123u20 − 311u21 − 1049u22 − 2443u23 − 776u24 + 6027u25 + 7200u26 − 34892u27

+ 196735u28 + 1215236u29 − 3230856u30 − 26415680u31 +O(u32)

The following graphs show log(1
2 |χ(gr11Hc(Mg))|) and sgn(χ(gr11Hc(Mg))) for g up to 70.

20 30 40 50 60 70

20

40

60

80

100

20 30 40 50 60 70

-1.0

-0.5

0.5

1.0

We also obtain interesting numerical data for n > 0. Recall that gr11H
•
c (Mg,n) vanishes for

g ≤ 4 and n ≤ 6, by Corollary 4.3. In Figure 1, we present the Sn-equivariant Euler characteristic
for 5 ≤ g ≤ 16 and n ≤ 6, expressed in the Schur polynomial basis for symmetric functions. As
mentioned in the introduction, our computations agree with those of Bergström and Faber for
g = 2 and 3. In Figure 2 we present the Euler characteristic for g = 4 and 7 ≤ n ≤ 15. More
extensive data, for g + n ≤ 24 is available at https://github.com/wilthoma/weight11mgn.

Appendix A. Recollection and variant of [19]

We denote by Xconn ⊂ X the subcomplex spanned by graphs that are connected in the blown-
up picture. We denote by Xtp a graph complex defined just like X, just allowing tadpoles at all

https://github.com/wilthoma/weight11mgn
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Figure 1. The Sn-equivariant Euler characteristic of Cg,n.
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g,n 7 8 9 10 11
4 s2,1,1,1,1,1 s2,1,1,1,1,1,1 − s3,1,1,1,1,1 − s3,2,1,1,1 − 2s4,1,1,1,1 3s1,1,1,1,1,1,1,1,1 + 2s2,1,1,1,1,1,1,1 + 3s2,2,1,1,1,1,1 + 3s2,2,2,1,1,1 −

s3,1,1,1,1,1,1 + 2s3,2,1,1,1,1 + s3,2,2,1,1 + 3s3,3,1,1,1 + s3,3,2,1 − s4,1,1,1,1,1 +
3s4,2,1,1,1 + 2s4,3,1,1 + 2s5,1,1,1,1 + 2s5,2,1,1 + 2s6,1,1,1

5s1,1,1,1,1,1,1,1,1,1 − 2s2,2,2,2,1,1 − 12s3,1,1,1,1,1,1,1 − 10s3,2,1,1,1,1,1 −
12s3,2,2,1,1,1 − 5s3,2,2,2,1 − 5s3,3,2,1,1 − s3,3,2,2 − 3s3,3,3,1 − 9s4,1,1,1,1,1,1 −
11s4,2,1,1,1,1 − 13s4,2,2,1,1 − s4,2,2,2 − 6s4,3,1,1,1 − 7s4,3,2,1 − 2s4,3,3 −
2s4,4,1,1 − s5,1,1,1,1,1 − 7s5,2,1,1,1 − 4s5,2,2,1 − 8s5,3,1,1 − 2s5,3,2 −
2s5,4,1 + s6,1,1,1,1 − 5s6,2,1,1 − 3s6,3,1 − 2s7,1,1,1 − 2s7,2,1 − 2s8,1,1

5s1,1,1,1,1,1,1,1,1,1,1 + s2,1,1,1,1,1,1,1,1,1 + 13s2,2,1,1,1,1,1,1,1 + 14s2,2,2,1,1,1,1,1 +
11s2,2,2,2,1,1,1 + 7s2,2,2,2,2,1 − 10s3,1,1,1,1,1,1,1,1 + 22s3,2,1,1,1,1,1,1 +
21s3,2,2,1,1,1,1 + 22s3,2,2,2,1,1 + 7s3,2,2,2,2 + 42s3,3,1,1,1,1,1 + 37s3,3,2,1,1,1 +
26s3,3,2,2,1 + 5s3,3,3,1,1 + 6s3,3,3,2 + 7s4,1,1,1,1,1,1,1 + 34s4,2,1,1,1,1,1 +
33s4,2,2,1,1,1 + 27s4,2,2,2,1 + 46s4,3,1,1,1,1 + 46s4,3,2,1,1 + 22s4,3,2,2 +
12s4,3,3,1 + 23s4,4,1,1,1 + 22s4,4,2,1 + 4s4,4,3 + 27s5,1,1,1,1,1,1 + 35s5,2,1,1,1,1 +
40s5,2,2,1,1 + 15s5,2,2,2 + 23s5,3,1,1,1 + 32s5,3,2,1 + 9s5,3,3 + 15s5,4,1,1 +
11s5,4,2 + 5s5,5,1 + 17s6,1,1,1,1,1 + 21s6,2,1,1,1 + 23s6,2,2,1 + 14s6,3,1,1 +
13s6,3,2 + 8s6,4,1 + 2s6,5 + 2s7,1,1,1,1 + 9s7,2,1,1 + 5s7,2,2 + 10s7,3,1 +
3s7,4 − s8,1,1,1 + 5s8,2,1 + 3s8,3 + 2s9,1,1 + 2s9,2 + 2s10,1

g,n 12 13 14 15
4 3s1,1,1,1,1,1,1,1,1,1,1,1 − 5s2,1,1,1,1,1,1,1,1,1,1 − 23s2,2,2,1,1,1,1,1,1 −

21s2,2,2,2,1,1,1,1 − 15s2,2,2,2,2,1,1 − 9s2,2,2,2,2,2 − 32s3,1,1,1,1,1,1,1,1,1 −
41s3,2,1,1,1,1,1,1,1 − 112s3,2,2,1,1,1,1,1 − 91s3,2,2,2,1,1,1 − 60s3,2,2,2,2,1 −
21s3,3,1,1,1,1,1,1−123s3,3,2,1,1,1,1−96s3,3,2,2,1,1−43s3,3,2,2,2−102s3,3,3,1,1,1−
63s3,3,3,2,1−3s3,3,3,3−27s4,1,1,1,1,1,1,1,1−98s4,2,1,1,1,1,1,1−172s4,2,2,1,1,1,1−
130s4,2,2,2,1,1−64s4,2,2,2,2−126s4,3,1,1,1,1,1−241s4,3,2,1,1,1−170s4,3,2,2,1−
133s4,3,3,1,1−61s4,3,3,2−64s4,4,1,1,1,1−116s4,4,2,1,1−61s4,4,2,2−70s4,4,3,1−
14s4,4,4 − s5,1,1,1,1,1,1,1 − 116s5,2,1,1,1,1,1 − 139s5,2,2,1,1,1 − 106s5,2,2,2,1 −
191s5,3,1,1,1,1 − 225s5,3,2,1,1 − 115s5,3,2,2 − 71s5,3,3,1 − 102s5,4,1,1,1 −
126s5,4,2,1− 36s5,4,3− 20s5,5,1,1− 22s5,5,2− 20s6,1,1,1,1,1,1− 96s6,2,1,1,1,1−
90s6,2,2,1,1 − 57s6,2,2,2 − 124s6,3,1,1,1 − 124s6,3,2,1 − 22s6,3,3 − 67s6,4,1,1 −
58s6,4,2 − 18s6,5,1 − 3s6,6 − 39s7,1,1,1,1,1 − 58s7,2,1,1,1 − 58s7,2,2,1 −
42s7,3,1,1 − 41s7,3,2 − 26s7,4,1 − 8s7,5 − 20s8,1,1,1,1 − 24s8,2,1,1 − 24s8,2,2 −
16s8,3,1− 9s8,4− 2s9,1,1,1− 9s9,2,1− 8s9,3 + s10,1,1− 5s10,2− 2s11,1− 2s12

s1,1,1,1,1,1,1,1,1,1,1,1,1 − 6s2,1,1,1,1,1,1,1,1,1,1,1 + 23s2,2,1,1,1,1,1,1,1,1,1 +
23s2,2,2,1,1,1,1,1,1,1 + 73s2,2,2,2,1,1,1,1,1 + 63s2,2,2,2,2,1,1,1 + 38s2,2,2,2,2,2,1 −
14s3,1,1,1,1,1,1,1,1,1,1 + 83s3,2,1,1,1,1,1,1,1,1 + 145s3,2,2,1,1,1,1,1,1 +
281s3,2,2,2,1,1,1,1 + 203s3,2,2,2,2,1,1 + 87s3,2,2,2,2,2 + 199s3,3,1,1,1,1,1,1,1 +
354s3,3,2,1,1,1,1,1 + 507s3,3,2,2,1,1,1 + 303s3,3,2,2,2,1 + 184s3,3,3,1,1,1,1 +
360s3,3,3,2,1,1 + 133s3,3,3,2,2 + 144s3,3,3,3,1 + 45s4,1,1,1,1,1,1,1,1,1 +
197s4,2,1,1,1,1,1,1,1 + 430s4,2,2,1,1,1,1,1 + 523s4,2,2,2,1,1,1 + 318s4,2,2,2,2,1 +
388s4,3,1,1,1,1,1,1 + 896s4,3,2,1,1,1,1 + 953s4,3,2,2,1,1 + 377s4,3,2,2,2 +
581s4,3,3,1,1,1 + 624s4,3,3,2,1 + 128s4,3,3,3 + 342s4,4,1,1,1,1,1 + 656s4,4,2,1,1,1 +
546s4,4,2,2,1 + 418s4,4,3,1,1 + 288s4,4,3,2 + 91s4,4,4,1 + 128s5,1,1,1,1,1,1,1,1 +
312s5,2,1,1,1,1,1,1 + 650s5,2,2,1,1,1,1 + 569s5,2,2,2,1,1 + 241s5,2,2,2,2 +
457s5,3,1,1,1,1,1 + 1096s5,3,2,1,1,1 + 844s5,3,2,2,1 + 701s5,3,3,1,1 + 377s5,3,3,2 +
475s5,4,1,1,1,1 + 825s5,4,2,1,1 + 418s5,4,2,2 + 467s5,4,3,1 + 76s5,4,4 +
238s5,5,1,1,1 + 269s5,5,2,1 + 75s5,5,3 + 97s6,1,1,1,1,1,1,1 + 321s6,2,1,1,1,1,1 +
541s6,2,2,1,1,1 + 372s6,2,2,2,1 + 472s6,3,1,1,1,1 + 825s6,3,2,1,1 + 385s6,3,2,2 +
385s6,3,3,1 + 392s6,4,1,1,1 + 521s6,4,2,1 + 176s6,4,3 + 186s6,5,1,1 + 134s6,5,2 +
40s6,6,1 + 27s7,1,1,1,1,1,1 + 237s7,2,1,1,1,1 + 279s7,2,2,1,1 + 137s7,2,2,2 +
365s7,3,1,1,1 + 396s7,3,2,1 + 84s7,3,3 + 224s7,4,1,1 + 169s7,4,2 + 66s7,5,1 +
9s7,6 + 32s8,1,1,1,1,1 + 138s8,2,1,1,1 + 116s8,2,2,1 + 167s8,3,1,1 + 101s8,3,2 +
79s8,4,1 + 12s8,5 + 43s9,1,1,1,1 + 64s9,2,1,1 + 40s9,2,2 + 40s9,3,1 +
12s9,4 + 20s10,1,1,1 + 22s10,2,1 + 5s10,3 + 2s11,1,1 + 4s11,2 − s12,1

−s1,1,1,1,1,1,1,1,1,1,1,1,1,1 − 17s2,1,1,1,1,1,1,1,1,1,1,1,1 − 13s2,2,1,1,1,1,1,1,1,1,1,1 −
93s2,2,2,1,1,1,1,1,1,1,1 − 111s2,2,2,2,1,1,1,1,1,1 − 174s2,2,2,2,2,1,1,1,1 −
129s2,2,2,2,2,2,1,1 − 43s2,2,2,2,2,2,2 − 47s3,1,1,1,1,1,1,1,1,1,1,1 −
120s3,2,1,1,1,1,1,1,1,1,1 − 460s3,2,2,1,1,1,1,1,1,1 − 657s3,2,2,2,1,1,1,1,1 −
800s3,2,2,2,2,1,1,1−459s3,2,2,2,2,2,1−169s3,3,1,1,1,1,1,1,1,1−895s3,3,2,1,1,1,1,1,1−
1319s3,3,2,2,1,1,1,1 − 1337s3,3,2,2,2,1,1 − 490s3,3,2,2,2,2 − 978s3,3,3,1,1,1,1,1 −
1429s3,3,3,2,1,1,1 − 1192s3,3,3,2,2,1 − 523s3,3,3,3,1,1 − 400s3,3,3,3,2 −
38s4,1,1,1,1,1,1,1,1,1,1 − 396s4,2,1,1,1,1,1,1,1,1 − 1047s4,2,2,1,1,1,1,1,1 −
1608s4,2,2,2,1,1,1,1 − 1490s4,2,2,2,2,1,1 − 530s4,2,2,2,2,2 − 912s4,3,1,1,1,1,1,1,1 −
2692s4,3,2,1,1,1,1,1 − 3753s4,3,2,2,1,1,1 − 2691s4,3,2,2,2,1 − 2399s4,3,3,1,1,1,1 −
3441s4,3,3,2,1,1 − 1680s4,3,3,2,2 − 1173s4,3,3,3,1 − 787s4,4,1,1,1,1,1,1 −
2412s4,4,2,1,1,1,1 − 2828s4,4,2,2,1,1 − 1236s4,4,2,2,2 − 2439s4,4,3,1,1,1 −
2641s4,4,3,2,1− 539s4,4,3,3− 837s4,4,4,1,1− 533s4,4,4,2− 50s5,1,1,1,1,1,1,1,1,1−
749s5,2,1,1,1,1,1,1,1− 1586s5,2,2,1,1,1,1,1− 2245s5,2,2,2,1,1,1− 1472s5,2,2,2,2,1−
1790s5,3,1,1,1,1,1,1 − 4135s5,3,2,1,1,1,1 − 4897s5,3,2,2,1,1 − 2038s5,3,2,2,2 −
2974s5,3,3,1,1,1 − 3530s5,3,3,2,1 − 805s5,3,3,3 − 1738s5,4,1,1,1,1,1 −
4214s5,4,2,1,1,1 − 3726s5,4,2,2,1 − 3353s5,4,3,1,1 − 2214s5,4,3,2 − 867s5,4,4,1 −
772s5,5,1,1,1,1 − 1803s5,5,2,1,1 − 922s5,5,2,2 − 1257s5,5,3,1 − 239s5,5,4 −
193s6,1,1,1,1,1,1,1,1 − 942s6,2,1,1,1,1,1,1 − 1820s6,2,2,1,1,1,1 − 2011s6,2,2,2,1,1 −
759s6,2,2,2,2 − 1848s6,3,1,1,1,1,1 − 3973s6,3,2,1,1,1 − 3471s6,3,2,2,1 −
2446s6,3,3,1,1−1670s6,3,3,2−1890s6,4,1,1,1,1−3684s6,4,2,1,1−1881s6,4,2,2−
2166s6,4,3,1 − 303s6,4,4 − 1052s6,5,1,1,1 − 1581s6,5,2,1 − 596s6,5,3 −
271s6,6,1,1−227s6,6,2−289s7,1,1,1,1,1,1,1−826s7,2,1,1,1,1,1−1520s7,2,2,1,1,1−
1138s7,2,2,2,1−1287s7,3,1,1,1,1−2561s7,3,2,1,1−1243s7,3,2,2−1299s7,3,3,1−
1306s7,4,1,1,1−1833s7,4,2,1−632s7,4,3−738s7,5,1,1−530s7,5,2−178s7,6,1−
9s7,7 − 177s8,1,1,1,1,1,1 − 545s8,2,1,1,1,1 − 846s8,2,2,1,1 − 334s8,2,2,2 −
789s8,3,1,1,1− 1093s8,3,2,1− 333s8,3,3− 637s8,4,1,1− 456s8,4,2− 253s8,5,1−
31s8,6 − 47s9,1,1,1,1,1 − 302s9,2,1,1,1 − 286s9,2,2,1 − 416s9,3,1,1 − 252s9,3,2 −
200s9,4,1 − 27s9,5 − 35s10,1,1,1,1 − 142s10,2,1,1 − 49s10,2,2 − 127s10,3,1 −
23s10,4 − 43s11,1,1,1 − 44s11,2,1 − 8s11,3 − 18s12,1,1 − s12,2 + s13,1 + 3s14

−2s1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 − 19s2,1,1,1,1,1,1,1,1,1,1,1,1,1 +
17s2,2,1,1,1,1,1,1,1,1,1,1,1 + 35s2,2,2,1,1,1,1,1,1,1,1,1 + 223s2,2,2,2,1,1,1,1,1,1,1 +
293s2,2,2,2,2,1,1,1,1,1 + 379s2,2,2,2,2,2,1,1,1 + 217s2,2,2,2,2,2,2,1 −
2s3,1,1,1,1,1,1,1,1,1,1,1,1 + 190s3,2,1,1,1,1,1,1,1,1,1,1 + 578s3,2,2,1,1,1,1,1,1,1,1 +
1472s3,2,2,2,1,1,1,1,1,1 + 1847s3,2,2,2,2,1,1,1,1 + 1750s3,2,2,2,2,2,1,1 +
617s3,2,2,2,2,2,2 + 567s3,3,1,1,1,1,1,1,1,1,1 + 1788s3,3,2,1,1,1,1,1,1,1 +
3880s3,3,2,2,1,1,1,1,1 + 4411s3,3,2,2,2,1,1,1 + 3109s3,3,2,2,2,2,1 +
1837s3,3,3,1,1,1,1,1,1 +4749s3,3,3,2,1,1,1,1 +4857s3,3,3,2,2,1,1 +2270s3,3,3,2,2,2 +
2990s3,3,3,3,1,1,1 + 2821s3,3,3,3,2,1 + 392s3,3,3,3,3 + 162s4,1,1,1,1,1,1,1,1,1,1,1 +
713s4,2,1,1,1,1,1,1,1,1,1 + 2356s4,2,2,1,1,1,1,1,1,1 + 4213s4,2,2,2,1,1,1,1,1 +
4894s4,2,2,2,2,1,1,1 + 3262s4,2,2,2,2,2,1 + 1857s4,3,1,1,1,1,1,1,1,1 +
6912s4,3,2,1,1,1,1,1,1 + 12144s4,3,2,2,1,1,1,1 + 12039s4,3,2,2,2,1,1 +
5043s4,3,2,2,2,2 + 7514s4,3,3,1,1,1,1,1 + 14445s4,3,3,2,1,1,1 + 11810s4,3,3,2,2,1 +
7115s4,3,3,3,1,1 + 4289s4,3,3,3,2 + 2362s4,4,1,1,1,1,1,1,1 + 7633s4,4,2,1,1,1,1,1 +
12023s4,4,2,2,1,1,1 + 9125s4,4,2,2,2,1 + 9046s4,4,3,1,1,1,1 + 15134s4,4,3,2,1,1 +
7371s4,4,3,2,2 +6154s4,4,3,3,1 +4118s4,4,4,1,1,1 +5397s4,4,4,2,1 +1589s4,4,4,3 +
356s5,1,1,1,1,1,1,1,1,1,1 + 1543s5,2,1,1,1,1,1,1,1,1 + 4714s5,2,2,1,1,1,1,1,1 +
7084s5,2,2,2,1,1,1,1 +7013s5,2,2,2,2,1,1 +2735s5,2,2,2,2,2 +3736s5,3,1,1,1,1,1,1,1 +
13040s5,3,2,1,1,1,1,1 + 19142s5,3,2,2,1,1,1 + 14726s5,3,2,2,2,1 +
13195s5,3,3,1,1,1,1 + 19847s5,3,3,2,1,1 + 10006s5,3,3,2,2 + 7087s5,3,3,3,1 +
5395s5,4,1,1,1,1,1,1 + 16118s5,4,2,1,1,1,1 + 20683s5,4,2,2,1,1 + 9489s5,4,2,2,2 +
17338s5,4,3,1,1,1 + 20971s5,4,3,2,1 + 4814s5,4,3,3 + 7051s5,4,4,1,1 +
5028s5,4,4,2 + 3753s5,5,1,1,1,1,1 + 9149s5,5,2,1,1,1 + 9010s5,5,2,2,1 +
8265s5,5,3,1,1 +6064s5,5,3,2 +3173s5,5,4,1 +382s5,5,5 +356s6,1,1,1,1,1,1,1,1,1 +
2291s6,2,1,1,1,1,1,1,1 +5785s6,2,2,1,1,1,1,1 +7855s6,2,2,2,1,1,1 +5795s6,2,2,2,2,1 +
5511s6,3,1,1,1,1,1,1 + 15366s6,3,2,1,1,1,1 + 18722s6,3,2,2,1,1 + 8604s6,3,2,2,2 +
13005s6,3,3,1,1,1 + 15010s6,3,3,2,1 + 3131s6,3,3,3 + 6987s6,4,1,1,1,1,1 +
18013s6,4,2,1,1,1 + 17157s6,4,2,2,1 + 15909s6,4,3,1,1 + 10864s6,4,3,2 +
4813s6,4,4,1 + 5143s6,5,1,1,1,1 + 10920s6,5,2,1,1 + 6177s6,5,2,2 + 7526s6,5,3,1 +
1606s6,5,4 + 1963s6,6,1,1,1 + 2937s6,6,2,1 + 1083s6,6,3 + 324s7,1,1,1,1,1,1,1,1 +
2497s7,2,1,1,1,1,1,1 + 5085s7,2,2,1,1,1,1 + 6004s7,2,2,2,1,1 + 2541s7,2,2,2,2 +
5588s7,3,1,1,1,1,1 + 12371s7,3,2,1,1,1 + 11526s7,3,2,2,1 + 8139s7,3,3,1,1 +
5722s7,3,3,2 + 6073s7,4,1,1,1,1 + 12670s7,4,2,1,1 + 6942s7,4,2,2 +
8043s7,4,3,1 + 1287s7,4,4 + 3892s7,5,1,1,1 + 6361s7,5,2,1 + 2531s7,5,3 +
1551s7,6,1,1 + 1330s7,6,2 + 308s7,7,1 + 431s8,1,1,1,1,1,1,1 + 2025s8,2,1,1,1,1,1 +
3573s8,2,2,1,1,1 + 3103s8,2,2,2,1 + 3774s8,3,1,1,1,1 + 7025s8,3,2,1,1 +
3834s8,3,2,2 + 3441s8,3,3,1 + 3693s8,4,1,1,1 + 5576s8,4,2,1 + 1936s8,4,3 +
2041s8,5,1,1 + 1786s8,5,2 + 611s8,6,1 + 81s8,7 + 431s9,1,1,1,1,1,1 +
1250s9,2,1,1,1,1 + 1974s9,2,2,1,1 + 921s9,2,2,2 + 1830s9,3,1,1,1 + 2748s9,3,2,1 +
844s9,3,3 + 1588s9,4,1,1 + 1292s9,4,2 + 710s9,5,1 + 116s9,6 + 219s10,1,1,1,1,1 +
626s10,2,1,1,1 + 734s10,2,2,1 + 762s10,3,1,1 + 634s10,3,2 + 462s10,4,1 +
115s10,5 + 51s11,1,1,1,1 + 261s11,2,1,1 + 140s11,2,2 + 269s11,3,1 + 73s11,4 +
31s12,1,1,1 + 81s12,2,1 + 50s12,3 + 29s13,1,1 + 13s13,2 + 7s14,1

Figure 2. The Sn-equivariant Euler characteristic of Cg,n for g = 4 and n ≤ 15.

vertices, and by Xtp,conn its connected subcomplex. Similarly, we denote by HGC ⊂ fHGC the
connected part, so that

fHGC = Sym(HGC)

is a symmetric product. We denote by HGCtp the variant of the hairy graph complex HGC
generated by graphs that may have tadpoles at vertices. We shall recall the following result:

Theorem A.1 (Theorem 3.1 of [19]). The mapping cone of the inclusion HGCtp → (Xtp,conn, δs)
has two-dimensional cohomology, spanned by one class whose projection on HGCtp is

D =

and by one class whose projection to (Xtp,conn, δs) is

T = ε ω ω .

From this we can easily deduce the following tadpole-free variant:

Corollary A.2. The mapping cone of the inclusion HGC → (Xconn, δs) has three-dimensional
cohomology, spanned by three classes whose projections to (Xconn, δs) are T as above, and

Lω = ε ω Lε = ε ε .

respectively.

Proof. We first compare the tadpole-free and tadpole-carrying versions of our complexes, that is,
we study the mapping cones of the projections

HGCtp → HGC Xtp,conn → Xconn.

in each case the map is surjective, so the mapping cone is quasi-isomorphic to the kernel, which
is spanned by graphs that have at least one tadpole. Following the arguments of [1, Lemma 5]
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one sees that this complex has cohomology spanned by graphs that have a single vertex, carrying
a tadpole, of valence 3. The complete list of such graphs is as follows:

D = Dω = ω Dε = ε .

The cocycle D is not exact in HGCtp. Hence the cohomology of HGCtp is one dimension larger
than that of HGC, with the additional dimension spanned by the class of Dω.

The cocycles Dω and Dε are both exact in Xtp,conn since Dω = δsL
ω and Dε = δsL

ε. Hence the
cohomology of HGC is two dimensions larger than that of HGCtp, with the additional generators
Lω and Lε, which are closed elements in Xconn but not in Xtp,conn.

Accounting for these (small) differences the corollary then follows easily from Theorem A.1. �
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