SKELETON AND DUAL COMPLEX

CHENYANG XU

This is a note to the talk I gave in Simons Symposium on Non-Archimedean and Tropical Geometry, held on February 2-6, organized by Matthew Baker and Sam Payne. I want to thank them for the invitation!

Here we give a map on the recent joint works [dFKX12], [NX13] and [KX15], which is our attempt to study the dual complex and establish its relationship with the topology of the analytification of a variety defined over $K = \mathbb{C}[[t]]$. We also ask some questions which are worthy to be further studied.

1. Essential skeleton

Let X be a normal variety, and D a Weil divisor on X. If $D = \sum D_i$ has the following two properties

(1) An irreducible component W of intersections $\bigcap_{i=1,\dots,k} D_{i_i}$ are all normal.

(2) W is of codimension k in X.

Then we can construct a dual complex $\mathcal{D}(D)$ by associate W a k-dimensional cell attaching on the vertices $v_{i_1}, ..., v_{i_k}$.

A very useful category of pairs satisfying the above assumption comes from a dlt pair (X, Δ) , where we choose $D = \Delta^{=1}$.

Definition 1.1. A log pair (X, Δ) is called divisorial log terminal (dlt), if there is an open set $U \subset X$ such that U is smooth and $\Delta|_U$ is a reduced simple normal crossing divisor, and for any divisorial valuation E with center on $X \setminus U$, we have $a(E, X, \Delta) > -1$.

Then we know that $D = \Delta^{=1}$ satisfies our assumptions (1) and (2), so we can define $\mathcal{D}(D)$.

Definition 1.2. For any log pair (Y, E), if $K_Y + E$ is \mathbb{Q} -Cartier, then we can define a partial resolution, called *dlt modification* $f: (X, \Delta) \to Y$ satisfying

- (1) Let Δ be the sum of the birational transform of E and the reduced exceptional divisor, then (X, Δ) is dlt.
- (2) $K_X + \Delta$ is *f*-nef.

In [dFKX12], we investigate how the dual complex changes under the minimal model program. As a corollary, we show in various cases, the modification is indeed a collapse (which is a special kind of deformation retract). In particular, we have the following which gives interesting results in the Berkovich space setting.

Theorem 1.3 ([dFKX12]). Let X_K be a smooth projective variety over K = k((t)). Let \mathfrak{X}_i (i=1,2) be two projective models over an algebraic curve whose base changes give X_K . Assume there is a morphism $f: \mathfrak{X}_1 \to \mathfrak{X}_2$ and $(\mathfrak{X}_i, (X_i)_{red})$ are dlt, where X_i are the special fibers.

Date: May 27, 2015.

Then $\mathcal{D}(X_1)$ collapses to $\mathcal{D}(X_2)$.

When $(\mathfrak{X}_i, (X_i)_{red})$ are snc, this kind of results can be obtained by weak factorization theorem. But for the general case, we need to invoke the minimal model program.

Now if \mathfrak{X} is a smooth model which is a base change of a relatively projective algebraic model \mathcal{X} , such that $(\mathfrak{X}, X_{\text{red}})$ is dlt. Assume K_{X_K} is semi-ample, i.e., $|mK_{X_K}|$ is base point free for some m > 0. Then we can run a relative minimal model program to obtain \mathfrak{X}^{\min} , which satisfies that $(\mathfrak{X}^{\min}, X_{\text{red}}^{\min})$ is dlt and $K_{\mathfrak{X}^{\min}} + X_{\text{red}}^{\min}$ is relatively semi-ample. This model \mathfrak{X}^{\min} is important, since we have the following

Theorem 1.4 ([NX13]). The Kontsevich-Soibelman essential skeleton of X_K^{an} is naturally isomorphic to $\mathcal{D}(X_{\text{red}}^{\min})$.

Recall that the Kontsevich-Soibelman essential skeleton defined in [MN12] is a natural subspace embedded in X^{an} , which does not depend on the choice of the models.

Corollary 1.5. The analytic space X_K^{an} admits a deformation retract to the essential skeleton.

Here the deformation retract we choose depends on the MMP process, which is in general not unique. So it is natural to ask

Question 1.6. Does there exist a more canonically defined way to yield the deformation retract?

2. Topology of the dual complex

In [dFKX12], we show the following

Theorem 2.1. If X_K is a rationally connected variety, then $\mathcal{D}(X_{\text{red}})$ is always contractible.

Later this result is also used in a relative setting in [BF14]. One interesting question is that the process of minimal model program indeeds yields a special component, called the *Kollár component*. It depends on the MMP process, so in general it is not unique. However, it has been shown that it carries interesting geometric properties. A natural question is

Question 2.2. Study Kollár component from the Berkovich viewpoint.

When X_K is of general type, we do not know many non-trivial restrictions on $\mathcal{D}(X_{\text{red}})$. So the most interesting case seems to be on the border line when X_K is a Calabi-Yau, which also natural appears in many other questions.

A probably naive question is the following,

Question 2.3. If X_K is a simply connected Calabi-Yau manifold, such that

$$H^i(X_K, \mathcal{O}) = 0$$
 for any $0 < i < \dim X$.

Let \mathfrak{X} be a semistable model with maximal degeneration and $K_{\mathfrak{X}} \sim 0$, then $\mathcal{D}(X)$ is isomorphic to the sphere $S^{\dim X}$.

This question is far from known to be true. In a more general setting, given any K_{X_K} with $K_{X_K} \sim_{\mathbb{Q}} 0$, we can study the dual complex of $\mathcal{D}(X_{\text{red}}^{\min})$. For any $E \subset X_{\text{red}}^{\min}$, the link of each vertex v_E in this complex is given by $\mathcal{D}(D_E)$. Here we define

$$(K_{\mathfrak{X}^{\min}} + X_{\mathrm{red}}^{\min})|_E = K_E + \Delta_E,$$

and $D_E = \Delta_E^{=1}$. Thus (E, Δ_E) is a dlt log Calabi-Yau pair.

Then it is natural to study $\mathcal{D}(D)$ for any dlt log Calabi-Yau pair (X, Δ) . Using MMP, we obtain the following results

Theorem 2.4 ([KX15]). Let (X, Δ) be a dlt log Calabi-Yau pair and $D = \Delta^{=1}$. Then

- (1) $H^i(\mathcal{D}(D), \mathbb{Q}) = 0$ for $0 < i < \dim \mathcal{D}(D)$.
- (2) If dim $\mathcal{D}(D) > 1$, then $\pi_1(X^{sm})$ admits a surjection to $\pi_1(\mathcal{D}(D))$. In particular, the pro-finite completion $\hat{\pi}_1(\mathcal{D}(D))$ is finite.

Corollary 2.5. Question 2.3 has an affirmative answer when $\dim(X_K) \leq 4$.

The main idea of proving Theorem 2.4 is using MMP to construct a new birational log Calabi-Yau lc model (X', Δ') , such that D' supports an ample divisor. Then after doing some standard birational modification, we can conclude.

Since after Theorem 2.4, we have a good understanding of the rational homology and fundamental group, the remaining important question is

Question 2.6. How to compute $H^i(\mathcal{D}(D),\mathbb{Z})$? Or similarly, how to compute $H^i(\mathcal{D}(X_{\text{red}}^{\min}),\mathbb{Z})$? Is $H^i(D(X),\mathbb{Z}) = 0$ in the setting of Question 2.3 for $0 < i < \dim(X_K)$?

References

- [BF14] M. Brown and T. Foster, *Rational connectivity and analytic contractibility*, ArXiv preprint (2014).
- [dFKX12] T. de Fernex, J. Kollár, and C. Xu, The dual complex of singularities, Proceedings of the conference in honor of Yujiro Kawamata's 60th birthday, Advanced Studies in Pure Mathematics., 2012. arXiv:1212.1675.
 - [MN12] M. Mustata and J. Nicaise, Weight functions on non-archimedean analytic spaces and the Kontsevich-Soibelman skeleton, to appear in Algebraic Geometry. ArXiv preprint (2012).
 - [NX13] J. Nicaise and C. Xu, The essential skeleton of a degeneration of algebraic varieties, to appear in Amer. J. Math. ArXiv preprint (2013).
 - [KX15] J. Kollár and C. Xu, The dual complex of Calabi-Yau pairs, ArXiv preprint (2015).

cyxu@math.pku.edu.cn

Beijing International Center for Mathematical Research Yiheyuan Road 5, Beijing, 100871, China