HW #4, SECTION 4.3 SOLUTIONS

Sec. 4.3:

3.) Yes. 5|0 because

\[0 = 5 \times 0 \]

5.) Yes. 4 \| 6m(2m+10)

\[
6m(2m+10) = 12m^2 + 60m
\]

\[= 4(3m^2 + 15) \]

Let \(t = 3m^2 + 15 \), which is an integer.

\[\therefore 6m(2m+10) = 4t \quad \text{so} \]

\[4 \mid 6m(2m+10) \]

\[\text{The answer to the extra question is: } k = 3m^2 + 15 \]

12.) Yes. Let \(k \) be an integer and

let \(n = 4k+1 \). Then,

\[n^2 - 1 = (4k+1)^2 - 1 = (16k^2 + 8k + 1) - 1 \]

\[= 16k^2 + 8k \]

\[= 8(2k^2 + k) \]

Let \(t = 2k^2 + k \). Then \(n^2 - 1 = 8t \), so \(8 \mid (n^2 - 1) \)

\[\text{The answer to the extra question is: } t = 2k^2 + k \]
Sec 4.3, #16.

To prove: For all integers \(a, b \) and \(c \), if \(a | b \) and \(a | c \), then \(a | (b - c) \).

Proof: Let \(a, b \) and \(c \) be any integers. Suppose \(a | b \) and \(a | c \).

By defn of "divides," there exist integers \(k \) and \(l \) such that \(b = ak \) and \(c = al \).

Then \(b - c = ak - al \) by substitution.

\[= a(k - l) \text{ by rules of algebra.} \]

Let \(t = k - l \) which is an integer.

\[\therefore b - c = at \text{ by substitution} \]

\[\therefore a | (b - c) \text{ by definition of "divides."} \]

\[\therefore \text{For all integers } a, b \text{, and } c, \text{ if } a | b \text{ and } a | c \text{, then } a | (b - c), \text{ by Direct Proof.} \]

#27) This is false. As a counterexample, let \(a = 5 \), \(b = 6 \) and \(c = 4 \);
then \(b + c = 10 \) and \(5 | 10 \), so \(a | (b + c) \),
but \(5 | 6 \) so \(a | b \) and \(5 | 4 \), so \(a | c \).
SEC. 4,8, #28:

To Prove: The statement "For all integers \(a, b, \) and \(c \),

\[\text{if } a \mid b \text{, then } a \mid b \cdot a \cdot c \]

is false.

Proof: [We will exhibit a counterexample.]

Let \(a = 10 \), \(b = 2 \) and \(c = 5 \).

Then, \(bc = 10 \) and \(10 = 10 \times 1 \).

\[\therefore 10 \mid 10 \text{ and so } a \mid bc \text{, by substitution}. \]

Now, \(10 > 2 \) and \(10 > 5 \).

\[\therefore \text{By Theorem 4.3.1 (and by Modus Tollens), } 10 \not\mid 2 \text{ at } 10 \not\mid 5. \]

\[\therefore a \nmid b \text{ and } a \nmid c \text{ by substitution}. \]

\[\therefore \text{With } a = 10, b = 2 \text{ and } c = 5, a \nmid bc \text{ and } a \nmid b \text{ and } a \nmid c. \]

\[\therefore \text{The statement "For all integers } a, b, \text{ and } c, \]

\[\text{if } a \mid bc \text{, then } a \mid b \cdot a \cdot c \]

is false by proof - by - counter-example.

QED
Sec 4.3, #29, (NOT Assigned)

To Prove: For all integers a and b, if $a | b$, then $a^2 \mid b^2$.

Proof: Let a and b be any integers such that $a \mid b$.

By definition of "divides," $b = a \cdot k$ for some integer k.

Let $l = k^2$, which is an integer because the product of integers is an integer.

Now, $b^2 = (a \cdot k)^2 = a^2 \cdot k^2$, by the rules of algebra.

Therefore, $b^2 = a^2 \cdot l$, by substitution.

$\therefore b^2 \mid a^2$, by definition of "divides."

For all integers a and $b,$ if $a \mid b$, then $a^2 \mid b^2$, by direct proof.

$Q.E.D.$