Integrating Powers and Products of Trig functions

Review of Techniques

In all of the formulas below, m, n, k, and t are all positive integers.

I. Strategy for Integrating $\int (\sin^m x) (\cos^n x) dx$

A. If n is odd,

use
$$u = \sin x$$
, $du = \cos x dx$ and write all the $\cos^2 x$ factors as $(1-\sin^2 x)$.

B. If m is odd,

use
$$u = \cos x$$
, $du = -\sin x dx$ and write all the $\sin^2 x$ factors as $(1-\cos^2 x)$.

C. If both m and n are even, then

- 1) if m = n, use $\sin 2x = 2 (\sin x)(\cos x)$ to simplify the integrand.
- 2) otherwise, write all the $\sin^2 x$ factors as $\left(\frac{1}{2} \frac{1}{2}\cos 2x\right)$,

and then write all the
$$\cos^2 x$$
 factors as $\left(\frac{1}{2} + \frac{1}{2} \cos 2x\right)$.

Examples

Type I A:

$$\int (\sin^6 x) (\cos^3 x) dx = \int (\sin^6 x) (\cos^2 x) (\cos x) dx = \int (\sin^6 x) (1 - \sin^2 x) (\cos x) dx = \int u^6 (1 - u^2) du$$

Type IB:

$$\int (\sin^5 x) (\cos^2 x) dx = \int (\sin^4 x) (\cos^2 x) (\sin x) dx = \int (1 - \cos^2 x)^2 (\cos^2 x) (\sin x) dx = -\int (1 - u^2)^2 u^2 du$$

Type I C:

$$\int (\sin^4 x) (\cos^4 x) dx = \int (\sin x \cos x)^4 dx = \int (\frac{1}{2} \sin 2x)^4 dx = \frac{1}{16} \int (\sin^2 2x)^2 dx = \frac{1}{16} \int (\frac{1}{2} - \frac{1}{2} \cos 4x)^2 dx$$

II. Strategy for Integrating $\int (\tan^m x) (\sec^n x) dx$

A. If n is even,

use $u = \tan x$, $du = \sec^2 x dx$ and write all the other $\sec^2 x$ factors as $(1 + \tan^2 x)$.

B. If m is odd,

use $u = \sec x$, $du = (\sec x) (\tan x) dx$ and write all the $\tan^2 x$ factors as $(\sec^2 x - 1)$.

C. Otherwise, try using trig identities, integration by parts, etc.

--- Nothing is definite here.

Examples

Type II A:

$$\int (\tan^8 x) (\sec^4 x) dx = \int (\sec^2 x) (\tan^8 x) (\sec^2 x) dx = \int (\tan^2 x + 1) (\tan^8 x) (\sec^2 x) dx = \int (u^2 + 1) u^8 du$$

Type II B:

$$\int (\tan^3 x) (\sec^7 x) dx = \int (\sec^6 x) (\tan^2 x) (\sec x \tan x) dx = \int (\sec^6 x) (\sec^2 x - 1) (\sec x \tan x) dx = \int u^6 (u^2 - 1) du$$

Type II C:

$$\int (\sec^7 x) (\tan^4 x) dx = \int (\sec^7 x) (\tan^2 x)^2 dx = \int (\sec^7 x) (\sec^2 x - 1)^2 dx =$$

$$\int (\sec^7 x) (1 - 2\sec^2 x + \sec^4 x) dx = \int \sec^7 x dx - 2 \int \sec^9 x dx + \int \sec^{11} x dx$$

From this point, one can apply the techniques for integrating single powers of trig functions (Integrals of Type III).

III. Strategy for Integrating:

A.
$$\int \sin^m x \, dx$$
, **B.** $\int \cos^n x \, dx$, **C.** $\int \tan^k x \, dx$, **D.** $\int \sec^i x \, dx$

- A. If m is odd, use the methods for Type I B.

 If m is even, write all the $\sin^2 x$ factors as $\left(\frac{1}{2} \frac{1}{2}\cos 2x\right)$.
- B. If n is odd, use the methods for Type I A.

 If n is even, write all the $\cos^2 x$ factors as $\left(\frac{1}{2} + \frac{1}{2}\cos 2x\right)$.
- C. If k is odd, then save one $(\tan x)$ factor and write all the $\tan^2 x$ factors as $(\sec^2 x 1)$, and then use the methods for Type II B.

 If k is even, then use the reduction formula:

$$\int \tan^k x \, dx = \frac{1}{k-1} \, \tan^{k-1} x - \int \tan^{k-2} x \, dx$$

D. If t is even, then use the methods for Type II A. If t is odd, then use the reduction formula:

$$\int \sec^{t} x \, dx = \frac{1}{t-1} \tan x \, \sec^{t-2} x + \frac{t-2}{t-1} \int \sec^{t-2} x \, dx$$

The following two integrals are also used in the above methods:

$$\int \tan x \, dx = \ln|\sec x| + C \qquad \text{and} \qquad \int \sec x \, dx = \ln|\sec x| + \tan x| + C$$

They are derived as follows:

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{1}{u} \, du = -\ln|u| + C = \ln|\cos x|^{-1} + C = \ln|\sec x| + C$$

$$\int \sec x \, dx = \int \sec x \left(\frac{\sec x + \tan x}{\sec x + \tan x} \right) dx = \int \left(\frac{\sec x + \tan x + \sec^2 x}{\sec x + \tan x} \right) dx = \int \frac{1}{u} \, du = \ln|\sec x + \tan x| + C$$

Useful Trigonometric Identities:

The Pythagorean Identity:

$$\cos^2 x + \sin^2 x = 1$$
, which implies: $\cos^2 x = 1 - \sin^2 x$, $\sin^2 x = 1 - \cos^2 x$

The Double Angle Formulas (derived from the sum-of-angle formulas):

$$\sin 2x = 2 \sin x \cos x$$

 $\cos 2x = \cos^2 x - \sin^2 x$, which implies: $\cos 2x = 1 - 2\sin^2 x$, and $\cos 2x = 2\cos^2 x - 1$

The sec² x and tan² x Formulas:

$$\sec^2 x = 1 + \tan^2 x$$
 and $\tan^2 x = \sec^2 x - 1$

The very useful $\cos^2 x$ and $\sin^2 x$ Formulas:

$$\cos^2 x = \left(\frac{1}{2} + \frac{1}{2}\cos 2x\right)$$
 and $\sin^2 x = \left(\frac{1}{2} - \frac{1}{2}\cos 2x\right)$

Derivations:

Divide both sides of
$$\cos^2 x + \sin^2 x = 1$$
 by $\cos^2 x$; **Result:** $1 + \tan^2 x = \sec^2 x$

This immediately gives
$$\sec^2 x = 1 + \tan^2 x$$
 and $\tan^2 x = \sec^2 x - 1$.

To both sides of
$$\cos 2x = 2\cos^2 x - 1$$
, add 1; Result: $2\cos^2 x = 1 + \cos 2x$

Now, multiply by
$$\frac{1}{2}$$
; Result: $\cos^2 x = \left(\frac{1}{2} + \frac{1}{2}\cos 2x\right)$

To both sides of
$$\cos 2x = 1 - 2\sin^2 x$$
,

add
$$2\sin^2 x$$
 and subtract $\cos 2x$; Result: $2\sin^2 x = 1 - \cos 2x$

Now, multiply by
$$\frac{1}{2}$$
; Result: $\sin^2 x = \left(\frac{1}{2} - \frac{1}{2}\cos 2x\right)$