HW#11, Sec 14.2 Solutions

1360 ☐ CHAPTER 14 PARTIAL DERIVATIVES

4. We make a table of values of

$$f(x,y) = \frac{2xy}{x^2 + 2y^2}$$
 for a set of (x,y) points near the origin.

x	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
-0.3	0.667	0.706	0.545	0.000	-0.545	-0.706	-0.667
-0.2	0.545	0.667	0.667	0.000	-0.667	-0.667	-0.545
-0.1	0.316	0.444	0.667	0.000	-0.667	-0.444	-0.316
0	0.000	0.000	0.000		0.000	0.000	0.000
0.1	-0.316	-0.444	-0.667	0.000	0.667	0.444	0.316
0.2	-0.545	-0.667	-0.667	0.000	0.667	0.667	0.545
0.3	-0.667	-0.706	-0.545	0.000	0.545	0.706	0.667

It appears from the table that the values of f(x,y) are not approaching a single value as (x,y) approaches the origin. For verification, if we first approach (0,0) along the x-axis, we have f(x,0)=0, so $f(x,y)\to 0$. But if we approach (0,0) along the line y=x, $f(x,x)=\frac{2x^2}{x^2+2x^2}=\frac{2}{3}$ $(x\neq 0)$, so $f(x,y)\to \frac{2}{3}$. Since f approaches different values along different paths to the origin, this limit does not exist.

- 5. $f(x,y) = x^2y^3 4y^2$ is a polynomial, and hence continuous, so we can find the limit by direct substitution: $\lim_{(x,y)\to(3,2)} f(x,y) = f(3,2) = (3)^2(2)^3 - 4(2)^2 = 56.$
- 6. $f(x,y) = x^2y + 3xy^2 + 4$ is a polynomial, and hence continuous, so we can find the limit by direct substitution: $\lim_{(x,y)\to(5,-2)} f(x,y) = f(5,-2) = 5^2(-2) + 3(5)(-2)^2 + 4 = 14.$
- 7. $f(x,y) = \frac{x^2y xy^3}{x y + 2}$ is a rational function, and hence, continuous on its domain. (-3,1) is in the domain of f, so we can find the limit by direct substitution: $\lim_{(x,y)\to(-3,1)} f(x,y) = f(-3,1) = \frac{(-3)^2(1) (-3)(1)^3}{-3 1 + 2} = \frac{12}{-2} = -6.$
- 8. $f(x,y) = \frac{x^2y + xy^2}{x^2 y^2}$ is a rational function, and hence, continuous on its domain. (2,-1) is in the domain of f, so we can find the limit by direct substitution: $\lim_{(x,y)\to(2,-1)} f(x,y) = f(2,-1) = \frac{(2)^2(-1) + (2)(-1)^2}{(2)^2 (-1)^2} = -\frac{2}{3}$.
- (9) x-y is a polynomial and therefore continuous. Since $\sin t$ is a continuous function, the composition $\sin(x-y)$ is also continuous. The function y is a polynomial, and hence continuous, and the product of continuous functions is continuous, so $f(x,y)=y\sin(x-y)$ is a continuous function. Then $\lim_{(x,y)\to(\pi,\pi/2)}f(x,y)=f\left(\pi,\frac{\pi}{2}\right)=\frac{\pi}{2}\sin\left(\pi-\frac{\pi}{2}\right)=\frac{\pi}{2}\sin\frac{\pi}{2}=\frac{\pi}{2}$.