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Abstract. We study the weight 2 graded piece of the compactly supported rational cohomology of the moduli spaces of
curvesMg,n and show that this can be computed as the cohomology of a graph complex that is closely related to graph
complexes arising in the study of embedding spaces. For n = 0, we express this cohomology in terms of W0H•c (Mg′ ,n′ )
for g′ ≤ g and n′ ≤ 2, and thereby produce several new infinite families of nonvanishing unstable cohomology groups
on Mg, including the first such families in odd degrees. In particular, we show that dim H4g−k(Mg) grows at least
exponentially with g, for k ∈ {8, 9, 11, 12, 14, 15, 16, 18, 19}.
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1. Introduction

The weight zero compactly supported cohomology W0H•c (Mg,n) is naturally isomorphic to the cohomology of
the genus g part of the standard commutative graph complex with n marked external vertices [7, 8]. Similar graph
complexes arise in the study of rational homology and homotopy groups of higher dimensional long links [29]. In
this paper, we use commutative graph complexes with additional decorations on the external vertices, similar to
those appearing in the embedding calculus [14] to study the next nontrivial weight-graded piece of the compactly
supported cohomology ofMg,n. Throughout, all cohomology groups are taken with rational coefficients.

The weight k graded piece of H•c (Mg,n) is

grk H•c (Mg,n) := WkH•c (Mg,n)/Wk−1H•c (Mg,n).

Note that gr1 H•c (Mg,n) vanishes for all g and n; this follows from the vanishing of H1(Mg,n) for all g and n, via
Deligne’s weight spectral sequence. The next nontrivial weight graded piece is gr2 H•c (Mg,n), which we study by
combining graph complex techniques with the presentations and pullback formulas for H2(Mg,n) from [2, 18].

Our first main result expresses gr2 H•c (Mg,n) as the cohomology of a graph complex Xg,n generated by possibly
disconnected simple graphs without loops or multiple edges, with features and decorations as follows. Say the
1-valent vertices are external and all other vertices are internal.

• All internal vertices are at least trivalent;
• Each external vertex has a label from {1, . . . , n, ε, ω};
• Each label 1, . . . , n appears exactly once, and the label ω appears exactly twice;
• The graph obtained by joining all external vertices marked ε or ω is connected and has genus g.
• There is no connected component consisting of a single edge connecting two external vertices with mark-

ings {ε, ω} or {ω,ω}.
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residence at ICERM for the special thematic semester program on Combinatorial Algebraic Geometry. T.W. has been supported by the ERC
starting grant 678156 GRAPHCPX, and the NCCR SwissMAP, funded by the Swiss National Science Foundation.
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The edges that do not contain an external vertex with marking from {1, . . . , n} are called structural. Each generator
is equipped with a total ordering of its structural edges, and reordering the structural edges induces multiplication
by the sign of the permutation. Note that some connected components may not have any internal vertices. The
degree of a generator for Xg,n is the number of structural edges plus one. In figures, we replace each external
vertex with its label and omit the edge ordering. For example, the following is a generator of X2,2 in degree 6.

1

ε

ω

ω 2

The differential δ on Xg,n is a sum of two parts δ = δsplit + δ join. Here δsplit is a sum over all vertices and over
all ways of splitting the vertex into two vertices joined by an edge, so that the new vertices are at least trivalent.

δsplitΓ =
∑

v vertex

Γ split v 7→
∑

(1)

The part δ join glues together a subset S of the ε- and ω-decorated external vertices, where
• |S | ≥ 2, and S contains either 0 or 1 of the ω-decorated vertices

and then attaches an edge to a new external vertex decorated by ε or ω, respectively:

δ join

Γ
=

∑
S

Γ

ε or ω

.

Each graph produced by the differential has one new structural edge, which is taken first in the ordering; the
relative ordering of the remaining edges is preserved.

Theorem 1.1. For all g and n such that 2g + n ≥ 3 and (g, n) , (1, 1) there is an Sn-equivariant isomorphism

gr2 H•c (Mg,n) � H•(Xg,n, δ).

This isomorphism at the level of cohomology is achieved through a zig-zag of quasi-isomorphisms of complexes,
relating the row of Deligne’s weight spectral sequence that computes gr2 H•c (Mg,n) to the graph complex Xg,n.

The cohomology of such commutative graph complexes is far from fully understood. Nevertheless, a partial
understanding of this graph cohomology is enough to yield new results about the unstable cohomology ofMg,n
in weight 2, just as in weight 0. For n = 0, we express the weight 2 compactly supported cohomology ofMg in
terms of the weight 0 compactly supported cohomology ofMg′,1 andMg′,2 for g′ ≤ g, as follows. Let

V•,• :=
∧2

(⊕
g,kW0Hk

c (Mg,1)
)
,

bigraded so that an element of W0Hk
c (Mg,1) ∧ W0Hk′

c (Mg′,1) is in degree (g + g′, k + k′). Let Vas denote the
antisymmetric part of a S2-representation V . By convention, we set H•c (M0,2) := 0.

Theorem 1.2. For g ≥ 2, there is an isomorphism

gr2 Hk
c (Mg) � Vg,k−3 ⊕W0Hk−3

c (Mg−1,2)as ⊕ Vg−1,k−4 ⊕W0Hk−4
c (Mg−2,2)as.

To understand the geometric meaning of the first two summands in this theorem, let D◦g ⊂ Mg be the locally closed
substack parametrizing 1-nodal curves. We have a natural identification

W0Hk
c (D◦g) � Vg,k ⊕W0Hk

c (Mg−1, 2)as.

Cup product with the first Chern class of the normal bundle followed by the push-forward for the open inclusion ι
of D◦g in the boundary ∂Mg :=Mg rMg and the coboundary map δ for the excision sequence give

W0H•c (D◦g)
c1^
−−−→ gr2 H•+2

c (D◦g)
ι∗
−→ gr2 H•+2

c ∂Mg
δ
−→ gr2 H•+3

c (Mg).

The geometric content of Theorem 1.2 is that this composition is injective, and that there is a complementary
subspace with similar structure, shifted by 1 in degree and genus. For a graphical illustration of the simplest
non-trivial cohomology classes produced by Theorem 1.2, see Section 3.4.

For applications, we will use only subspaces of V•,• that arise from the images of known classes under pullback
to the universal curve W0H•c (Mg) ↪→ W0H•c (Mg,1). Recall that W0H2g

c (Mg) is nonvanishing for g = 3, g = 5, and
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g ≥ 7, and its dimension grows at least exponentially with g [7, Theorem 1.1]; the proof relies on connections
with Grothendieck-Teichmüller theory [33] and a deep result of Francis Brown [4]. Here, we show furthermore
that W0H2g+3

c (Mg) is nonvanishing for g = 6 and g ≥ 8, and its dimension again grows at least exponentially
with g; see Proposition 2.4. It follows that the dimensions of Vg,2g+k and Vg,2g+k+3 grow at least exponentially
with g whenever W0H2g′+k

c (Mg′ ) , 0 for some g′. Combining Theorem 1.2 with what is currently known about⊕
g W0H•c (Mg) and applying Poincaré duality, we have the following:

Corollary 1.3. The following unstable rational cohomology groups are nonzero:

(1) H4g−8(Mg) for g = 9 and g ≥ 11;
(2) H4g−9(Mg) for g = 6 and g ≥ 8;
(3) H4g−11(Mg) for g = 10, g = 12, and g ≥ 14;
(4) H4g−12(Mg) for g = 9, g = 11, and g ≥ 13;
(5) H4g−14(Mg) for g = 15 and g ≥ 17;

(6) H4g−15(Mg) for g = 14 and g ≥ 16;
(7) H4g−16(Mg) for g = 13, g = 15, and g ≥ 17;
(8) H4g−18(Mg) for g = 17 and g ≥ 19;
(9) H4g−19(Mg) for g = 16 and g ≥ 18.

In each case, the dimension of gr2 H4g−k(Mg) grows at least exponentially with g.

In particular, this gives the first infinite collections of nonvanishing odd cohomology groups onMg. Only a few
sporadic examples were known previously, such as H5(M4) [27], and H15(M6), H23(M8), and H27(M10) [7]. For
the proof of Corollary 1.3, see Section 2.7.

Remark 1.4. For context, let us recall that H•(Mg) is fully understood in the stable range, consisting of degrees up
to 2bg/3c, where it agrees with the polynomial ring on the κ-classes [23, 31]. The Euler characteristic computations
of Harer and Zagier show that the dimension of the unstable cohomology ofMg grows super-exponentially with
g [16]. This is far larger than the tautological subring generated by the κ-classes, which is nonzero precisely in the
even degrees up to 2g− 4 [13, 22]. The problem of understanding the rest of the cohomology ofMg, starting with
the degrees in which it is zero and nonzero, is highlighted in [24, Section 9].

Until recently, there were only two instances of cohomology groups that were known to be nonzero due to the
presence of non-tautological classes, namely H6(M3) [21] and H5(M4), each of which is 1-dimensional. It was
previously conjectured by Kontsevich and independently by Church, Farb, and Putman that H4g−5−k(Mg) vanishes
for g � 0, when k is fixed [10, 20]. This is true for k < 0 for virtual cohomological dimension reasons and for
k = 0 by [9, 25]. The main result of [7] disproved the conjecture for k = 1. Corollary 1.3 shows that the conjecture
is false in nine more cases, namely for k ∈ {3, 4, 6, 7, 9, 10, 11, 13, 14}. See Table 1, at the end of the introduction,
for a summary of what is now known about the vanishing and non-vanishing of H4g−5−k(Mg).

Corollary 1.3 uses only the subspace of V•,• that comes from W0H•c (Mg) ↪→ W0H•c (Mg,1). Explicit computa-
tions show that this inclusion is an isomorphism for g < 7. For g = 8, the Euler characteristic formulas in [6] show
that it is not surjective, but we do not know in which degrees the cokernel is supported. Similarly, W0H•c (Mg,2)as
vanishes for g < 7, and for g = 8, its Euler characteristic is nonzero but we do not know in which degrees it
is supported. By Theorem 1.1, any future improvements in our understanding of W0H•c (Mg), W0H•c (Mg,1) and
W0H•c (Mg,2)as will yield immediate improvements in our understanding of gr2 H•c (Mg). For an inspiring sense of
what one might reasonably hope or expect to be true about W0H•c (Mg), see [5, Conjecture 1 and Table 2].

For n ≥ 1 we do not have an analogue of Theorem 1.2 expressing gr2 H•c (Mg,n) in terms of W0H•c (Mg′,n′ ).
Nevertheless, we produce injections that prove nonvanishing and lower bounds on dimensions in many cases. We
begin with n = 1. Recall that the pullback π∗ : grk H•(Mg)→ grk H•c (Mg,1) is injective, as is the composition

grk H•c (Mg)
π∗

−→ grk H•c (Mg,1)
ψ∧
−−→ grk+2 H•+2

c (Mg,1),

because further composition with the Gysin push-forward is multiplication by 2g − 2. For weight k = 0, we
strengthen this by showing that ψ∧ is itself injective:

Theorem 1.5. Let g ≥ 2. Multiplication by the ψ-class at the marking yields an injection

(2) ψ∧ : W0H•c (Mg,1)→ gr2 H•+2
c (Mg,1).

Furthermore, the image of the injection

(3) π∗ : gr2 H•c (Mg)→ gr2 H•c (Mg,1),

intersects trivially with that of (2).

For n ≥ 2, we show that a quasi-isomorphic subcomplex of Xg,n can be split into several direct summands, as
detailed in Section 6. For some of these summands one may evaluate the cohomology explicitly in terms of known

3



data or weight 0 cohomology. The summands whose cohomology can be computed correspond, in a sense to be
made precise below, to graphs of the form

Γ2Γ1

ω . . .

,

where Γ1 is a connected component with one ω-decoration and no other external vertices. The genus g of the
overall graph is the sum of the genera g1 and g2 of Γ1 and Γ2, respectively. The cohomology of the summands
with g2 = 0 and g2 = 1 are explicitly understood, and the complementary part Γ1 contributes a tensor factor that is
identified with W0H•c (Mg1,1). In this way, one arrives at the following:

Theorem 1.6. For g ≥ 2 and n ≥ 2 one has an injection

Q(n−2)!
⊗W0H•−n

c (Mg,1) ⊕ Bn ⊗W0H•−n−3
c (Mg−1,1)→ gr2 H•c (Mg,n),

where Bn is a vector space defined in (43) below, which has dimension at least (n − 2)! for n ≥ 3.

The tensor factors in Theorem 1.6 have natural algebraic and geometric interpretations. For an interpretation
of Q(n−2)! in terms of the geometry of moduli spaces, recall that W0H•c (M0,n+1) has dimension (n − 1)! and is
supported in degree n − 2. Say the marked points are labeled {1, . . . , n, ω}. For 1 ≤ j ≤ n, let D j ⊂ M0,n+1 be
the locally closed divisor parametrizing 1-nodal curves where j and ω collide. Then D j � M0,n, M0,n+1 ∪ D j
is open inM0,n+1, and D j is closed in this union. The coboundary map in the resulting excision sequence gives,
in weight zero, δ j : W0H•c (D j) → W0H•+1

c (M0,n+1). The tensor factor appearing in Theorem 1.6 is then identified
with Q(n−2)! � ker

(⊕
j δ j

)
. For an equivalent algebraic interpretation of this tensor factor, let Lie(x1, . . . , xn)

denote the part of the free Lie algebra with generators x1, . . . , xn spanned by Lie words in which each generator
appears exactly once. Then we have a surjective linear map

δ :
⊕

j

Lie(x1, . . . , x̂ j, . . . , xn)→ Lie(x1, . . . , xn),

given by (F1, . . . , Fn) 7→ [F1, x1] + · · · + [Fn, xn], and Q(n−2)! � ker δ ⊗ sgn. For further details, see Section 8.

g, n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Table 1: A summary of vanishing and nonvanishing results for the rational cohomology groups H4g−5−k(Mg).
Black and dark gray boxes denote previously known and new nonvanishing groups, respectively. The white boxes
denote groups that are known to vanish, and the light gray boxes denote those that are as yet unknown.
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2. Preliminaries

2.1. Notation and conventions. We work over the rational numbers Q. All vector spaces are understood to
be Q-vector spaces, and likewise all homology and cohomology groups are taken with Q-coefficients. If V is a
finite-dimensional vector space with the action of a finite group G, we identify the invariant subspace VG with the
coinvariant space VG, by averaging over the group action.

For a graded vector space V and an integer k, let V[k] be the graded vector space obtained by shifting all degrees
by k, i.e., the degree j part of V is the degree j − k part of V[k].

When working with graded vector spaces we use the standard Koszul sign convention. That is, for V and W
graded vector spaces the isomorphism V ⊗W � W ⊗ V sends a tensor product v ⊗ w of homogeneeous elements
v ∈ V , w ∈ W of degrees |v|, |w| to the element (−1)|v||w|w⊗v. Furthermore, let f ∈ Hom(V,V ′) and g ∈ Hom(W,W ′)
be two linear maps between graded vector spaces, of homogeneous degree | f | and |g|, respectively. Then we define
the linear map f ⊗ g ∈ Hom(V ⊗ V ′,W ⊗W ′), such that, for homogeneous v ∈ V and w ∈ W,

( f ⊗ g)(v ⊗ w) = (−1)|g||v| f (v) ⊗ g(w).

The phrase “differential graded” is abbreviated dg. The Koszul sign rule will be particularly important when we
consider the tensor product of dg vectors space (V, dV ) and (W, dW ). The differential on V ⊗W is then

dV⊗W := dV ⊗ idW + idV ⊗dW .

When no confusion seems possible, we denote this by dV + dW , with the Koszul sign convention understood.

We will consider many instances of spaces that depend on a genus g and a number of marked points n, among
them the moduli spaces Mg,n and the dg vector spaces Xg,n. When n = 0, we follow the usual convention of
omitting this from the notation, e.g., we writeMg :=Mg,0 and Xg := Xg,0.

2.2. Quasi-isomorphisms and acyclicity. A morphism of dg vector spaces is a quasi-isomorphism if it induces
an isomorphism on cohomology, and a dg vector space (V, d) is acyclic if its cohomology vanishes. We will
make repeated use of the following elementary sufficient criteria for morphisms of dg vector spaces to be quasi-
isomorphisms, and for dg vector spaces to be acyclic.

Lemma 2.1. Let (V, d) be a dg vector space with V1 ⊂ V a dg subspace. Suppose there is a decomposition of
graded vector spaces V = V0⊕V1. Let π1 be the projection onto V1, and let D = π1 ◦d : V0 → V1. Then ker D ⊂ V
and V0 ⊕ im D ⊂ V are dg subvector spaces. Moreover,

(1) If D is injective, then ker D→ V is a quasi-isomorphism, and
(2) If D is surjective, then V → V/(V0 ⊕ im D) = coker D is a quasi-isomorphism.

In particular, if D is an isomorphism, then (V, d) is acyclic.

Proof. The differential d on V is a sum of three pieces d0, D, and d1:

V0 V1

D

d0 d1

.

The fact that d2
= 0 translates into the three equations

d2
0 = 0 d2

1 = 0 d1D + Dd0 = 0.

It follows that ker D and V0 ⊕ im D are dg subspaces of V .
Next, we show that if D is an isomorphism then (V, d) is acyclic. Let x ∈ V be a cocycle, and write x = x0 + x1,

with xi ∈ Vi. Since x is a cocycle, we have d0x0 = 0 and Dx0 + d1x1 = 0. Thus

Dx0 = −d1x1 = −d1DD−1x1 = Dd0D−1x1.

Applying D−1 to both sides shows that x0 = d0D−1x1, and hence x = dD−1x1 is a coboundary, as required.
Statements (1) and (2) follow by applying this criterion for acyclicity to V/ ker D and V0⊕im D, respectively. �

2.3. Deligne’s weight spectral sequence. The natural starting point for understanding the weight-graded com-
pactly supported cohomology of a smooth variety or Deligne-Mumford stack with a given normal crossings com-
pactification is the Poincaré dual of Deligne’s weight spectral sequence [11, §3.2], cf. [26, Example 3.5]. We
briefly recall this construction in the special case of the Deligne-Mumford compactification ofMg,n by the space
of stable n-marked curvesMg,n. It is naturally stratified by the topological type, which is encoded combinatorially
in the dual graph of the curve. Each stratum thus corresponds to a stable n-marked graph Γ of genus g, i.e., a graph
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with n legs labeled 1, . . . , n in which each vertex v is labeled by a non-negative integer gv such that 2gv + nv ≥ 3,
where nv denotes the valence of the vertex v, and such that g = h1(Γ) +

∑
v gv.

For each such stable n-marked graph Γ of genus g, the locus of curves with dual graph Γ is the image of the
natural gluing map

ξΓ : MΓ →Mg,n,

whereMΓ :=
∏

v∈V(Γ)Mgv,nv
. This gluing map extends naturally toMΓ :=

∏
vMgv,nv

. Let DΓ := ξΓ(
∏

vMgv,nv
) be

the image of this extension; it is the closure of the locus of curves with dual graph Γ. The normalization of DΓ is
the smooth and proper Deligne-Mumford stack

D̃Γ =MΓ/Aut(Γ).

Note that the codimension of DΓ inMg,n is the number of edges in Γ. Let

D̃ j :=
⊔
|E(Γ)|= j

D̃Γ.

The image of a small neighborhood of a point in D̃ j is contained in precisely j analytic branches of the boundary
divisor ∂M,n := Mg,n rMg,n. The monodromy action on these branches defines a local system of rank j on D̃ j

whose determinant is denoted ε j. The E1-page of the weight spectral sequence for H•c (Mg,n) is expressed naturally
in terms of cohomology with coefficients in this local system:

E j,k
1 � Hk(D̃ j, ε j).

Note that the branches of D that contain the image of a small neighborhood of a point in D̃Γ are naturally identified
with the edges of Γ, and ε j is trivialized by pullback toMΓ. In this way, the local system ε j is identified with the
determinant of the permutation action of Aut(Γ) on E(Γ). Thus, we have

E j,k
1 �

⊕
|E(Γ)|= j

(
Hk(MΓ) ⊗ det E(Γ)

)Aut(Γ)
.

The spectral sequence degenerates at E2. Hence grk H j+k
c (Mg,n) is canonically identified with H j of the complex

(4) · · · →
⊕
|Γ|= j−1

(
Hk(MΓ) ⊗ det E(Γ)

)Aut(Γ) d j−1
−−−→

⊕
|Γ|= j

(
Hk(MΓ) ⊗ det E(Γ)

)Aut(Γ) d j
−→

⊕
|E(Γ)|= j+1

(
Hk(MΓ) ⊗ det E(Γ)

)Aut(Γ)
→ · · ·

All of the data in this spectral sequence is neatly encoded in the language of modular operads [15], cf. [26,
Example 3.9]. More precisely, the cohomology groups H•(Mg,n) naturally form a modular cooperad, whose
Feynman transform evaluated at (g, n) is the direct sum, over all weights k, of the complex (4). Using the Künneth
decomposition, one may encode generators as linear combinations of graphs Γ whose vertices v are labeled with
elements of Hkv (Mgv,nv

) such that
∑

v kv = k. The result is the Getzler-Kapranov graph complex GKk
g,n studied in

[1, Section 6.1] and [17].

2.4. Modular cooperads and Feynman transform. We briefly recall the notion of modular cooperads and their
Feynman transforms, and refer the reader to [15] for details. A stable S-module is a collection of dg vector spaces
P = {P(g, n)}, for g, n ≥ 0 and 2g + n ≥ 3, with each P(g, n) equipped with an action of Sn.

Let P be a stable S-module. For a stable graph Γ we may define the tensor product

⊗ΓP := ⊗v∈V(Γ)P(gv, nv).

Note that Aut(Γ) acts naturally on ⊗ΓP. A modular cooperad is a stable S-module together with a morphism

P(g, n)→ ⊗ΓP

for every stable graph of genus g with n legs, satisfying suitable compatibility relations.
To a modular cooperad P, one naturally associates the Feynman transform FP, which is a modular cooperad

whose underlying stable S-module is

FP(g, n) �
⊕

[Γ]

⊗
Γ

P ⊗ Q[−1]⊗|E(Γ)|


Aut(Γ)

.

Here, the sum is over isomorphism classes of stable graphs of genus g with n legs, |E(Γ)| is the set of edges of Γ,
and the action of the automorphism group is diagonal on

⊗
Γ

and Q[−1]⊗|E(Γ)| by permutation of factors. Elements
of FP(g, n) can be understood as isomorphism classes of graphs whose vertices are decorated by suitable elements
of P. In cases where P has no differential, the differential on FP(g, n) has two pieces,

δ = δsplit + δloop.
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The piece δsplit splits vertices similar to (1), using the cooperadic composition of P on decorations. Similarly, δloop
creates a loop at a vertex

δloop : 7→

using the modular cooperadic map P(g, n)→ P(g − 1, n + 2) on the decoration.

2.5. The Getzler-Kapranov graph complex. The cohomology groups H•(Mg,n) of the Deligne-Mumford com-
pactified moduli spaces Mg,n assemble into a modular cooperad that we shall denote H(M). We consider the
Feynman-transform FH(M) of this modular cooperad.

An element of FH(M)(g, n) is a linear combination of stable n-marked graphs of genus g whose vertices v are
decorated by elements of H(Mgv,nv

). As recalled in the preceding section, the differential has two parts

δ = δsplit + δloop.

The dg vector spaces FH(M)(g, n) inherit the weight grading from H(M), where the weight of a graph is the sum
of the degrees of its vertex decorations.

Definition 2.2. The weight k Getzler-Kapranov graph complex is

GKk
g,n := grk FH(M)(g, n).

Note that GKk
g,n is also naturally identified with (4), the weight k row in on the E1-page of the weight spectral

sequence forMg,n ⊂ Mg,n, and hence there is a canonical isomorphism

H•GKk
g,n � grk H•c (Mg,n).

See [17, Theorem 1].

2.6. A nonvanishing result in weight 0. Here we give a brief proof of the nonvanishing statement for weight
zero compactly supported cohomology that was mentioned in the introduction, using graph complex techniques.

Let fGC2,conn be the full commutative graph complex studied in [33]. The elements of fGC2,conn are Q-linear
series of isomorphism classes of connected graphs with vertices of any valence. It is a dg Lie algebra with a
combinatorially defined bracket, and the differential δ is the bracket with a single edge. The subspace GC2 spanned
by stable graphs is a direct summand, and the restriction of δ is exactly δsplit. The cohomology of fGC2,conn is

(5) H(fGC2,conn) = H(GC2) ⊕
⊕
k≥1

Q[L4k+1],

where Ln denotes a loop of n edges, in which every vertex has valence 2 [33, Proposition 3.4].
Recall that the cohomological degree of a graph in fGC2,conn of genus g with e edges is e−2g. There is an extra

differential ∇ on fGC2,conn, given by bracket with a loop edge, studied in [19].

Lemma 2.3. Every class in H0(GC2) is represented by a δ-cocycle F ∈ fGC2,conn such that ∇F = 0.

Proof. Let F ∈ fGC2,conn be a δ-cocycle representing a nontrivial class in H(GC2). We must show that there is
some F′ ∈ fGC2,conn such that F′−F is δ-exact and ∇F′ = 0. First, note that δ∇F = −∇δF = 0. Since H(fGC2,conn)
vanishes in negative degrees [33, Theorem 1.1], we see that ∇F is δ-exact, i.e., there is F1 ∈ fGC2,conn such that
δF1 = ∇F. Moreover, δ∇F1 = −∇δF1 = −∇

2F = 0. Continuing in this way, the number of edges remains fixed
and the genus increases by 1 at each step, so eventually we arrive at a sequence (F = F0, . . . , Fn)

(6) δFn = ∇Fn−1 and ∇(Fn) = 0.

Then, since fGC2,conn is ∇-acyclic in genus greater than 1 [19, Corollary 3], there is some Gn such that ∇Gn = Fn.
If n > 1, then we can replace Fn with Fn−1 +δGn to get a shorter sequence that satisfies (6). Repeating the process,
we arrive at such a sequence with n = 1. Choose G such that ∇G = F1, and set F′ = F + δG. �

Proposition 2.4. The weight zero cohomology group W0H2g+3
c (Mg) is nonzero for g = 6 and g ≥ 8. Moreover, its

dimension grows exponentially with g.

Proof. Recall from [7] that W0H•c (Mg) is identified with the genus g part of the cohomology of the complex of
commutative stable graphs GC2. This identification comes with a degree shift; let us denote the genus g part of
GC2 by GC(g)

2 . Then W0H2g+k
c (Mg) � Hk(GC(g)

2 ).
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Recall that H0(GC2) contains a free Lie subalgebra with generators σg ∈ H0(GC(g)
2 ) for odd g ≥ 3 [4, 33]. We

consider two linear maps induced by the Lie bracket:

[σ3, ·] : H0(GC2)→ H0(GC2) and [L5, ·] : H0(GC2)→ H3(GC2).

The natural target of [L5, ·] is H3(fGC2,conn), but the image of any nontrivial class has genus greater than 1; by (5),
it must be in the summand H3(GC2). We claim that the kernel of [L5, ·] is contained in the kernel of [σ3, ·]. The
proposition follows, since H0(GC(g)

2 ) is not annihilated by σ3 for g = 5 and g ≥ 7, and the Hilbert function of the
free Lie subalgebra generated by σ5, σ7, . . . grows exponentially. It remains to prove the claim.

Let F ∈ fGC2,conn represent a class in H0(GC(g)
2 ). Suppose [L5, F] is exact, and write it as δ(λ). We must show

that [σ3, F] is exact. By Lemma 2.3, we may assume ∇F = 0.
Recall that there is a graph γ of genus 2 such that (δ+∇)(L5+γ) = σ3 (as in [19, Figure 2]). Let ζ := [γ, F]−∇λ.

Then ζ = [L5 + γ, F] − (δ + ∇)λ, and, using the assumption that ∇F = 0, it follows that

(δ + ∇)ζ = [σ3, F].

Hence, δζ = 0 and ∇ζ = [σ3, F]. Let D denote the vertex deletion operation introduced by Živković in [34,
Section 3]. Then ∇ = δD − Dδ ([34, Proposition 3.3]) and hence

(7) [σ3, F] = δ(Dζ).

This shows that [σ3, F] is exact, as required, and proves the proposition. We note that [34, Proposition 3.3] is
stated in a version of the graph complex that also contains disconnected graphs. However, since the connected
graphs span a direct summand with respect to δ, given that (7) holds in the larger complex, it must also hold for
the connected part. �

2.7. The support of H•(Xg,n). Here we deduce bounds on the support of H•(Xg,n) from Theorem 1.1, using mixed
Hodge theory and known vanishing statements for H•c (Mg,n). We also explain how Corollary 1.3 follows from
Theorem 1.2.

Corollary 2.5. The graph cohomology H•(Xg,n) is supported in degrees max{2g, 2g − 2 + n} ≤ • ≤ 3g − 2 + n.

Proof. By Theorem 1.1, we must show that gr2 H•c (Mg,n) is supported in the indicated range of degrees. By
Poincaré duality, we have

(8) gr2 H•c (Mg,n) � gr6g−8+2n H6g−6+2n−•(Mg,n)∨.

To see the upper bound, recall that gr∗ Hk is supported in weights ∗ ≤ 2k [11]. Hence the right hand side of (8)
vanishes when • > 3g − 2 + n. For n ≥ 2, the lower bound also follows from (8), since the virtual cohomological
dimension (vcd) ofMg,n is 4g − 4 + n. The lower bounds for n = 0 and 1 are similar; one uses that the vcds of
Mg,1 andMg are 4g − 3 and 4g − 5, respectively, and that H4g−3(Mg,1) and H4g−5(Mg) both vanish [9, 25]. �

Finally, we explain how Corollary 1.3 follows from Theorem 1.2 and Proposition 2.4.

Proof of Corollary 1.3. We start by recalling that
• W0H2g

c (Mg) is nonvanishing for g = 3, g = 5, and g ≥ 7, by [7], and
• W0H2g+3

c (Mg) is nonvanishing for g = 6 and g ≥ 8, by Proposition 2.4.

In both cases the dimension grows exponentially with g. Furthermore, we know that W0H27
c (M10) , 0; the

corresponding graph cohomology computation is due to Bar-Natan and McKay [3]. For this proof only, let us set

W0 :=
⊕

g

W0H2g
c (Mg); W3 :=

⊕
g

W0H2g+3
c (Mg); W7 := W0H27

c M10.

Then
∧2 W0 contributes to Vg,2g for g = 8 and g ≥ 10, and the dimension of this subspace grows exponentially

with g. Considering the third summand in Theorem 1.2, this shows that gr2 H2g+2
c (Mg) is nonzero for g = 9 and

g ≥ 11, and grows exponentially with g. The corresponding statement for H4g−8(Mg) follows by Poincaré duality,
since H4g−8(Mg) � H2g+2

c (Mg)∨. This proves Corollary 1.3 for H4g−8(Mg).
Corollary 1.3 for H4g−9(Mg) is an immediate consequence of Proposition 2.4, since H4g−9(Mg) � H2g+3

c (Mg)∨.
The remaining cases of Corollary 1.3 are similar to the case of H4g−8(Mg). The subspace W0 ∧W3 contributes

to Vg,2g+3 for g = 9, g = 11, and g ≥ 13, and the dimension of this contribution grows exponentially with g.
Considering the third summand in Theorem 1.2 and applying Poincaré duality shows that H4g−11(Mg) is nonzero
for g = 10, g = 12, and g ≥ 14 and its dimension grows exponentially with g. The corresponding statements for
H4g−12(Mg) are proved similarly, using the first summand in Theorem 1.2
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The next three cases of Corollary 1.3, for H4g−14(Mg), H4g−15(Mg) and H4g−16(Mg) use the contributions of∧2 W3 and W0 ∧W7 to Vg,2g+6 and Vg,2g+7, respectively. The final two cases, for H4g−18(Mg) and H4g−19(Mg) are
deduced similarly from the contribution of W3 ∧W7 to Vg,2g+10. �

2.8. A vanishing result in weight 0. Our primary motivation is to use what is known in weight 0 to prove new
results about the weight 2 cohomology gr2 H•c (Mg,n). However, it is worth noting that the information flows
meaningfully in both directions, via Theorem 1.2. For instance, applying basic results from mixed Hodge theory
to the weight 2 cohomology, we deduce the following vanishing result in weight 0.

Proposition 2.6. The antisymmetric cohomology W0H3g−1
c (Mg,2)as vanishes for all g ≥ 1. Also,

dim
⊕

g

W0H3g−2
c (Mg,1) ≤ 1.

In other words, the graph complex G(g,2) computing W0Hc(Mg,2) (see section 4.4) has no antisymmetric coho-
mology in the top degree, corresponding to trivalent graphs with 2 marked points. Furthermore the top degree
cohomology of

⊕
g G(g,1), corresponding to trivalent graphs, is at most one-dimensional.

Proof. The antisymmetric cohomology W0H3g−1
c (Mg, 2)as injects into gr2 H3g+2

c (Mg+1), via the second summand
in Theorem 1.2. However, the Poincaré dual of gr2 H3g+2

c (Mg+1) is gr6g−2 H3g−2(Mg+1), which vanishes because
gr∗ Hk is supported in weights ∗ ≤ 2k [11]. Similarly, the first summand in Theorem 1.2 gives an injection from∧2 ⊕

g W0H3g−2
c (Mg,1) into

⊕
g′ gr2 H3g′−1

c (Mg′ ), which vanishes for the same weight reasons. �

It is not known whether W0H3g−2(Mg,1) vanishes, or equivalently, whether every trivalent graph with one marked
point is a coboundary in G(g,1), for all g.

3. The weight 2 Getzler-Kapranov graph complex

3.1. Generators and relations. The decorated graphs that generate GK2
g,n have a particularly simple description.

Each generator has an underlying stable graph of genus g, and comes with a total ordering of the structural edges,
i.e., the edges that are not incident to the external vertices labeled 1, . . . , n, subject to the relation that reordering
the structural edges is multiplication by the sign of the permutation. In addition, each vertex v is decorated by an
element of Hkv (Mgv,nv

), where gv and nv are the genus and valence of v, and
∑

v kv = 2.
Since H0(M) = Q and H1(M) = 0 for each moduli spaceM attached to a vertex, any generator for GK2

g,n has a
unique vertex v with decoration in H2(Mgv,nv

), which we call the special vertex. After rescaling, we may assume
all other vertices are decorated with the unit 1 ∈ H0(M); for simplicity, we omit these trivial decorations. We can
thus give a finite generating set for GK2

g,n by specifying a finite generating set for H2(Mg′,n′ ) for all g′ and n′.
Recall that H2(Mg,n) is generated by the tautological classes: κ, ψ1, . . . , ψn, δirr, and δa,A = δg−a,Ac , for subsets

A ⊂ {1, . . . , n} and 0 ≤ a ≤ g such that 2a + |S | ≥ 2 and 2(g − a) + |Ac
| ≥ 2. Thus GK2

g,n is generated by graphs in
which the special vertex v is decorated by one of these tautological classes in H2(Mgv,nv

). Here, the set {1, . . . , nv}

is implicitly identified with the set set of half-edges incident to v.

For g ≥ 3, the tautological classes form a basis H2(Mg,n); there are no further relations. However, for g ≤ 2,
the tautological classes satisfy relations as follows [2, Theorem 2.2]:

For g = 2 there is one relation:

5κ = 5
n∑

i=1

ψi + δirr − 5
∑

A

δ0,A + 7
∑

A

δ1,A.

For g = 1, there are n + 1 relations:

κ =

n∑
i=1

ψi −
∑
|A|≥2

δ0,A, and 12ψi = δirr + 12
∑
i∈A

δ0,A.

For g = 0, the relations are generated by:

κ =
∑
A=x,y

(|A| − 1) δ0,A, ψi =
∑

i∈A=x,y

δ0,A, and δirr = 0 .

Here i and x , y run over elements of {1, . . . , n}. See also Proposition 3.5 for another presentation of H2(M0,n).
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Example 3.1. The following is a generator in degree 9 for GK2
8,1. The inscribed numbers in vertices v representing

the genera gv.

3

κ

1

0

0

1

The special vertex is drawn with a double cirle, and decorated by κ ∈ H2(M3,3).

3.2. Graphical depiction of boundary and ψ-class decorations. We use suggestive graphical depictions of the
decorations on the special vertex, indicating a decoration ψi with an arrow on the corresponding half-edge.

h

ψi
i

=: h

To indicate a decoration δa,A, we replace the special vertex with two vertices connected by a marked edge.

h

δa,A

=: ba(9)

Here b = h− a and A is the subset of the half-edges at the special vertex that are connected to the vertex labeled a.

3.3. Graphical depiction of the differential. The differential δ = δsplit +δloop on GKk
g,n acts on each generator by

taking a sum over the vertices. Roughly speaking, it amounts to splitting vertices and attaching loops at vertices
in all allowable ways, and then pulling back cohomological decorations along the corresponding clutching and
gluing maps between moduli spaces. When the decoration on a given vertex is trivial, the differential acts just like
the differential on the standard commutative graph complex.

Thus, we may depict the contribution “Γ split v” from a non-special vertex v with gv = h as

(10) h 7→
∑

a+b=h

∑
a b .

On the right-hand side, the second sum is taken over all ways of distributing the half-edges incident to the special
vertex over the two new vertices of genus a and b such that the resulting graph is stable. Similarly, we may depict
the contribution to δloop from a non-special vertex v as

(11) h 7→ h−1 ,

with the right-hand side being understood as zero if h = 0. In both cases, the edge orderings on the right-hand side
are fixed so that the newly created edge is first and the relative order of the other edges is unchanged.

Next we turn to the special vertex. In what follows, it will be convenient to consider curves with marked points
labeled by a finite set S that is not necessarily identified with {1, . . . , n}. We follow the usual notational convention
(e.g., from [2]), writingMg,S for the moduli space of smooth curves of genus g with |S | marked points labeled by
a bijection to S , andMg,S for its compactification by stable curves.

To describe the differential one needs to understand the pullback of the classes in H2(Mh,k) under the maps

ξ : Mh−1,S∪{t,t′} →Mh,S and θ : Ma,A∪{q} →Mh,S ,

where the latter is obtained by attaching a fixed curve of genus h − a with marked points labeled by Ac
∪ {r}.

(The map θ depends on the choice of this curve, but only up to homotopy, so the pullback map on cohomology is
well-defined.) The relevant formulas are well-known; see [2, Lemmas 3.2 and 3.3].

First, for the pullback θ∗, which is related to δsplit at the special vertex, we have:

θ∗(κ) = κ, θ∗(δirr) = δirr, and θ∗(ψi) =

ψi if i ∈ S
0 otherwise

.

The resulting formulas for δsplit when applied to graphs in which the special vertex is decorated with κ, δirr, or ψi,
can then be depicted graphically in a way that naturally generalizes (10). For example, when the special vertex is
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decorated with ψi, we have

δsplit : h 7→
∑

a+b=h

∑
a b(12)

Here, the second sum is again taken over all ways of distributing the half-edges incident to the special vertex over
the two new vertices of genus a and b such that the resulting graph is stable.

Next, we discuss the formulas for θ∗(δb,B). In the special case where A = S , we have:

θ∗(δb,B) =

δ2b−h,S∪{q} − ψq if (b, B) = (a, S ) or (b, B) = (h − a, ∅);
δb,B + δb+a−h,B∪{q} otherwise.

If A , S then

θ∗(δb,B) =


−ψq if (b, B) = (a, A) or (b, B) = (h − a, Ac);
δb,B if B ⊂ A and (b, B) , (a, A);
δb+a−h,(BrAc)∪{q} if B ⊃ Ac and (b, B) , (h − a, Ac);
0 otherwise.

Again, the resulting action of δsplit on a special vertex with decoration δb,B has a convenient graphic depiction:

(13)

δsplit : ba 7→
∑

b′+b′′=b

∑
b′′b′a +

∑
a′+a′′=a

∑
a′ ba′′

− ba − ba

Next, consider pullback ξ∗, which is related to δloop at the special vertex. We have

ξ∗κ = κ, ξ∗ψ j = ψ j, and ξ∗δa,A =

δa,A if h = 2a, A = S = ∅

δa,A + δa−1,A∪{t,t′} otherwise
.

In these cases, the combinatorial picture (11) applies also to the special vertex, provided that one considers the
special vertex as two vertices, as in (9), with the differential acting as in (11) separately on each vertex.

For the boundary class δirr, we have

ξ∗δirr = δirr − ψt − ψt′ +
∑

a

∑
t∈A,t′<A

δa,A.

This means that the action of the differential δloop on a δirr-decorated vertex may be depicted graphically as

δloop : h

δirr

7→ h−1

δirr

− 2 h−1 +
∑

a+b=h−1

ba

3.4. Example of a nontrivial cocycle in GK2
g,n. Here we depict a representative in GK2 of the first nontrivial

cohomology class produced by Theorem 1.2. It lives in gr2 H19
c (M8) � H19(GK2

8), and arises from the subspace
W0H6

c (M3,1) ∧W0H10
c (M5,1) of V8,16. A representative is given by

1
20

∑  +
5
2

 ,
where the dashed edge should be attached to one vertex on the left and one on the right, and one decorates it with an
arrow pointing left, minus one pointing right. The result is a linear combination of 10 graphs with ψ-decorations:

− +
1
5

−
1
5

+

− + −

+ − .
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Remark 3.2. Note that Theorem 1.2 also provides another embedding of Vg,k into Hc(Mg+1), and the element
of V8,16 underlying the degree 19 cocycle of genus 8 depicted above gives rise to another non-trivial element of
H20

c (M9). The corresponding cocycle in GK2
9 has approximately three times as many terms, and we do not draw

it here. In the proof of Theorem 1.2 and Appendix A we do provide an explicit algorithm for obtaining the image
of the corresponding cocycle in the quasi-isomorphic quotient GK2

9 of GK2
9.

3.5. The quotient GK. Let Ig,n ⊂ GKg,n be the graded subspace spanned by graphs that have at least one vertex
of positive genus. Then define the quotient

GKg,n = GKg,n/(Ig,n + δIg,n).

In other words, GKg,n is generated by graphs all of whose vertices are of genus zero. Among those graphs we
impose relations of the form δloopΓ, for Γ running over graphs with exactly one vertex of genus 1. The quotient
GKg,n inherits the weight grading from GKg,n, where the weight is the sum of the cohomological degrees of the
vertex decorations. We denote the summand of weight k by

GKk
g,n ⊂ GKg,n.

In particular, the weight 0 piece GK0
g,n is generated by graphs without loop edges, all of whose vertices have genus

zero. After rescaling, we may assume that all vertex decorations are trivial, i.e., each decoration is the identity
1 ∈ H0(M0,k). One main result of [7, 8] is that the quotient GK0

g,n → GK0
g,n is a quasi-isomorphism for all g, n.

In this paper, we prove an analogous result in weight 2. The weight 2 piece GK2
g,n is generated by graphs with

all vertices of genus zero, and one special vertex decorated by a tautological generator for H2(M0,k). We quotient
by graphs with a loop edge at a non-special vertex. Furthermore, if there is a loop edge at the special vertex, then
we impose the additional relations δ0,A = 0 for sets of half-edges A that contain both half-edges of the loop. (Since
δ0,A = δ0,Ac in H2(M0,k), this also kills graphs labeled with δ0,A, where A contains neither half-edge of the loop.)

Theorem 3.3. The quotient map GK2
g,n → GK2

g,n is a quasi-isomorphism for all g, n except g = n = 1.

For g = n = 1 the right-hand complex is acyclic and the left-hand complex has one-dimensional cohomology,
spanned by the class of a single-vertex graph with decoration δirr.

1

δirr

1

3.6. Resolutions of H2(M0,n). In the proof of Theorem 3.3, we use the following presentation for H2(M0,n). We
believe this is well-known to experts. However, lacking a suitable reference, we include a short proof.

Lemma 3.4. The cohomology group H2(M0,n) is generated by boundary classes δ0,A for subsets A ⊂ {1, ..., n}
with 2 ≤ |A| ≤ n − 2, and the ψ-classes ψ1, . . . , ψn modulo the relations

(1) δ0,A = δ0,Ac ;
(2) ψi + ψ j =

∑
i∈A, j∈Ac δ0,A.

Proof. These classes generate H2(M0,n) and dim H2(M0,n) = 2n−1
−

(
n
2

)
− 1 [18]. The relations δ0,A = δ0,Ac are

standard, and the quotient by these relations has dimension 2n−1
− 1. The remaining

(
n
2

)
relations are independent,

so it suffices to show that they hold in H2(M0,n). For n = 3, this is trivial. We proceed by induction on n. Assume
that (2) holds in H2(M0,n). Let π : M0,n+1 → M0,n be the universal curve. Then apply the pullback formulas
π∗ψi = ψi − δ0,{i,n+1} and π∗δ0,A = δ0,A + δ0,A∪{n+1} [2, Lemma 3.1] to deduce that (2) holds in H2(M0,n+1). �

The following result proposition is an immediate consequence of Lemma 3.4.

Proposition 3.5. There is an Sn-equivariant short exact sequence

0→
⊕

1≤i< j≤n

QEi j →
( ⊕

1≤i≤n

Qψi

)
⊕

⊕
1∈A

Qδ0,A → H2(M0,n)→ 0

in which the first arrow is given by Ei j 7→ ψi + ψ j −
∑

i∈A, j∈Ac δ0,A.

The Sn-action is given by permuting all labels and setting Ei j = E ji for i > j and δ0,A = δ0,Ac when 1 < A.
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4. Filtration by the number of vertices

The main idea of the proof of Theorem 3.3 is to use the filtration on GKg,n by the number of vertices, and
look at the associated spectral sequence. The associated graded of this filtration gr GKg,n can be identified with
(GKg,n, δloop), i.e., we kill the part of the differential splitting vertices. As discussed in Section 4.3, this complex
splits into subcomplexes that are direct sums of tensor products of complexes associated to single vertices. We
begin by studying these single vertex complexes

(14) Vg,n =
⊕

h

(
H•(Mg−h,n+2h) ⊗ Q[−1]⊗h)

ShoS2

where the wreath product Sh oS2 acts by permuting the last 2h marked points and the factors Q[−1]⊗h, introducing
signs via the Koszul sign rule, see section 2.1. The weight grading on Vg,n is given by the cohomological degree
in H•(Mg−h,n+2h), and the complex decomposes into a direct sum of weight graded pieces. We denote the piece of
weight k by Vk

g,n; in this paper, we focus on the cases k = 0 and k = 2.

4.1. The single vertex complex in weight zero. In weight zero, we have

(15) H(V0
g,n) =

Q for g = 0, n ≥ 3
0 otherwise

.

From this, one easily deduces that GK0
g,n → GK0

g,n is a quasi-isomorphism and recovers the result from [7, 8] that
cohomology of the commutative n-marked graph complex computes W0H•cMg,n.

4.2. The single vertex complex in weight 2. Our proof of Theorem 3.3 will combine (15) with the following
analogous statement in weight 2.

Proposition 4.1. For g ≥ 2 and all n one has
H(V2

g,n) = 0.
For g = 1 one has

H(V2
1,n) � Qδirr ⊕

(
H2(M0,n+2)S2

/ξ∗H2(M1,n)
)
.

For g = 0, the differential on H(V2
0,n) vanishes.

We write V2
g,n in the form:

(16) 0→ H2(Mg,n)→ H2(Mg−1,n+2)S2
→ H2(Mg−2,n+4)S2oS2

→ H2(Mg−3,n)S3oS2
→ · · · .

Here, the action of Sh o S2 is understood to include a sign that accounts for the permutation of the tensor factors
Q[−1]⊗h in (14). To make this concrete, recall that H2(Mg,n) is generated by the tautological classes κ, ψi, δirr and
δa,A = δg−a,Ac , with relations for g ≤ 2 as discussed in Section 3. Then the action of Sh o S2 is induced by a signed
permutation action on this set of tautological generators, as follows. One may think of each generator as a graph
with a single internal vertex of genus g− h incident to h loop edges and n marked legs, equipped with a decoration
by a tautological generator for H2(Mg−h,n+2h). Then each copy of S2 acts by exchanging the half-edges in a loop
(without sign). The quotient map to Sh is given by the permutation of the loop edges, and the induced permutation
on generators is twisted by the sign of this Sh-action.

Lemma 4.2. As a vector space V2
g,n =

⊕
h H2(Mg−h,n+2h)ShoS2

is generated by the following classes
(1) κ or δirr, for h ∈ {0, 1},
(2) ψi, with i ∈ {1, . . . , n}, for h ∈ {0, 1},
(3) ψ j with j < {1, . . . , n}, for h ∈ {1, 2}
(4) δa,A, for h ∈ {0, 1, 2, 3}.

In particular, the complex (16) vanishes beyond h = 3.

Proof. Any other tautological generator for H2(Mg−h,n+2h) is preserved by an element of Sh o S2 that acts by a
transposition on the set of loop edges. �

Proof of Proposition 4.1 for g ≥ 4. For g ≥ 4 there are no nontrivial relations among the above generators for V2
g,n,

i.e., all relations are induced by isomorphisms of marked and decorated graphs. In this case, we can see that the
complex is acyclic by constructing a null-homotopy as follows. Depict boundary classes and ψ-classes by marked
edges and half-edges, respectively, as in Section 3. Thus the generators of V2

g,n are depicted by graphs that have
either one or two vertices. Say that a vertex v is active if either gv > 0 or if there is a loop attached to v. Note that
each vertex has at most one loop attached, since otherwise there is an odd automorphism interchanging two loops.
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For each loop edge, there is a natural contraction, in which the loop edge is deleted and the genus of the attached
vertex is increased by 1. The orientation on the resulting graph is determined as follows: after reordering, we may
assume that the contracted loop was first in the loop order, and then the remaining edges keep their induced
ordering. The null homotopy takes the sum of all such contractions, divided by the number of active vertices. �

When g = 0 there is nothing to prove. When g = 1, 2, or 3, additional arguments are required. For simplicity,
we give complete proofs for n ≥ 1; the cases where n = 0 are similar. Throughout the remainder of the proof,
we use S to denote an arbitrary subset of {1, . . . , n}, subject to restrictions as specifically indicated. For instance,
“δ0,S , 1 ∈ S ” refers to the 2n−1 elements of the form δ0,S where S is a subset of {1, . . . , n} that contains 1.

Proof of Proposition 4.1 for g = 3. The complex V2
3,n has the form

(17) H2(M3,n)→ H2(M2,n+2)S2
→ H2(M1,n+4)S2oS2

→ H2(M0,n+6)S3oS2
.

By [2, Theorem 2.10] we know that H2(M3,n) → H2(M2,n+2)S2
is injective. We now check exactness at the

remaining places, working from right to left. Let s, s′, t, t′, and u, u′ be the pairs of markings added to {1, ..., n} at
each step. We claim that H0(M0,n+6)S3oS2

has a basis consisting of the classes

δ0,S∪{s,s′,t}, 1 ∈ S .

This can be seen by taking coinvariants of the resolution in Proposition 3.5; each Ei j is stabilized by an element
of S3 o S2 that acts by a simple transposition on the set of 3 loops, and hence the coinvariants of

⊕
i, j QEi j vanish.

Next, recall that H2(M1,n+4) is freely generated by boundary classes, which are permuted by S2 o S2. Taking
coinvariants, we see that H2(M1,n+4)S2oS2

has a basis consisting of:

δ0,S∪{s}, |S | ≥ 1; δ0,S∪{s,s′}; δ0,S∪{s,s′,t}.

Working with respect to these bases, the same chain homotopy argument used for g ≥ 4 shows that (17) is
exact at H2(M0,n+6)S3oS2

and at H2(M1,n+4)S2oS2
. It remains to check that it is exact at H2(M2,n+2)S2

. We prove
this when n > 0 by counting dimensions and computing the Euler characteristic; the argument for n = 0 is similar.

Assume n > 0. Then H2(M2,n+2)S2
has a basis given by ψ1, . . . , ψn, ψs, and δirr together with:

δ0,S , |S | ≥ 2; δ1,S ; δ2,S ; δ0,S∪{s}, |S | ≥ 1; δ1,S∪{s}, 1 ∈ S .

The dimension of H2(M3,n) is 2 · 2n
+ 1. Counting the bases above shows that

χ(V2
3,n) = (2 · 2n

+ 1) − (4 · 2n
+ 2n−1) + (3 · 2n

− 1) − 2n−1,

which is 0, as required. �

Proof of Proposition 4.1 for g = 2. The complex V2
2,n has the form

H2(M2,n)→ H2(M1,n+2)S2
→ H2(M0,n+4)S2oS2

.

By [2, Theorem 2.10], we know that the first arrow is injective. We proceed to prove exactness at the remaining
two places, working from right to left.

Say s, s′ and t, t′ are the two pairs of markings added at each step. First, we claim that H2(M0,n+4)S2oS2
has a

basis consisting of:

(18) δ0,S∪{s,s′}, 1 ∈ S ; δ0,S∪{s}, |S | ≥ 2.

To see this, consider the S2 oS2-coinvariants of the resolution of H2(M0,n+4) from Proposition 3.5. The coinvariant
space of

⊕
i, j QEi j has a basis consisting of Ess′ together with E1s, . . . , Ens. Similarly, the coinvariant space of(⊕

i Qψi

)
⊕

(⊕
S Qδ0,S

)
has a basis consisting of:

ψs; δ0,S∪{s,s′}, 1 ∈ S ; δ0,S∪{s}, |S | ≥ 1.

By examining the differential, one checks that Es,s′ can be used to eliminate ψs, while Eis can be used to elim-
inate δ0,{i,s} for i ∈ {1, . . . , n}. Hence the images of the remaining basis elements listed in (18) form a basis for
H2(M0,n+4)S2oS2

, as claimed.
Next, recall that H2(M1,n+2) is freely generated by boundary classes, which are permuted by the S2-action.

One then sees that the coinvariant space H2(M1,n+2)S2
has a basis consisting of:

(19) δirr; δ0,S , |S | ≥ 2; δ0,S∪{s}, |S | ≥ 1; δ1,S .
14



Working with these bases, the same chain homotopy argument that works for g ≥ 4 gives a splitting of the map to
H2(M0,n+4)S2oS2

. It remains to check that V2
2,n is exact at H2(M1,n+2)S2

. Just as for g = 3, we do this by counting
dimensions and computing the Euler characteristic. For simplicity, we assume n ≥ 1; the n = 0 case is similar.

The dimension of H2(M2,n) is 2n
+ 2n−1. Counting the bases (18) and (19) then shows

χ(V2
2,n) = (2n

+ 2n−1) − (3 · 2n
− n − 1) + (2n

+ 2n−1
− n − 1),

which is 0, as required. �

We use the following lemma in the proof of Proposition 4.1 for g = 1, and also in the proof of Proposition 5.3.

Lemma 4.3. The classes δ0,S for S ⊂ {1, . . . , n}, |S | ≥ 2 have linearly independent image in H2(M0,n+2)S2
, where

S2 acts by transposing the last two marked points.

Proof. These classes are S2-invariant, so it suffices to show that they are linearly independent in H2(M0,n+2). We
claim that there is a curve C inM0,n+2 that intersects δ0,S at finitely many points and is disjoint from δ0,S ′ for all
other subsets S ′ ⊂ {1, . . . , n}. Fix n + 2 general points in P1. Let Gm act so that the coordinates of the points in S
are multiplied by z and the rest are multiplied by z−1, and let C be the closure of this Gm-orbit. The image of Gm
is contained in the open moduli spaceM0,n+2, and the remaining two points of C are general in δ0,S . This proves
the claim, and the lemma follows. �

Proof of Proposition 4.1 for g = 1. We now consider the two-term complex V2
1,n,

H2(M1,n)→ H2(M0,n+2)S2
.

Recall thatM1,n is freely generated by the boundary classes δirr and δ0,S , |S | ≥ 2. Also, H2(M0,n+2)S2
is generated

by the classes
δ0,S , |S | ≥ 2; δ0,S∪{s}, |S | ≥ 1, |S c

| ≥ 1.

The differential is then given by δirr 7→ 0 and δ0,S 7→ δ0,S . The statement of Proposition 4.1 for g = 1 reduces
to saying that the kernel of the differential is generated by δirr. This follows from Lemma 4.3, since the classes
δ0,S , |S | ≥ 2 have linearly independent images in H2(M0,n+2)S2

. This completes the proof of Proposition 4.1. �

4.3. The filtered map of filtered complexes. We now prove Theorem 3.3, showing that the projection

(20) GK2
g,n → GK2

g,n

is a quasi-isomorphism for any (g, n) , (1, 1). We do this by filtering both sides by the number of vertices and
showing that the induced map between spectral sequences is an isomorphism at E2. From this it follows that (20)
is a quasi-isomorphism by the spectral sequence comparison theorem [32, Theorem 5.2.12].

Proof of Theorem 3.3. Let F pGK2
g,n ⊂ GK2

g,n and F pGK2
g,n ⊂ GK2

g,n be the dg sub-vector spaces of GK2
g,n and

GK2
g,n, respectively, spanned by graphs with at least p vertices. So F •GK2

g,n and F •GK2
g,n are decreasing filtrations

of dg vector spaces, and (20) respects the filtrations. We now consider the spectral sequences associated to these
filtrations and the induced map between them.

On E0, we have the associated graded dg vector spaces

gr GK2
g,n � (GK2

g,n, δloop) and gr GK2
g,n � (GK2

g,n, 0).

Say that the loopless core of a stable graph is the stable graph obtained by contracting all loop edges and
increasing the genera of the adjacent vertices accordingly. Note that δloop does not change the loopless core, and
hence (GK2

g,n, δloop) decomposes as a direct sum

(GK2
g,n, δloop) �

⊕
Γ

(GKΓ, δloop),

where Γ ranges over isomorphism classes of n-marked stable graphs of genus g without loop edges and GKΓ is the
dg subspace spanned by graphs with loopless core Γ.

Since δloop acts independently on all vertices we furthermore have the isomorphism of dg vector spaces

(GKΓ, δloop) �

 ⊗
v∈Vert(Γ)

Vkv
gv,nv
⊗ Q[−1]⊗E(Γ)


Aut(Γ)

,
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where E(Γ) is the set of structural edges of Γ. Since taking coinvariants with respect to finite group actions
commutes with taking cohomology we find that

H(GKΓ, δloop) �

 ⊗
v∈Vert(Γ)

H(Vkv
gv,nv

) ⊗ Q[−1]⊗E(Γ)


Aut(Γ)

.

Recall that kv = 0 for all vertices except one special vertex w which has kw = 2. By (15), the right hand side
vanishes if Γ has a non-special vertex of positive genus. Otherwise, the right hand side is(

H(V2
gw,nw

) ⊗ Q[−1]⊗E(Γ)
)

Aut(Γ)
.

In other words, H(GK2
g,n, δloop) can be identified with a graded vector space of stable graphs without loop edges

where all vertices have genus 0 except possibly one special vertex w that is decorated by H(V2
gw,nw

), oriented by a
total ordering of the structural edges.

The differential on the E1-page of our spectral sequence is then induced by the part δsplit of the original differ-
ential. Our goal is to show that the projection

(21) (H(GK2
g,n, δloop), δsplit)→ (GK2

g,n, δsplit),

is a quasi-isomorphism. The right-hand side is also a graded vector space of stable graphs. Now all vertices have
genus 0, but loop edges are allowed, and one special vertex w is decorated by H2(M0,nw

), modulo the image of
δloop. Applying Proposition 4.1, we see that (21) is surjective, with kernel Kg,n generated by stable graphs in which
all vertices have genus 0 except one special vertex of genus 1 that is decorated with δirr. Equivalently, Kg,n is a
commutative graph complex generated by graphs with one special vertex in which all vertices have valence at least
3 except the special vertex, which may also have valence 1 or 2. We prove the acyclicity of Kg,n as follows.

Let K1 ⊂ Kg,n be the dg subspace spanned by graphs in which the special vertex has valence 1, and K≥2 ⊂ Kg,n
the complementary subspace spanned by graphs having a special vertex of valence ≥ 2. The differential δsplit
decomposes accordingly into the following pieces

K≥2 K1
s

.

The part s splits off the special vertex as shown,

s : 7→ ,

with the special vertex marked by double circles. It is clear that this map s : K≥2 → K1 is injective. It is also
surjective if (g, n) , (1, 1). Applying Lemma 2.1 it follows that Kg,n is acyclic, as required. �

4.4. The weight zero case. The complex GK0
g,n is generated by connected simple graphs, without loop edges or

positive genus vertices, of genus g with n marked legs. Following [8], we denote this

G(g,n) := GK0
g,n.

For example, the following graph is a generator of G(2,3) of degree 5:

1

2

3 .

A simplified version of the argument in Section 4.3, filtering by the number of vertices and using (15) in place of
Proposition 4.1, shows that the projection GK0

g,n → GK0
g,n is a quasi-isomorphism. In this way, one recovers the

following result in weight zero:

Theorem 4.4 ([7, 8]). The graph cohomology H(G(g,n)) = H(GK0
g,n) is identified with the weight zero part

W0H•c (Mg,n) of the compactly supported cohomology of the open moduli space of curves.

5. A zig-zag of quasi-isomorphisms of graph complexes

In this section, we discuss the graph complex Xg,n in more detail. We then describe a zig-zag of quasi-
isomorphisms relating GK2

g,n to Xg,n and thereby prove Theorem 1.1.
Recall that we consider Xg,n only for non-negative integers g and n such that 2g + n ≥ 3.
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5.1. Generators for Xg,n. The generators for Xg,n are simple graphs without loops or multiple edges, in which no
vertices have valence 2. The vertices of valence at least 3 are internal and those of valence 1 are external. Each
external vertex is decorated with an element from the set {ε, ω, 1, . . . , n}, such that:

• Each label 1, . . . , n appears exactly once and the label ω appears exactly twice;
• The graph obtained by joining all external vertices labeled ε or ω is connected and has genus g;

Say that an edge with two external vertices labeled a and b is an (a, b)-edge. We further require that
• No connected component is an (ε, ω) or (ω,ω) edge;

An edge is structural if it does not contain an external vertex with label from {1, . . . , n}. Note that there are exactly
n non-structural edges. The degree of a graph is the number of structural edges plus one. Each generator comes
with a total ordering of the structural edges, and we impose the relation that permuting the structural edges is
multiplication by the sign of the permutation.

The differential δ on Xg,n is a sum of two parts δ = δsplit + δ join. Here δsplit is a sum over all vertices and over
all ways of splitting the vertex into two vertices joined by an edge:

δsplitΓ =
∑

v vertex

Γ split v 7→
∑

The part δ join glues together a subset S of the ε- and ω-decorated external vertices, such that |S | ≥ 2, and S
contains either 0 or 1 of the ω-decorated vertices. It then attaches an edge to a new external vertex decorated by ε
or ω, respectively:

δ join

Γ
=

∑
S

Γ

ε or ω

.

In both parts, there is precisely one new structural edge, and the ordering is chosen so that the new edge comes
first and the relative ordering of the old edges is preserved. It is straightforward to verify that applying δsplit and
δ join to generators for Xg,n produces a sum of generators for Xg,n, and that δ squares to zero (as do δsplit and δ join).

In pictures, we draw graphs in Xg,n with filled black vertices, to distinguish them from graphs in GKg,n.

Remark 5.1. The graph complex Xg,n is closely related to the graph complexes studied by Fresse, Turchin, and the
second author in the context of the embedding calculus [14]. For suitable submanifolds M ⊂ Rm they showed that
the rational homotopy groups of the (long) embedding spaces modulo immersions Emb∂(M,RN) can be expressed
as the cohomology of a graph complex HGCĀ,N , in which external vertices are labeled by elements of the augmen-
tation ideal Ā of a dg commutative algebra model of the one-point-compactification M ∪ {∞}. Furthermore, the
cohomology groups of Emb∂(M,RN) are computed by the Chevalley complex of HGCĀ,N , and this latter complex
can be identified with a complex of (possibly) disconnected graphs.

In particular, if M is a union of n copies of Rk and S 2`, then the corresponding model Ā has a basis consisting
of ε in degree zero, ω in degree 2`, and {ω1, . . . , ωn} in degree k, with product given by ε2

= ε, εω = ω, and
εω j = ω2

= ωiω = ωiω j = 0.
Then, up to unimportant degree shifts, Xg,n may be identified with a subquotient of the Chevalley complex of

HGCĀ,N , for N even, corresponding to genus g graphs without loop edges that contain each decoration ω j exactly
once, and that are connected after fusing the ε- and ω-decorated legs. We shall not need this connection to the
embedding calculus elsewhere in the paper, and leave the more precise comparison of the cohomology of Xg,n and
the cohomology of emedding spaces to future work.

5.2. A resolution of GK2
g,n. Our goal is to relate GK2

g,n to Xg,n by a zigzag of quasi-isomorphisms. To this end,
we now construct a quasi-isomorphism G̃K2

g,n
∼
−→ GK2

g,n such that G̃K2
g,n also maps naturally onto Xg,n. Roughly

speaking G̃K2
g,n is constructed from GK2

g,n by resolving the space of decorations H2(M0,k), as in Proposition 3.5.
One can also construct a quasi-isomorphism Xg,n → GK2

g,n; see Appendix A. The construction of the map is
explicit, but the proof that it is a quasi-isomorphism uses the resolution G̃K2

g,n
∼
−→ GK2

g,n, and so we have chosen to
focus on the zig-zag.

Concretely, G̃K2
g,n is a graph complex analogous to GK2

g,n generated by graphs with the following features. All
vertices have genus 0 and there is exactly one special vertex with extra decoration. There are no loop edges at
non-special vertices. The special vertex is decorated with one of the following:

• A symbol δ0,A, where A is a subset of the k half-edges at the special vertex such that 2 ≤ |S | ≤ k − 2.
• A symbol ψi, where i is a half-edge at the special vertex.
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• A symbol Ei j where i, j are distinct half-edges at the special vertex.
We impose the relations δ0,A = δ0,Ac and Ei j = E ji. Furthermore, if there is a loop at the special vertex with
half-edges t and t′, we impose the loop relations:

(22) ψi = 0; ψt = ψt′ =
1
2

∑
t∈A,t′<A

δ0,A; Eit = Eit′ = 0; δ0,A = 0 if t, t′ ∈ S (or t, t′ ∈ S c).

As usual, each generator comes equipped with an ordering of the structural edges, and we permuting this ordering
induces multiplication by the sign of the permutation. Formally, these decorations should be interpreted as ele-
ments of a dg vector space resolving H2(M0,k), as in Proposition 3.5). In this resolution, δ0,A and ψi have degree
2, while Ei j has degree 1. Thus, a generator with n structural edges has degree n + 2 unless its decoration is Ei j, in
which case the degree is n + 1.

We continue to depict the decoration at the special vertex by adding combinatorial features to the graph. The
depictions of ψi and δ0,S are exactly as in section 3.2. We depict the decoration Ei j, with i and j distinct half-edges
incident to the special vertex, by marking the two half-edges with arrows as follows.

Ei j

=:

i j

The loop relations (22) then take on the following graphical form:

= 0 =
1
2

∑
= 0 = = 0(23)

Note that any graph with two or more loops at the special vertex is set to zero by these relations.
The differential on G̃K2

g,n is the sum of two parts

δ = δsplit + δres

where δres encodes the resolution of H2(M0,n) from Proposition 3.4. Recall that the resolution is given by

Ei j 7→ ψi + ψ j −
∑

i∈S , j∈S c

δ0,S .

The differential δres applies this formula to the Ei j-decoration at the special vertex, with a conventional sign (−1)e,
where e is the number of structural edges. Graphically, this may be depicted as

(24) δres : 7→ (−1)e

 + −
∑ 

If the special vertex is decorated by δ0,A or ψi, then δres vanishes. Note that δres is homogeneous of degree 1.
The part δsplit splits undecorated vertices as usual. When the special vertex is split this is done as follows:
• If decorated by ψi the special vertex is again split as in (12).
• If decorated by δ0,S the special vertex is split as in (13).
• If decorated by Ei j some subset S of half-edges is split off that does not contain both i and j (but might

contain neither of them), as shown:

(25) δsplit : 7→
∑

+
∑

+
∑

Proposition 5.2. The differential on G̃K2
g,n is well-defined and squares to zero.

Proof. First, we need to show that this differential is well-defined, i.e., that it respects the loop relations (23). That
it respects the first and third relations is relatively straightforward. To see that it respects the second loop relation,
note that the differential applied to the left-hand side is

(26)
∑

+
∑

.
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The differential applied to the right-hand side produces

(27) −
∑

+
∑

+
∑

.

The first term in (26) agrees with that in (27), with the sign due to interchanging the two edges. The second term
agrees with the second term in (27) due to the relations. Each summand in the third term appears twice, with
opposite sign, by applying δsplit to two different terms in the sum appearing in (23). The verification that the
differential respects the fourth loop relation is similar.

Now we must check that the differential squares to zero. Suppose Γ is a generator for G̃K2
g,n. We must show:

(δsplit + δres)
2
Γ = δ2

splitΓ + (δsplitδres + δresδsplit)Γ = 0.

The argument for cancellation of terms that arise from splitting non-special vertices is identical to the proof that
differential squares to zero on the ordinary commutative graph complex. The same argument adapts easily to cases
where the special vertex is decorated with ψi or δ0,A, because in these cases δres = 0.

Suppose the special vertex is decorated by Ei j. The standard argument shows that δ2
splitΓ = 0. It remains to

show (δsplitδres + δresδsplit)Γ = 0. Applying δres to the right-hand side of (25) gives (−1)e+1 times

(28)

∑
+

∑
−

∑
+

∑
+

∑

−
∑

+
∑

+
∑

−
∑

−
∑

.

We need to compare this to δsplit applied to the right-hand side of (24). The fourth and seventh terms together
match δsplit applied to the second term of (24), with opposite sign. Likewise, the second and the eighth term of
(28) match δsplit applied to the first term of (24). The cancellation of the remaining terms is similar. �

Proposition 5.3. There is a quasi-isomorphism

G̃K2
g,n → GK2

g,n

that sets Ei j to zero and imposes the relation ψi + ψ j −
∑

i∈S , j∈S c

δ0,S .

Proof. We first verify that this projection is a well-defined map of complexes. It clearly respects the differential
on all generators where the special vertex is decorated by ψ or δ0,A. Consider a generator Γ ∈ G̃K2

g,n whose
special vertex is decorated by Ei j. Then δsplitΓ also has an Ei j-decorated special vertex and is hence sent to zero.
Furthermore δresΓ is sent to zero since its special vertex is just decorated by the relation between ψ- and δ-classes.

To see that this projection is a quasi-isomorphism, we filter both sides by the number of vertices and consider
the associated spectral sequences. We claim that the map G̃K2

g,n → GK2
g,n induces a quasi-isomorphism already

on the associated graded complex. Proceeding as in Section 4.3 one can see it therefore suffices to consider
the complex associated to the special vertex. The differential on the associated graded of GK2

g,n is zero, and the
differential on the associated graded of G̃K2

g,n does not add any edges. We can therefore consider separate cases
according to whether or not there is a loop at the special vertex.

If there is no loop, then the loop relations listed above do not come into play, and the statement boils down to
Proposition 3.5, which says that 〈Ei j〉1≤i< j≤k → 〈ψi〉1≤i≤k ⊕ 〈δ0,S 〉 is a resolution of H2(M0,k).

It remains to consider the case where there is a loop at the special vertex. Let t, t′ denote the last two marked
points onM0,k+2. We must show that the complex

(29) 〈Ei j, 1 ≤ i < j ≤ n〉 → 〈δ0,A∪{t}, A ⊂ {1, . . . , k}〉 → H2(M0,k+2)S2
/ ∼

is exact, where ∼ is the quotient by the loop relations δ0,A = 0 for A ⊂ {1, . . . , k}. To see this, we begin by taking
the S2-coinvariants of the resolution of H2(M0,k+2) from Proposition 3.5. Then the S2-coinvariant space of the
first term

⊕
QEi j has a basis consisting of

Ei j, 1 ≤ i < j ≤ k; Eit, 1 ≤ i ≤ k; Ett′ .
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Similarly, the S2-coinvariant space of the second term (
⊕

Qψi) ⊕ (
⊕

Qδ0,A) has a basis consisting of

ψi, 1 ≤ i ≤ k; ψt; δ0,A, A ⊂ {1, . . . , k}, |S | ≥ 2; δ0,A∪{t}, A ⊂ {1, . . . , k}, |A| ≥ 1, |Ac
| ≥ 1.

By Lemma 4.3, the subspace spanned by the basis elements δ0,A, A ⊂ {1, . . . , k}, |A| ≥ 2 maps isomorphically
onto its image in H2(M0,k+2)S2

, which is precisely the span of the loop relations. We can then use Eit to eliminate
ψi and Ett′ to eliminate ψt and see that (29) is exact, as required. �

5.3. Completing the zig-zag. We now complete the zig-zag from GK2
g,n to Xg,n by producing a quasi-isomorphism

Φ : G̃Kg,n
∼
−→ Xg,n.

Let Γ be a graph in G̃Kg,n with e structural edges. Say that the half-edges incident to external vertices are legs.
• If the special vertex of Γ is decorated by δ0,A we define Φ(Γ) = 0.
• If the special vertex of Γ is decorated by Ei j, then we let Φ(Γ) be the marked graph obtained by deleting the

special vertex, making the half-edges incident to the special vertex into legs, and decorating the external
vertices on i, j by ω and the other newly created external vertices by ε.

(30)

i j
Φ
−→

i j

ω ω

ε ε
ε

Note that the structural edges in Γ and in Φ(Γ) are in 1-1-correspondence; we retain their ordering.
• If the special vertex of Γ is decorated by ψi then we define Φ(Γ) by cutting the edge and pairing each of

its half edges with an ω-decorated leg, with an overall sign of (−1)e.

(31)
Φ
−→ (−1)e

ω

ω

Note in particular that if the half-edge opposite i is a leg, say incident to an external vertex with some
marking j, then Φ(Γ) will have a connected component that is an (ω, j) edge:

(32) j
Φ
−→ (−1)e j

ω

ω

In this case, Φ(Γ) has one more edge than Γ. We may assume, without loss of generality, that the decorated
edge (of which i is one half-edge) is the first in the ordering of edges. Then we order the structural edges
in Φ(Γ) such that the edge containing i is first, the edge containing the opposite half-edge of i is second,
and the relative order of the remaining edges is unchanged.

Lemma 5.4. The map Φ is a map of complexes.

Proof. It is clear that the map Φ respects the degrees and genera and is hence a well-defined map of graded vector
spaces. We need to verify that it commutes with the differentials,

δΦ(Γ) = Φ(δΓ).

Recall that the differential on G̃Kg,n is δ = δsplit + δres, while the differential on Xg,n is δ = δsplit + δ join. We
furthermore decompose the operation δsplit on G̃Kg,n into two terms,

δsplit = δs
split + δo

split,

with δs
split splitting the special vertex and δo

split the other vertices. Similarly, we write δsplitΦ(Γ) = (δs
split +δ

o
split)Φ(Γ)

in Xg,n with δs
split splitting the vertex that is the image of the special vertex, when the decoration on Γ is ψi, and

δo
split splitting the other vertices. (When the decoration on Γ is Ei j, we set δs

splitΦ(Γ) = 0.) Since away from the
special vertex the graph is not altered by Φ we have

Φ(δo
splitΓ) = δo

splitΦ(Γ).

Keep in mind that if Γ has a ψ j-decoration then Φ(Γ) has one more structural edge than Γ, producing an additional
− sign upon applying δo

split. However, due to the sign (−1)e in the definition of Φ the signs on both sides of the
above equation still agree. Next, we then need to check that

(δs
split + δ join)Φ(Γ) = Φ((δs

split + δres)Γ).

We consider cases according to the decoration at the special vertex of Γ.
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First, suppose that the special vertex of Γ is decorated by δ0,A. Then we have Φ(Γ) = 0 and δresΓ = 0, so we
need to check that

Φ(δs
splitΓ) = 0.

The only terms of δs
splitΓ that do not themselves carry a δ-decoration (and are hence sent to zero by Φ) are those

appearing in the last line of (13). Both of these terms are mapped to the same graph via Φ as depicted in (31),
with opposite orderings of the two ω-edges, and hence the matching terms cancel.

Next, suppose that the special vertex of Γ is decorated by ψi. We have δresΓ = 0, and, since Φ(Γ) has no ε-legs,
δ joinΦ(Γ) = 0. We need to check that

δs
splitΦ(Γ) = Φ(δs

splitΓ).
Applying the definitions shows that both sides have the same form∑

ωω .

Finally, suppose the special vertex of Γ is decorated by Ei j. The differential δres sends Γ to a (−1)e-times a
graph whose special vertex is decorated by ψi + ψ j −

∑
i∈S , j∈S c δ0,S . The δ0,S -terms can be dropped upon applying

Φ. The two ψ-terms produce graphs

(33)
ω

ω
i

j

+

ω

ω

j

i

,

where one has to remember that in each case the ω-edge adjacent to the depicted vertex is the first in the ordering.
Furthermore, note that the two factors (−1)e from the definitions of Φ and δres cancel. Next consider the terms
δs

splitΓ, which are given by replacing the special vertex by two vertices in one of three ways as follows:

∑ i j

+
∑ i

j

+
∑ i

j

Applying Φ we obtain terms

(34)
∑ i j

ω ω

ε ε +
∑

i
j

ω ω

ε +
∑

j
i

ωω

ε .

Note that in all terms there is at least one ε-leg. Next we look at Φ(Γ). In this case δs
splitΦ(Γ) = 0, since Φ removes

the special vertex. Applying δ join to the right-hand side of (30) produces several graphs, by fusing a subset of
ε-legs together to produce a new ε-leg, or fusing a subset of the ε-legs to one ω-leg. The two cases in which all the
ε-hairs are fused to one ω-leg precisely contribute (33). The cases where one or more ε-legs remain contribute the
terms (34). To confirm the signs, note that in all cases considered the newly added edge is the first in the ordering.

Hence we conclude that δ joinΦ(Γ) = Φ(δs
splitΓ + δresΓ), as required. �

Proposition 5.5. The map Φ is a surjective quasi-isomorphism with kernel graphs in which the special vertex is
decorated by some δ0,S , and by symmetric combinations of graphs with ψ-decorations on either half of some edge:

· · · · · ·· · · · · ·

+

· · · · · ·· · · · · ·

.

Proof. We begin by showing that Φ is surjective. Let Γ be a graph in Xg,n. We will construct a graph Γ̃ ∈ G̃Kg,n

such that Φ(̃Γ) = Γ. First, consider the case where Γ has at least one ε-decorated external vertex. Then we
build Γ̃ by joining the ε- and ω-decorated external vertices to a new internal vertex, decorated by Ei j, with i, j
corresponding to the legs at the two ω decorations:

· · · · · ·

ω ωεε

7→ · · · · · · .
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This cannot produce a “forbidden graph” with decoration Eit or Ett′ , where t and t′ are the half-edges of a loop,
because, in defining Xg,n, we excluded graphs with (ε, ω)- and (ω,ω)-edges. By construction, Φ(̃Γ) = Γ.

It remains to consider the case where Γ has no ε-decorated external vertices. Then we build Γ̃ by deleting the
two ω-decorated external vertices and their incident legs, joining the two unpaired half-edges into a new edge, and
adding a ψ-decoration on one of the two, as shown.

ω

· · ·

ω

· · ·

7→

· · · · · ·

or
ω

· · ·

jω 7→

· · ·

j

In either case, Φ(̃Γ) = Γ. Here we also use that at least one of the ω-legs is adjacent to an internal vertex. Indeed,
if this were not the case, then the graph would be either a single (ω,ω)-edge, or the union of an (ω, 1)-edge and an
(ω, 2)-edge. In either case, we would have 2g + n < 3, which we have excluded from consideration.

The map takes graphs with decoration δ0,S to zero, and the orientation data ensures that symmetric combinations
of ψ-decorations on paired half-edges also map to zero. Otherwise, distinct generators for G̃Kg,n map to distinct
generators of Xg,n, so nothing else is in the kernel.

It remains to check that J := ker Φ is acyclic. Decompose J = Jδ⊕ Jψ, where Jδ and Jψ are linear combinations
of graphs with δ- or ψ-decorations, respectively. The differential δsplit on J then splits into the following pieces

Jδ Jψ
u

.

Note that u is contributed by the last terms in (13), and takes the form

u :

· · · · · ·· · · · · ·

7→ −

· · · · · ·· · · · · ·

−

· · · · · ·· · · · · ·

In these graphical depictions, u replaces a marked edge with a symmetric combination of ψ-decorations on its
paired half-edges. This map gives a bijection between bases for Jδ and for Jψ, and is hence an isomorphism. It
then follows by Lemma 2.1 that J is acyclic, as required. �

Combining Propositions 5.3 and 5.5 gives the desired zig-zag of quasi-isomorphisms GKg,n ← G̃Kg,n
Φ
−→ Xg,n.

6. A quasi-isomorphic subcomplex

Although we do not fully understand the cohomology of Xg,n, we can describe many nontrivial classes. We do
so by identifying a quasi-isomorphic subcomplex X?

g,n with an involution that simplifies the differential. In this
simplified subcomplex, we find direct summands whose cohomology we can either compute or bound from below.

6.1. A quasi-isomorphic subcomplex. Recall that every connected component of a generator Γ for Xg,n contains
an external vertex labeled by ε or ω.

Definition 6.1. A connected component that contains an ω-decoration is an ω-component. All other connected
components are ε-components.

Definition 6.2. Let X?
g,n ⊂ Xg,n be the subspace spanned by generators in which the union of all ε-components

contains no internal vertices and at most one decoration from {1, . . . , n}.

In other words, if Γ is a generator for X?
g,n, then the union of its ε-components is either empty or consists of an

(ε, ε)-edge, an (ε, j)-edge, or one of each. Here are two examples:

1

ε

ω

ω 2 , 1

ω

ω

ε

ε ε

2
.

Lemma 6.3. The graded subspace X?
g,n ⊂ Xg,n is a subcomplex.

Proof. Let Γ be a generator for X?
g,n. The differential is a sum of two parts δsplit +δ join. The part δsplit acts separately

on the internal vertices of each connected component. It cannot create internal vertices in a component that does
not already have any, and it does change the decorations. So δsplitΓ is a linear combination of generators for X?

g,n.
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Now consider the terms that appear in δ joinΓ, which are obtained by joining external vertices of one or several
components. If at least one of the joined components is an ω-component, then the resulting graph is a generator
for X?

g,n. However, if all components that are joined are ε-components, then the resulting graph has either a loop
or two ε-labeled external vertices adjacent to the same internal vertex, and hence is zero in Xg,n. �

Proposition 6.4. The inclusion X?
g,n ⊂ Xg,n is a quasi-isomorphism.

Proof. Filter the complexes X?
g,n and Xg,n by the number of internal vertices in ω-components. We claim that the

inclusion induces a quasi-isomorphism between the associated graded complexes with respect to this filtration.
The associated graded complexes have differential δε,εjoin +δεsplit, with δε,εjoin the part of δεjoin (as defined in the proof

of Lemma 6.3) that joins ε-legs of ε-components only and δεsplit the part of δsplit that splits vertices in ε-components
only. Note that the differential on X?

g,n is 0. Furthermore, we have the direct sum decomposition

(Xg,n, δ
ε,ε
join + δεsplit) = X?

g,n ⊕ (W, δε,εjoin + δεsplit),

with W ⊂ Xg,n spanned by graphs that are not generators for X?
g,n. Generators of W are graphs in which the

ε-components contain an internal vertex or more than one leg labelled 1, . . . , n. We further decompose

W = W ′ ⊕W ′′,

where W ′ is spanned by graphs that do not contain an (ε, ε)-edge, and W ′′ is spanned by those that do. Note that
W ′′ is isomorphic (up to degree shift) to the W ′ summand that arises in Xg−1,n, so it suffices to show that W ′ is
acyclic. To this end consider the decomposition of graded vector spaces

W ′ = W ′1 ⊕ W ′≥2

δε,εjoin

,

with W ′1 (resp. W ′≥2) spanned by graphs that have 1 (resp. ≥ 2) ε-decorations in ε-components. Using again
Lemma 2.1 it suffices to check that the map (part of the differential δε,εjoin)

W ′≥2 → W ′1
is an isomorphism. Combinatorially, this map joins all ε-decorated external vertices in ε-components, attaching a
new internal vertex together with an ε-leg:

· · ·

1 · · ·

ε · · · ε

· · ·
ω

ω

· · · n

ε · · · ε

7→ · · ·

1 · · ·

ε

· · ·
ω

ω

· · · n

ε · · · ε

.

This is map is injective; it has a one-sided inverse obtained by removing both new vertices and the edge between
them, and adding an external vertex labeled ε to each of the dangling edges. This map is also surjective, since the
unique ε-decoration in an ε-component of a graph in W ′1 must be adjacent to an internal vertex. (If it was adjacent
to an j-decorated leg the graph would not be in W, and (ε, ω)-edges are forbidden in Xg,n.) �

We note that in the above proof the presence of the part of the differential δωjoin played no role. The same proof
also shows the following auxiliary result, which we will use in the proof of Proposition 7.2.

Lemma 6.5. The inclusion (X?
g , δ

ε
join + δsplit)→ (Xg, δ

ε
join + δsplit) is a quasi-isomorphism of dg vector spaces.

6.2. A simplifying involution. We now construct an involution of X?
g,n that simplifies the differential. This invo-

lution is given by reattaching subsets of the ε-decorated external vertices in all possible ways and motivates the
introduction of the subcomplex X?

g,n; see Remark 6.6.
Let Γ be a generator for X?

g,n. We write RS (Γ) for the sum of all graphs obtained by reattaching a subset S of
the ε-decorated external vertices of Γ to internal vertices, in all possible ways without forming loop edges:

Γ

S

7→ RS (Γ) =
∑ Γ

.

The structural edges of each graph in RS (Γ) are in bijection with those of Γ, and we keep the given ordering.
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Remark 6.6. The restriction on the union of all ε-components of graphs in X?
g,n (Definition 6.2) guarantees that the

reattachment operation does not produce connected components without any ε- or ω-decoration. For this reason,
RS is well-defined on X?

g,n. It is not well-defined on Xg,n.

We now consider the graded endomorphism Ξ of X?
g,n, given by

Ξ(Γ) = (−1)#ε
∑

S

RS (Γ),

where the sum runs over all subsets of the set of ε-decorations, and #ε is the number of ε-decorations in Γ.

Lemma 6.7. The map Ξ is an involution, i.e., it is invertible and Ξ
−1

= Ξ.

Proof. Any graph appearing in Ξ ◦ Ξ (Γ) is obtained by reattaching some number k of the ε-decorated internal
vertices to internal vertices. Each such graph appears 2k different ways, with signs that cancel unless k = 0. �

For Γ ∈ X?
g,n a graph, S a non-empty subset of its ε-decorated external vertices and j = 1, . . . , n, let R j

S (Γ) be the
graph obtained by reattaching the external vertices in S to the midpoint of the edge that contains the j decoration.

R j
S :

Γ

j
S

7→
Γ

j

.

This operation creates precisely one new structural edge, which we take to be first in the ordering, preserving the
relative ordering of the remaining edges. Note that the operation also makes sense if applied not to a numbered
leg, but an ω-labeled leg, and we shall denote the sum of such operations applied to the two ω-legs by Rω

S .
We also define

δ̃
j
join(Γ) =

∑
|S |≥1

| S | · R j
S (Γ),

where the sum runs over all non-empty subsets of the set of ε-legs of Γ. We then have the following result:

Proposition 6.8. Let

δ̃ := δsplit + δεjoin −

n∑
j=1

δ̃
j
join

Then δ̃ = Ξ ◦ δ ◦ Ξ. In particular, Ξ defines an isomorphism of dg vector spaces

Ξ : (X?
g,n, δ̃)→ (X?

g,n, δ).

Proof. The proof is similar to that of [30, Lemma 3.6]; the argument there goes through essentially unchanged,
even though the complexes X?

g,n we consider here are different. We give only a condensed sketch of the proof.
We introduce the following notation. For S a subset of the ε-legs in some graph Γ ∈ X?

g,n we denote by Rε
S (Γ)

the graph obtained by reattaching the legs in S to a new ε-decorated vertex.

Rε
S :

Γ

S

7→
Γ

ε

.

Furthermore, we denote by R′S (Γ) the sum of graphs obtained from Rε
S (Γ) by attaching the newly formed ε-leg to

an internal vertex of Γ.

R′S :
Γ

S

7→
∑ Γ

.

Using the fact that Ξ
−1

= Ξ, one computes that

(Ξ ◦ δsplit ◦ Ξ)(Γ) = δsplit(Γ) +
∑
|S |≥2

|S | · Rε
S (Γ) +

∑
|S |≥2

(|S | − 1) · R′S (Γ) +
∑
|S |≥1

∑
j∈{1,...,n,ω}

R j
S (Γ),

Here S runs over subsets of the set of ε-legs. Similarly, one may compute

(Ξ ◦ δεjoin ◦ Ξ)(Γ) =
∑
|S |≥2

(1 − |S |) · Rε
S (Γ) +

∑
|S |≥2

(1 − |S |) · R′S (Γ).
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Together we find that

(Ξ ◦ (δsplit + δεjoin) ◦ Ξ)(Γ) = (δsplit + δεjoin + δωjoin)Γ +
∑
|S |≥1

∑
j∈{1,...,n}

R j
S (Γ)

= δ(Γ) +
∑
|S |≥1

∑
j∈{1,...,n}

R j
S (Γ).

Then one may finally compute that(
Ξ ◦

∑
|S |≥1

R j
S ◦ Ξ

)
(Γ) =

∑
|S |≥1

|S | · R j
S (Γ) = δ̃

j
join(Γ).

Putting the above computations together we find that

Ξ ◦ δ̃ ◦ Ξ = Ξ ◦
(
δsplit + δεjoin −

∑
j

δ̃
j
join

)
◦ Ξ = δ +

∑
j

δ
j
join −

∑
j

δ
j
join = δ,

which proves the proposition. �

7. The weight 2 compactly supported cohomology ofMg

We now focus on the special case where n = 0. Using the quasi-isomorphic subcomplex X?
g ⊂ Xg, with its

simplified differential δ̃, we shall see that the cohomology of Xg can be fully expressed through the cohomology
of the ordinary commutative graph complexes G(g′,n′) of section 4.4, swith n′ = 1, 2 and g′ = g, g − 1, g − 2.

When n = 0, the differential δ̃ in Proposition 6.8 further simplifies to δsplit + δεjoin. We define the subcomplex

(35) Hg ⊂ (X?
g , δsplit + δεjoin)

spanned by graphs with either no ε-decorations, or exactly two on an (ε, ε)-edge. Note that δεjoin vanishes on Hg.
We also introduce the space

G(•,n)
=

⊕
g

G(g,n),

that inherits an additional grading by the genus. We also define the exterior product

W• =

2∧
G(•,1)

This comes with a grading inherited from the genus grading; let Wg be the homogeneous part of genus g.

Lemma 7.1. The subspace Hg is a subcomplex with respect to δ̃ = δsplit + δεjoin, and (Hg, δ̃) is isomorphic to

Wg[−3] ⊕G(g−1,2)
as [−3] ⊕Wg−1[−4] ⊕G(g−2,2)

as [−4].

Here the subscript (−)as refers to taking the antisymmetric part under the S2-action permuting the labels 1, 2.

Proof. Graphs in Hg have exactly two ω-decorated legs, and every connected component has an ω- or ε-decorated
leg. There are four possibilities, with and without an (ε, ε)-edge, and with 1 or 2 ω-components:

Γ1 Γ2

ω ω

,

Γ

ω ω

,

Γ1 Γ2

ω ω

ε ε , or
Γ

ω ω

ε ε .

The graded vector space Hg decomposes into a direct sum of 4 subcomplexes accordingly; these subcomplexes
are identified with Wg[−3], G(g−1,2)

as [−3], Wg−1[−4], and G(g−2,2)
as [−4], respectively, since δεjoin vanishes on Hg. �

Proposition 7.2. The inclusion (35) is a quasi-isomorphism.

Proof. First note that one has a commutative diagram of morphisms of dg vector spaces

(Hg, δsplit) (X?
g , δsplit + δεjoin)

(Xg, δsplit + δεjoin)

(35)

∼ .

The vertical map is a quasi-isomorphism by Lemma 6.5. It hence suffices to show that the diagonal inclusion

(Hg, δsplit)→ (Xg, δsplit + δεjoin)
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is a quasi-isomorphism. Each complex splits, as in the proof of Proposition 6.4, into one piece generated by graphs
that do not have any (ε, ε)-edge and a complementary piece spanned by those that do. So, we write H′g and X′g for
the subcomplexes of Hg and Xg, respectively, spanned by graphs that do not have any (ε, ε)-edge. Similarly, we
write H′′g and X′′g for the subcomplexes spanned by graphs with an (ε, ε)-edge. We then have

Hg � H′g ⊕ H′′g Xg � X′g ⊕ X′′g .

Note that H′′g � H′g−1[−1] and X′′g � X′g−1[−1], so it suffices to show that H′g ⊂ X′g is a quasi-isomorphism.
We furthermore have a direct sum decomposition of complexes

(X′g, δsplit + δεjoin) � (H′g, δsplit) ⊕ (U, δsplit + δεjoin),

where U ⊂ X′g is the subcomplex spanned by graphs with at least one ε-leg. It remains to show that U is acyclic.
We proceed as in Proposition 6.4 and decompose

U = U1 ⊕ U≥2

D

,

with the graded subspace U1 ⊂ U (resp. U≥2 ⊂ U) being spanned by graphs with exactly 1 (respectively ≥ 2)
ε-legs. The drawn arrows indicate various parts of the differential. In particular, the part

D : U≥2 → U1

arising from δεjoin joins all ε-legs into one.

D : · · ·ω ω

ε · · · ε

7→ · · ·ω ω

ε

.

This part is injective, since the operation can be undone by removing the two newly added vertices, and adding
back the ε-decorations on legs. By part (3) of Lemma 2.1 we hence conclude that the projection

U → coker D

is a quasi-isomorphism. The cokernel of D is spanned by graphs in U1 such that the unique ε-leg is connected to
a vertex v that is connected to an ω-leg. (Recall that we forbade (ε, ω)-edges in the definition of Xg,n.)

· · ·

ω

ω

ε

v

However, we can continue in the same fashion and filter the cokernel of D as

coker(D) = U′1 ⊕ U′2

D′

,

with U′1 (resp. U′2) being spanned by graphs for which the vertex v has valence 3 (resp. ≥ 4). The part of the
differential

D′ : U′2 → U′1
is injective. Hence, applying part (3) of Lemma 2.1 again, we find that the projection

coker(D)→ coker(D′)

is a quasi-isomorphism. The cokernel of D′ is spanned by graphs in U′1 such that the unique vertex w neighboring
v has an ω-hair attached.

· · ·

ω ω

ε

v

w
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Repeating the argument once more we split

coker(D′) = U′′1 ⊕ U′′2

D′′

,

with U′′1 (resp. U′′2 ) being spanned by graphs for which the vertex w has valency 3 (resp. ≥ 4). Now the piece of
the differential

D′′ : U′′2 → U′′1

is a bijection, since there are only two ω-legs. Hence by Lemma 2.1 we have that coker(D′) is acyclic, and hence
so are coker(D) and U. This proves the proposition. �

Proof of Theorem 1.2. By Propositions 6.4, 6.8, and 7.2, the composition

Hg ↪→ (X?
g , δsplit + δεjoin)

Φ
−→ (X?

g , δsplit + δ join) ↪→ Xg

is a quasi-isomorphism. The cohomology of the right-hand side is gr2 H•c (Mg). The cohomology of Hg is ex-
pressed via Lemma 7.1 through the cohomology of the complexes G(g′,n′) that compute gr0 H•c (Mg′,n′ ) by Theo-
rem 4.4, and Theorem 1.2 follows. �

8. Direct summands with marked points

Let Γ be a generator for X?
g,n, and let us now assume n ≥ 1. Recall that each such generator has some number

of ε-decorations and precisely two ω-decorations. The remaining external vertices are decorated by a bijection to
{1, . . . , n}. Each component has at least one decoration from {ε, ω}.

Definition 8.1. A connected component of Γ is isolated if it contains no decorations from {1, . . . , n, ε}.

In other words, a component is isolated if all of its external vertices are decorated withω. Components that do have
a decoration from {1, . . . , n, ε} are non-isolated. We decompose X?

g,n according to the number of ω decorations that
are contained non-isolated components.

Definition 8.2. Let Hg,n, Jg,n, and Kg,n be the graded subspaces of X?
g,n spanned by graphs with 0, 1, or 2 of their

ω-decorations contained in non-isolated components, respectively.

No term of the differential δ̃ can make an isolated connected component into a non-isolated one or vice versa, so
we have a direct sum decomposition of dg vector spaces

(36) (X?
g,n, δ̃) = Hg,n ⊕ Jg,n ⊕ Kg,n.

We will study the cohomology of the summands separately. Unfortunately, we have nothing to say about H(Kg,n).

8.1. The cohomology of Hg,n. The summand Hg,n contributes to the cohomology of X?
g,n only when n = 1, and

that contribution is well-understood.

Lemma 8.3. We have Hg,1 � Hg and Hg,n = 0 for n ≥ 2.

Proof. By the definition of X?
g,n, the non-isolated components that do not contain ω-decorations consist of either

an (ε, ε)-edge, an (ε, j)-edge, or one of each. If n ≥ 2, then none of the generators for X?
g,n are in Hg,n. Moreover,

the generators for Hg,1 are precisely the graphs of the form

Γ ε 1 ,

where Γ is a (possibly disconnected) generator for Hg, and the lemma follows. �

Combining Lemmas 7.1 and 8.3, we can express the cohomology of Hg,n through the graph cohomology H(G(g′,n′)),
or equivalently through W0Hc(Mg′,n′ ).
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8.2. The graphs in Jg,n. Each generator for Jg,n has exactly one isolated component, and can be drawn as:

· · ·ω

1 · · · n

ε · · · ε

· · ·

ω

.

The differential acts by δsplit on the isolated component, so Jg,n decomposes as a direct sum of subcomplexes
determined by the genus of the isolated component. The subcomplex where the non-isolated part has genus h can
be written as a tensor product J?h,n ⊗G(h′,1)[−1], where h + h′ = g and J?h,n is a graph complex perfectly analogous
to X?

h,n, except that each generator has exactly one ω decoration instead of two, and this ω-decoration must be part
of a non-isolated component.1

We then have a decomposition

(37) Jg,n =
⊕

h+h′=g

J?h,n ⊗G(h′,1)[−1].

The degree shift on the factor G(h′,1) is due to the additional structural edge that contains the ω decoration. The
degree of a generator for J?h,n is the number of structural edges plus one, just as for Xg′,n. The cohomology of J?h,n
is difficult to evaluate when h is large; we leave its study for h ≥ 2 to future work. Theorems 1.5 and 1.6 use only
the cohomology of J?0,n and J?1,n, which we now describe.

8.3. The cohomology of J?0,n. The cohomology of J?0,n is closely related to W0H•c (M0,n) and W0H•c (M0,n+1), as
we now explain. Let V1 ⊂ J∗0,n be the subcomplex generated by graphs with no ε decorations. Each generator
for V1 is a rooted tree with n leaves labeled {1, . . . , n} and a root labeled ω. Let V0 be the complementary graded
subspace generated by graphs with an ε-decoration. Since the genus is zero, there are no (ε, ε)-edges, and no
connected component can have both an ε-decoration and also an ω-decoration. So each generator for V0 has two
connected components, an (ε, j)-edge and an ω-rooted tree with (n − 1) leaves labeled {1, . . . , ̂, . . . n}. As an
immediate consequence, we see that

J?0,0 = 0 and J?0,1 � Q[−1], spanned by the graph 1 ω .

We now compute the cohomology of J?0,n for n ≥ 2.

Proposition 8.4. For n ≥ 2, H(J?0,n, δ) has dimension (n − 2)! and is concentrated in degree n − 1.

Proof. The differential on J?0,n splits into pieces as

V0 V1
δ join

,

where the internal arrows on V0 and V1 are δsplit. Note that V1 � G(0,n+1)[−2], and (V0, δsplit) �
⊕n

j=1 G(0,n)[−2].
Therefore H(V1) � W0Hc(M0,n+1)[−2] has dimension (n− 1)!, supported in degree n, and H(V0, δsplit) has dimen-
sion n(n − 2)!, supported in degree n − 1. By Lemma 2.1, it remains to show that δ join : H(V0, δsplit) → H(V1) is
surjective. For 1 ≤ j ≤ n, let D j ⊂ M0,n+1 be the locally closed divisor parametrizing 1-nodal curves where j and
ω collide. Then D j � M0,n, the union M0,n+1 t

(⊔
j D j

)
is open in M0,n+1, and

⊔
j D j is closed in this union.

Then δ join is naturally identified with the excision coboundary map

δ :
⊕

j

W0H•c (D j)→ W0H•+1
c (M0,n+1).

We must show that δ is surjective. We will give a short algebraic proof of this surjectivity.
To this end, it will be convenient to work with the Sn-modules

J̃?0,n := J?0,n ⊗ sgnn .

Tensoring with sgnn can be nicely incorporated in the sign conventions on graph complexes; we take generators
for J̃?0,n to be graphs with a total ordering of all edges (not just the structural edges), and impose the relation that
permuting the edges induces multiplication by the sign of the permutation. Decompose J̃?0,n � Ṽ0 ⊕ Ṽ1, as above.

1The latter condition is automatically satisfied if n ≥ 2.
28



Then we can identify the cohomology groups with subspaces of free Lie algebras

H(Ṽ0, δ̃split) =

n⊕
j=1

Lie(x1, . . . , x̂ j, . . . , xn)[−n] H(Ṽ1) = Lie(x1, . . . , xn)[−n − 1]

with Lie(x1, . . . , xn) the part of the free Lie algebra with generators x1, . . . , xn for which each generator appears
exactly once. Here the identification between (trivalent) trees and Lie words is such that the root of our tree is
taken to be ω, every vertex is replaced by one Lie bracket, and the j-labeled leaf is replaced by x j, e.g.

ω

2
1 3

→ [x2, [x1, x3]].

The differential is then given by (F1, . . . , Fn)→
∑n

j=1[x j, F j], which is surjective, as required. �

Example 8.5. In particular, Proposition 8.4 states that H(J?0,2) is 1-dimensional, concentrated in degree 1. Tracing
the proof, one can see that a representative is given by the cocycle

1ω

2ε
−

2ω

1ε
.

8.4. The cohomology of J?1,n. Each generator for J?1,n has one of six combinatorial types: with or without an
(ε, j)-edge, and with 0, 1, or 2 other ε-decorations. The following diagram depicts one generator of each type (for
varying values of n). We denote the corresponding graded subspaces of J?1,n by Vi,k, as shown. The notation is
chosen so that a generator for Vi,k has 1 − k edges of type (ε, j) and 2 − i ε-decorations on other componentss.

ω

1 3
2

ε ε

V0,1

ω

1 ε

2

V1,1

ω

1

2
V2,1

ω

1 3
2

ε 4

ε ε

V0,0

ω

1 ε

2
ε 3

V1,0

ω

1

2

ε 3

V2,0

Let us filter J∗1,n by the number of ε-decorations and consider the associated spectral sequence. On the E0-page
(the associated graded), the differential is δsplit, which preserves each of the six combinatorial types. So E1 is
the direct sum of the homologies of the associated graph complexes, with respect to δsplit. Each term then has an
evident interpretation in terms of weight zero cohomology of moduli spaces; for instance

H(V1,0) �
n⊕

j=1

W0Hc(M0,n+1)[−3] and H(V2,1) � W0Hc(M1,n+1)[−2].

Note that the cohomology of Vi,k is supported in degree n + i + k.
The differential on E1 is the part of δ join that reduces the number of ε-decorations by exactly 1. This further de-

composes as two parts, one that eliminates an (ε, j)-edge, and one that decreases the number of other ε-decorations
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by 1. Therefore, the E1-page is the total complex of a diagram of the following form:

(38)

W0Hc(M0,n+1)[−3] W0HcM0,n+2[−3] W0HcM1,n+1[−2]

⊕n
j=1 W0Hc(M0,n)[−3]

⊕n
j=1 W0Hc(M0,n+1)[−3]

⊕n
j=1 W0HcM1,n[−2].

The arrows are once again coboundary maps in excision sequences arising from stratifications of moduli spaces.
As in our computation of H(J?0,n), we find it helpful to tensor once again with sgnn and then give an algebraic

interpretation for the resulting diagram. Let J̃?1,n := J?1,n ⊗ sgnn, with differential δ̃ = δ̃split + δ̃ join. Similarly, let
Ṽi,k := Vi,k ⊗ sgnn. Recall that tensoring with sgnn amounts to equipping each generator with a total ordering of all
of its edges, not just the structural edges, and imposing the usual relation that reordering the edges is multiplication
by the sign of the induced permutation. We then have

H(Ṽ0,1, δ̃split) � Lie(x1, . . . , xn)[−n − 1]

H(Ṽ1,1, δ̃split) � Assoc(x1, . . . , xn)[−n − 2](39)

H(Ṽ2,1, δ̃split) � Assoc(x1, . . . , xn)S2
[−n − 3].

Here, Assoc(x1, . . . , xn) is the subspace of the free associative algebra spanned by words in which each variable
appears exactly once, and S2 acts by reversing each word (corresponding to the symmetry reversing the orientation
of a based loop). Here, under the identification (39), the associative word x1 · · · xn corresponds to the graph

ω · · · ε

1 2 n

.

Similarly, under the identification (39) the associative word x1 · · · xn corresponds to the graph

ω

· · ·

1 2 n

.

The cohomology groups in the second row of (38) are similar, but one must take a direct sum over the decorations
j that appears in an (ε, j)-edge, and omit the variable x j, i.e., H(Ṽ0,0, δsplit) �

⊕n
j=1 Lie(x1, . . . , x̂ j, . . . , xn)[−n],

and so on.
With these identifications, the E1-page of our spectral sequence (see diagram (38)) hence becomes isomorphic

to the total complex of the following diagram, from which we omit degree shifts for notational brevity:2

(40)
Lie(x1, . . . , xn) Assoc(x1, . . . , xn) Assoc(x1, . . . , xn)S2

⊕n
j=1 Lie(x1, . . . , x̂ j, . . . , xn)

⊕n
j=1 Assoc(x1, . . . , x̂ j, . . . , xn)

⊕n
j=1 Assoc(x1, . . . , x̂ j, . . . , xn)S2

.

Each vertical arrow in (40) is defined by the formula

(41) (F1, . . . , Fn) 7→
n∑

j=1

[x j, F j].

The horizontal arrows are the canonical inclusions and projections, so that the cohomology of each row of (40)
is concentrated in the middle term. It is hence easy to check (for example, using Lemma 2.1 again) that the total
complex of (40) is quasi-isomorphic the two-term complex built from its row-wise cohomology. It hence remains
to study these middle cohomology groups of each row, and the induced map between them.

To this end let Pois(x1, . . . , xn) be the part of the free Poison algebra in x1, . . . , xn in which each x j appears
exactly once. Its elements are linear combinations of Poisson expressions of the form

F(x1, . . . , xn) = f1(x1, . . . , xn) ∧ · · · ∧ fk(x1, . . . , xn),

2The bottom left space is concentrated in degree n, and each arrow increases the degree by one.
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where the f j are Lie words, such that each variable x j appears exactly once. Let Poisk(x1, . . . , xn) be the subspace
spanned by expressions that are products of exactly k Lie words. There is a natural map

(42) Dk
n :

n⊕
j=1

Poisk(x1, . . . , x̂ j, . . . , xn)→ Poisk(x1, . . . , xn),

given again by the expression (41), i.e., (F1, . . . , Fn) 7→
∑n

j=1[x j, F j].. Let us define

Ak
n := ker Dk

n Bk
n := coker Dk

n,

and

An :=
⊕

j≥1

A2 j+1
n Bn :=

⊕
j≥1

B2 j+1
n .(43)

All objects here are naturally Sn-representations, by changing the variable indices and order of summands on the
left-hand side of (42). For example, we have A1 = B1 = A2 = B2 = A3 = 0, B3 and A4 are one-dimensional trivial
representations, and B4 is a three-dimensional irreducible representation of S4.

Proposition 8.6. We have J?1,0 = 0. For n ≥ 1 we have an isomorphism of graded Sn-modules

H(J?1,n, δ) � (An[−n − 1] ⊕ Bn[−n − 2]) ⊗ sgnn .

Proof. Equivalently, we must show that H(J̃?1,n, δ̃) � An[−n−1]⊕Bn[−n−2]. Applying the Poincaré-Birkhoff-Witt
isomorphism Pois(x1, . . . , xn) � Assoc(x1, . . . , xn) to (40), we get the diagram
(44)

Lie(x1, . . . , xn) Pois(x1, . . . , xn) Pois(x1, . . . , xn)S2

⊕n
j=1 Lie(x1, . . . , x̂ j, . . . , xn)

⊕n
j=1 Pois(x1, . . . , x̂ j, . . . , xn)

⊕n
j=1 Pois(x1, . . . , x̂ j, . . . , xn)S2

.

The vertical arrows in (44) are still given by (41). Furthermore, note that taking S2-coinvariants in the right-hand
column is the same is reducing to Poisson words containing evenly many Lie words, i.e.,

Pois(x1, . . . , xn)S2
�

⊕
j>0

Pois2 j(x1, . . . , xn).

Then the total complex of (44) is quasi-isomorphic to the complex of its row-wise cohomology groups

(45)

⊕
k≥1 Pois2k+1(x1, . . . , xn)

⊕n
j=1

⊕
k≥1 Pois2k+1(x1, . . . , x̂ j, . . . , xn).

∑
k Dk

n
.

The cohomology of (45) is the kernel plus the cokernel of the differential
∑

k Dk
n, i.e., the direct sum of An and Bn,

as defined above. The proposition follows, after suitably accounting for the required degree shifts. �

The above description of the spaces An and Bn is not very explicit. However, we can at least provide the
following lower bound on the dimensions.

Lemma 8.7. For n ≥ 3 we have
dim Bn ≥ (n − 2)!.

Proof. From the definition of Bn, we have

dim Bn ≥ dim

⊕
k≥1

Pois2k+1(x1, . . . , xn)

 − dim

 n⊕
j=1

⊕
k≥1

Pois2k+1(x1, . . . , x̂ j, . . . , xn)

 .
From the top row of (40), we have

dim

⊕
k≥1

Pois2k+1(x1, . . . , xn)

 = dim
(
Assoc(x1, . . . , xn)

)
− dim

(
Assoc(x1, . . . , xn)S2

)
− dim

(
Lie(x1, . . . , xn)

)
= n! −

n!
2
− (n − 1)!,
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which simplifies to 1
2 (n − 2)(n − 1)! Here, we have used that the action of S2 on associative words of length ≥ 2 is

faithful in computing dim
(
Assoc(x1, . . . , xn)S2

)
= n!

2 . By the same computation (valid for n ≥ 3) we also see that

dim

 n⊕
j=1

⊕
k≥1

Pois2k+1(x1, . . . , x̂ j, . . . , xn)

 =
1
2

n(n − 3)(n − 2)!

Hence
dim Bn ≥

1
2

((n − 2)(n − 1) − n(n − 3)) (n − 2)!,

which is (n − 2)!, as required. �

Proof of Theorems 1.5 and 1.6. By (36), we know that H(Hg,n)⊕H(Jg,n) injects into the cohomology of X?
g,n. The

latter is identified with the cohomology of Xg,n, and hence with gr2 Hc(Mg,n). The summand H(Hg,n) is evaluated
by Lemma 8.3. It contributes only for n = 0, 1. For n = 1 it produces an injection of the form (3). This injection
agrees with the pullback map π∗, as shown in Appendix A.1.

For the summand H(Jg,n) we can use that by the decomposition (37) we have an injection of

(46) H(J?0,n) ⊗ H(G(g,1))[−1] ⊕ H(J?1,n) ⊗ H(G(g−1,1))[−1]

into its cohomology. The second factors in the tensor products compute the weight zero cohomology ofMg,1 and
Mg−1,1 respectively. The first factors H(J?0,n) and H(J?1,n) are evaluated by Proposition 8.4 and 8.6 respectively.

For n = 1 one only has a contribution from H(J?0,1) � Q[−1], while H(J?1,1) = 0. This produces the injection
(2). To see that this injection indeed corresponds to multiplication with the ψ-class at the marking as is claimed in
Theorem 1.5 we have to trace the representatives. Say Γ ∈ G(g,1) is a cocycle representing a cohomology class in
W0Hk

c (Mg,1). Then the corresponding class in H(X?
g,1, δ̃) is represented by

Γ
′

=

Γ

ω

ω 1 ,

The action of the morphism Ξ on this cocycle is trivial since there are no ε-legs. Hence Γ
′ is also a cocycle in

(Xg,1, δ̃) and in Xg,1. But looking at (32) we see that the corresponding class in G̃K2
g,1 is obtained by decorating the

unique leg in Γ with a ψ-class, and this is the graphical representation of multiplying with a ψ-class at the marking
in H•c (Mg,1). This finishes the proof of Theorem 1.5.

To show Theorem 1.6 we consider again the injection from (46) into gr2 H•c (Mg,n), for n ≥ 2. Then Proposi-
tion 8.4 directly produces the first summand in the formula of Theorem 1.6, and Lemma 8.6 produces the second
summand. The assertion on the dimension of Bn is shown in Lemma 8.7. �

Remark 8.8. Proposition 8.6 yields an additional summand to gr2 H•c (Mg,n) corresponding to the subspace

(An[−n − 1] ⊗ sgnn) ⊂ H(J?1,n).

Lacking lower bounds on the dimension of An, we omitted this summand from the statement of Theorem 1.6.

8.4.1. Examples. Let us illustrate Theorem 1.6 with pictures of the simplest non-trivial cohomology classes that
it provides. First, consider the first summand in Theorem 1.6 for (g, n) = (3, 2). This summand has dimension 1,
concentrated in degree 8. A generating cocycle in (X?

3,2, δ̃) is given by the linear combination

ω

1ω

2ε

−

ω

2ω

1ε

Here the component with internal vertices is the generator of H6(G(3,1)) � W0H6
c (M3,1). The disjoint union of

two isolated edges corresponds to the generator of H(J?0,2) of Example 8.5. (Note that H(J?0,2) has dimension 1,
by Proposition 8.4.) The corresponding cocycle in (X?

3,2, δ) is obtained by applying the involution Ξ. Up to a
conventional overall sign that we omit, it is:

ω

1ω

2ε

+ 3 ·

ω

1ω

2
+

ω

1ω

2
− (1↔ 2) .
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Here “(1 ↔ 2)” stands for the same terms, with the labels 1 and 2 interchanged. The corresponding cocycle in
GK2

3,2 is then

3 ·

1

2
+

1

2
− (1↔ 2) .

By [28], we know that gr2 H•c (M3,2) � Q⊕ sgn2, supported in degree 8. Our computation shows that the summand
sgn2 is naturally identified with H(J?0,2) ⊗ H(G(3,1))[−1].

Next, we turn to the second summand in Theorem 1.6. The first nontrivial class is found in gr2 H12
c (M4,3).

It corresponds to the generator of B3 ⊗ H6(G(3,n))[−1], and is represented by the following degree 12 cocycle in
(X?

4,3, δ̃).

∑
σ∈S3

sgn(σ)

ω

σ(2)
ε

σ(1)

σ(3) ω

.

Finally, as explained in Remark 8.8, there is an additional summand of gr2 H•c (Mg,n) coming from An which is
not mentioned in Theorem 1.6. The first case where this summand is nontrivial arises when (g, n) = (4, 4). We
then have A4 � Q, and the graph cocycle in (X?

4,4, δ̃) corresponding to A4 ⊗ H6(G(3,1))[−1] has the form

∑
σ∈S4

sgn(σ)

ω

σ(2)
ε

σ(1)

σ(3)

σ(4) ε

ω

.

Appendix A. A direct map Xg,n → GK2
g,n

We have connected the complexes Xg,n and GK2
g,n by a zig-zag of quasi-isomorphisms. Here, we construct a

direct map F : Xg,n → GK2
g,n that fits into a homotopy commutative triangle with the maps in the zig-zag.

The map F is useful for giving geometrically meaningful representatives in GK2
g,n of the cohomology classes

we have constructed in Xg,n. By Theorem 3.3, for (g, n) , (1, 1), the projection GK2
g,n → GK2

g,n is a quasi-
isomorphism. Hence each cocycle in GK2

g,n lifts to a cocycle on GK2
g,n, uniquely up to exact terms. We now turn

to the construction of the map F, which we define initially as a map of graded vector spaces.
Let Γ be a generator for Xg,n with e structural edges. First, suppose Γ has no ε-decorations. At least one of

the ω-decorations must be adjacent to an internal vertex. If both ω-decorations are adjacent to internal vertices,
then F(γ) is obtained by joining the ω-legs to form a new edge, and decorating either half-edge by ψi, in the
antisymmetric linear combination:

(47)
ω ω

7→ (−1)e 1
2

(
−

)
To fix the sign, in this case and in all following cases, draw Γ so that the left-hand ω-edge precedes the right-hand
ω-edge in the ordering. Then the new edge comes first, the relative order of the remaining edges is preserved,
and the sign is as indicated. Otherwise, if there are no ε-decorations and only one ω-decoration is adjacent to an
internal vertex, then F is given simply by

j

ω ω
7→ −(−1)e

j

It remains to consider the cases where Γ has a positive number of ε-decorations. First, suppose both of the
ω-decorations are adjacent to internal vertices. By the orientation relations, we may assume these internal vertices
are distinct. Call them v and v′. Then let Γv be the graph formed by making v the special vertex, attaching all ε-
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and ω-decorated legs to that vertex and decorating it by δ0,S with S the union of the half-edges adjacent to the
ε-decorations and the half-edge towards v′. Then F(Γ) = 1

2 (Γv − Γv′ ). Pictorially:

(48)
ω ω
ε ε ε

7→ (−1)e 1
2

 −

 .
Next, if exactly one ω-decoration is adjacent to an internal vertex v, we define Γv as above and set F(γ) = 1

2 Γv:

j

ω ω
ε ε ε

7→ (−1)e 1
2

j
.

Finally, if neither ω-decoration is adjacent to an internal vertex then we set F(γ) = 0.

Proposition A.1. The map F : Xg,n → GK2
g,n is a map of complexes and fits into a homotopy commutative triangle

G̃Kg,n GK2
g,n

Xg,n

π

Φ
F

Proof. We begin by constructing a degree −1 map of graded vector spaces

h : G̃K2
g,n → GK2

g,n,

and show that it satisfies the required equation (49) to give a chain homotopy from F ◦Φ to π. We will then use h
to show that F is a map of complexes, and thereby prove the proposition.

Let Γ be a generator for G̃K2
g,n. We define h(Γ) by a local replacement at the special vertex as follows. Suppose

the special vertex of Γ is decorated by ψi, and i is not joined to a leg, so the half-edge is joined to a half-edge at an
internal vertex v. Then we let h(Γ) be the graph obtained by merging the special vertex with v, and decorating the
new special vertex by 1

2δ0,S , where S is the set of half-edges incident to v. Pictorially:

h : 7→
1
2

To fix the sign, we assume here that the ψ-decorated edge is first in the ordering. In all other cases we set h(Γ) = 0.
We claim that h satisfies the required equation to give a chain homotopy from F ◦ Φ to π, i.e.:

(49) F(Φ(Γ)) − π(Γ) = δh(Γ) + h(δ(Γ)).

We prove this case-by-case, according to the decoration on the special vertex of Γ.
First, suppose the decoration on the special vertex of the graph Γ ∈ G̃Kg,n is δ0,S . Then Φ(Γ) = 0 and h(Γ) = 0.

Furthermore, π(Γ) is the class in GK2
g,n represented by the decorated graph Γ. Note that δΓ consists of some terms

with δ0,T -decorations, plus terms with ψ-decoration, and only the latter contribute upon applying h. Furthermore,
they contribute exactly Γ. Pictorially:

h
(
δ

)
= h

(
− − + (· · · )

)
= −2

1
2

,

with (· · · ) representing terms killed by h(−).
Next, suppose that the special vertex of Γ is decorated by ψi, with i a half-edge incident to the special vertex.

Then, π(Γ) is once again the class in GK2
g,n represented by the decorated graph Γ. If the half-edge i connects to a

leg, then F(Φ(Γ)) = Γ and h(Γ) = h(δΓ) = 0, so (49) holds.
If the half-edge i points towards an internal vertex, then F(Φ(Γ)) is obtained by anti-symmetrizing over the two

ψ-decorations one can put on the i-edge,

F(Φ(Γ)) =
1
2

(
−

)
.

In this case, we have

δh(Γ) + h(δΓ) = −
1
2

(
+

)
,

so (49) holds.
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Finally, suppose the special vertex of Γ is decorated by Ei j, with i, j half-edges incident to the special vertex.
Then π(Γ) = 0 and h(Γ) = 0. We must show that F(Φ(Γ)) = h(δΓ), and we consider cases according to whether i
and j are joined to legs. If both are joined to legs, then F(Φ(Γ)) = h(δΓ) = 0. If only j is joined to a leg, then one
computes, with e the number of structural edges of Γ,

F(Φ(Γ)) = (−1)e 1
2

j
, and h(δΓ) = h(δresΓ) = (−1)e 1

2

j
,

as required. If neither i nor j connects to a leg, then they connect to distinct internal vertices and one computes

F(Φ(Γ)) = (−1)e 1
2

 −

 = h(δΓ).

This completes the proof of (49).
Having proved (49), we have that for all Γ ∈ G̃Kg,n

δF(Φ(Γ)) − F(δΦ(Γ)) = 0.

By Proposition 5.5, the map Φ is surjective, and hence δ ◦ F = F ◦ δ. We conclude that F is a map of chain
complexes, and h is chain homotopy from F ◦ Φ to π, as required. �

A.1. The pullback map. Recall that the projection π : Mg,1 → Mg is proper and extends to a morphism on the
stable curves compactifications, also denoted π : Mg,1 → Mg. Recall also that the boundary divisors ∂Mg,1 :=
Mg,1 rMg,1 and ∂Mg :=Mg rMg have normal crossings. Applying the “fundamental simplicial constructions”
as in [12, §II.I] gives an induced morphism π∗ from the simplicial resolution of the constant sheaf Q on ∂Mg to
that of the constant sheaf Q on ∂Mg,1, induced by the normal crossings structure. After realizing the compactly
supported cohomology of Mg,1 and of Mg as the reduced cohomology of the mapping cones for the inclusions
∂Mg,1 →Mg,1 and ∂Mg →Mg, respectively, we get an induced pullback morphism between the weight spectral
sequences that abuts to π∗ : gr Hc(Mg)→ gr Hc(Mg,1).

We consider the graphical interpretation of the the induced map on the E1-page of the weight spectral sequence,
i.e., the induced map between the Getzler-Kapranov graph complexes. We claim that π∗ : GKg,0 → GKg,1 is given
by the formula

(50) π∗Γ =
∑

v

pv(Γ),

where the sum is over all vertices of the graph Γ ∈ GKg,0, and pv(Γ) is obtained from Γ by attaching a leg labeled
by 1 to vertex v. If the old decoration of v is α ∈ Hi(Mh,k), then the new decoration on the vertex is given by
π∗α ∈ Hi(Mh,k+1), with π : Mh,k+1 →Mh,k forgetting the new marking. To see this, note that if Γ has j edges then
the underlying graphs of pv(Γ), obtained by attaching a leg labeled 1 to a vertex v of Γ, correspond precisely to the
strata of codimension j that map onto the codimension j stratum ξΓ(MΓ) ⊂ MΓ, and the operation on decorations
that we have described corresponds, via the Künneth decomposition, to the induced pullback on the cohomology
of strata in the simplicial resolution.

The same formula (50) also defines a pullback operation

π∗ : GKg,0 → GKg,1,

and the projection map GKg,n → GKg,n intertwines the two operations π∗. We furthermore define another operation

$∗ : (Hg, δ̃)→ (X∗g,1, δ̃)

by taking minus the disjoint union with an (ε, 1)-edge,

$∗ : Γ 7→ − Γ ε 1 .

Lemma A.2. The following diagram commutes

(51)

(X∗g,1, δ̃) (X∗g,1, δ) Xg,1 GKg,1

(Hg, δ̃) (X∗g,, δ) Xg, GKg,

Ξ F

Ξ

$∗

F

π∗ .
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Proof sketch. A graph Γ ∈ Hg contains either no ε-leg, or exactly two, on an (ε, ε)-edge. We consider both cases
in turn. Suppose first that Γ ∈ Hg contains no ε-leg. Then its image under the first two horizontal maps in (51)
is just the same unaltered graph Γ. Applying F produces the linear combination (47). Applying π∗ afterwards
produces a linear combination of graphs of the form

(52) − (−1)e 1
2


∑

1

−
∑

1

−

1

+

1


In the first two sums one sums over all ways of attaching the 1-labeled leg to a vertex, including the special vertex.
Here we are using [2, Proposition 3.1 (ii)] to compute the pullback of the ψ-class, and the additional δ0,S -terms
there produce the last two summands. To compare, let us now follow our graph Γ along the lower rim of (51). The
vertical arrow $∗ adds one (ε, 1)-edge to Γ. Call the resulting graph −Γ

′
∈ X?

g,1. Applying Ξ then produces Γ
′ plus

the sum of all graphs obtained by attaching a 1-labeled leg to Γ. Applying F produces from this latter sum the two
sums in (52). Applying F to Γ

′ produces the last two summands in (52) via (48). This shows commutativity of
(51) for Γ ∈ Hg without (ε, ε)-edge. The proof in the case where Γ ∈ Hg has an (ε, ε)-edge is essentially similar,
although the map Ξ produces more terms in presence of an (ε, ε)-edge. �

Appendix B. Numerical results

We record the cohomology groups of the graph complexes G(g,n), Xg,n, and J?g,n, with the characters of their
Sn-representations for small g and n, obtained by calculations in Sage. For example, the entry t11s2,1 + t12s1,1,1 in
Figure 1 for (g, n) = (4, 3) indicates that W0H11

c (M4,3) is the 2-dimensional irreducible representation of S3 with
character s2,1, W0H12

c (M4,3) is the sign representation, and W0H•c (M4,3) vanishes in all other degrees.

g,n 0 1 2 3 4 5 6
0 - - - t0s3 t1s2,2 t2s3,1,1 t3(s3,3+s4,1,1+s2,2,1,1)
1 - 0 0 t3s1,1,1 t4s3,1 t5(s5+s3,2+s2,2,1+s1,1,1,1,1)

2 0 0 t5s2 0 t6s4 + t7s2,1,1

3 t6s0 t6s1 0 t9s3 t9s2,1,1 + t10s2,2

4 0 0 0 t11s2,1 + t12s1,1,1

5 t10s0 t10s1 t14s2 t13s3 + t14s2,1

6 t15s0 t15s1

Figure 1. The Sn-equivariant Poincaré polynomials of H•(G(g,n)) � W0H•c (Mg,n) for small g and n.

g,n 0 1 2 3 4 5 6
0 - - - 0 t2s4 t3s3,2 t4(s3,2,1 + s4,1,1)
1 - 0 0 0 t5s2,1,1 t6(s3,1,1 + s3,2 + s4,1)
2 0 0 0 t7(s3 + s2,1) t8s4

3 0 t8s1 t8(s2 + s1,1) 2t9s3

4 0 0 0 2t12s1,1,1

5 0 t12s1 t12(s2 + s1,1) + 2t14s2

6 0 2t15s1 + t17s1

Figure 2. The Sn-equivariant Poincaré polynomials of H•(Xg,n) � gr2 H•c (Mg,n) for small g and n.

g,n 1 2 3 4 5 6
0 ts1 ts1,1 t2s3 t3s2,2 t4s3,1,1 t5(s4,1,1+s3,3+s2,2,1,1)

1 0 0 t5s1,1,1 t5 s1,1,1,1+t6 s3,1 t6 s3,1,1+t7(s5+s3,2+s2,2,1+s1,1,1,1)

2 0 t7s2 t7s2,1 t8(2s4+s3,1)+t9 s2,1,1

3 t8s1 t8s1,1 t9s3 + t11s3
4 0 0 t12 s1,1,1+t13(s3+s2,1)+t14 s1,1,1

5 t12s1 t12 s1,1+t14(s2+s1,1)+t16 s2

Figure 3. The Sn-equivariant Poincaré polynomials of H•(J?g,n) for small g and n.

36



References
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