To Prove: For all integers \(n \), if \(n \) is odd, then \(n^2 \) is odd.

Proof: Let \(n \) be any integer.

Suppose \(n \) is odd.

\[n = 2k + 1 \]

\[n^2 = (2k + 1)^2 \]
\[= 4k^2 + 4k + 1 \]
\[= 2(2k^2 + 2k) + 1 \]

Let \(t = 2k^2 + 2k \), which is an integer since sums and products of integers are integers.

\[n^2 = 2t + 1 \]

\[n^2 \] is odd, by definition of "odd."

\[n^2 \] is odd, by direct proof.

Q.E.D.
In applying the definition of "even" to \(m \), it was an error to use the variable "k" to represent the integer such that \(m \) equals 2 times it, because "k" had already been defined as the integer \(k \) such that \(n = 2k + 1 \).

A different variable, such as \(l \), should have been used, saying, for instance, "By definition of "even", \(m = 2l \) for some integer \(l \)."

42. In applying the definition of "even" to \(N \), it was an error to use the variable "k" to represent the integer such that \(N \) equals 2 times it, because "k" had already been defined as the integer \(k \) such that \(m = 2k \).

A different variable, such as \(l \), should have been used, saying, for instance, "By definition of "even", \(m = 2l \) for some integer \(l \)."
To Prove: The product of any even integer and any integer is even.

[Formal restatement: \(\forall m, n \in \mathbb{Z} \), if \(m \) is even, then \(mn \) is even.]

Proof Let \(m \) and \(n \) be any integers.

Suppose \(m \) is even. \([\text{NTS: } \text{ } mn \text{ is even}]\)

\(m = 2k \) for some integer \(k \).

\[mn = (2k)n \text{, by substitution,} \]
\[= 2(kn) \text{, by rules of algebra.} \]

Let \(t = kn \), and \(t \) is an integer since a product of integers is an integer.

\[mn = 2t \text{, by substitution.} \]

By definition of "even", \(mn \) is even.

The product of any even integer and any integer is even. \(Q.E.D. \)
#491 To Prove: The difference of any two odd integers is even.

[Formal restatement: \(\forall m, n \in \mathbb{Z}^{\text{odd}}, m - n \text{ is even.} \)]

Proof: Let \(m \) and \(n \) be any two odd integers.

[One could also say: "Let \(m \) and \(n \) be any integers.

Suppose \(m \) and \(n \) are both odd."]

By definition of "odd," there exist integers \(k \) and \(l \) such that \(m = 2k + 1 \) and \(n = 2l + 1 \).

\[
\begin{align*}
m - n &= (2k + 1) - (2l + 1) \\
&= 2k + 1 - 2l - 1 \\
&= 2k - 2l \\
&= 2(k - l) \\
&= 2t \quad \text{(all by rules of algebra, where } t = k - l, \text{ which is an integer since the difference of integers is an integer.)}
\end{align*}
\]

\[
\begin{align*}
m - n &= 2t \quad \text{by substitution,} \\
\text{m - n is even, by definition of "even."}
\end{align*}
\]

The difference of any two odd integers is even, by **DIRECT PROOF. Q.E.D.**