HW#10, PARTI, Sec 9, 4 Solutions

SECTION 9.4 MODELS FOR POPULATION GROWTH ☐ 897

3.
$$V(t) = \pi r^2 h(t) = 100\pi h(t)$$
 $\Rightarrow \frac{dV}{dh} = 100\pi$ and $\frac{dV}{dt} = \frac{dV}{dh} \frac{dh}{dt} = 100\pi \frac{dh}{dt}$.

Diameter = 2.5 inches \Rightarrow radius = 1.25 inches = $\frac{5}{4} \cdot \frac{1}{12}$ foot = $\frac{5}{48}$ foot. Thus, $\frac{dV}{dt} = -a\sqrt{2gh}$ \Rightarrow $100\pi \frac{dh}{dt} = -\pi \left(\frac{5}{48}\right)^2 \sqrt{2 \cdot 32h} = -\frac{25\pi}{288} \sqrt{h} \Rightarrow \frac{dh}{dt} = -\frac{\sqrt{h}}{1152} \Rightarrow \int h^{-1/2} dh = \int -\frac{1}{1152} dt \Rightarrow$ $2\sqrt{h} = -\frac{1}{1152}t + C \Rightarrow \sqrt{h} = -\frac{1}{2304}t + k \Rightarrow h(t) = \left(-\frac{1}{2304}t + k\right)^2$. The water pressure after t seconds is $62.5h(t)$ lb/ft², so the condition that the pressure be at least 2160 lb/ft² for 10 minutes (600 seconds) is the condition $62.5 \cdot h(600) \geq 2160$; that is, $\left(k - \frac{600}{2304}\right)^2 \geq \frac{2160}{62.5} \Rightarrow \left|k - \frac{25}{96}\right| \geq \sqrt{34.56} \Rightarrow k \geq \frac{25}{96} + \sqrt{34.56}$. Now $h(0) = k^2$, so the height of the tank should be at least $\left(\frac{25}{96} + \sqrt{34.56}\right)^2 \approx 37.69$ ft.

- 4. (a) If the radius of the circular cross-section at height h is r, then the Pythagorean Theorem gives $r^2=2^2-(2-h)^2$ since the radius of the tank is 2 m. So $A(h)=\pi r^2=\pi [4-(2-h)^2]=\pi (4h-h^2)$. Thus, $A(h)\frac{dh}{dt}=-a\sqrt{2gh} \Rightarrow \pi (4h-h^2)\frac{dh}{dt}=-\pi (0.01)^2\sqrt{2\cdot 10h} \Rightarrow (4h-h^2)\frac{dh}{dt}=-0.0001\sqrt{20h}$.
 - (b) From part (a) we have $(4h^{1/2} h^{3/2}) dh = (-0.0001 \sqrt{20}) dt \Rightarrow \frac{8}{3} h^{3/2} \frac{2}{5} h^{5/2} = (-0.0001 \sqrt{20}) t + C$. $h(0) = 2 \Rightarrow \frac{8}{3} (2)^{3/2} \frac{2}{5} (2)^{5/2} = C \Rightarrow C = (\frac{16}{3} \frac{8}{5}) \sqrt{2} = \frac{56}{15} \sqrt{2}$. To find out how long it will take to drain all the water we evaluate t when h = 0: $0 = (-0.0001 \sqrt{20}) t + C \Rightarrow 0$

$$t = \frac{C}{0.0001\sqrt{20}} = \frac{56\sqrt{2}/15}{0.0001\sqrt{20}} = \frac{11,200\sqrt{10}}{3} \approx 11,806 \text{ s} \approx 3 \text{ h } 17 \text{ min}$$

9.4 Models for Population Growth

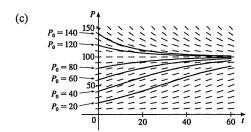
- 1. (a) Comparing the given equation, $\frac{dP}{dt} = 0.04P\left(1 \frac{P}{1200}\right)$, to Equation 4, $\frac{dP}{dt} = kP\left(1 \frac{P}{M}\right)$, we see that the carrying capacity is M = 1200 and the value of k is 0.04.
 - (b) By Equation 7, the solution of the equation is $P(t) = \frac{M}{1 + Ae^{-kt}}$, where $A = \frac{M P_0}{P_0}$. Since $P(0) = P_0 = 60$, we have $A = \frac{1200 60}{60} = 19$, and hence, $P(t) = \frac{1200}{1 + 19e^{-0.04t}}$.
 - (c) The population after 10 weeks is $P(10) = \frac{1200}{1 + 19e^{-0.04(10)}} \approx 87$.
- 2. (a) $dP/dt = 0.02P 0.0004P^2 = 0.02P(1 0.02P) = 0.02P(1 P/50)$. Comparing to Equation 4, dP/dt = kP(1 P/M), we see that the carrying capacity is M = 50 and the value of k is 0.02.
 - (b) By Equation 7, the solution of the equation is $P(t) = \frac{M}{1 + Ae^{-kt}}$, where $A = \frac{M P_0}{P_0}$. Since $P(0) = P_0 = 40$, we have $A = \frac{50 40}{40} = 0.25$, and hence, $P(t) = \frac{50}{1 + 0.25e^{-0.02t}}$.
 - (c) The population after 10 weeks is $P(10) = \frac{50}{1 + 0.25e^{-0.02(10)}} \approx 42$.

^{© 2021} Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

898 CHAPTER 9 DIFFERENTIAL EQUATIONS

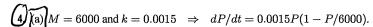
(a) $dP/dt = 0.05P - 0.0005P^2 = 0.05P(1 - 0.01P) = 0.05P(1 - P/100)$. Comparing to Equation 4, dP/dt = kP(1 - P/M), we see that the carrying capacity is M = 100 and the value of k is 0.05.

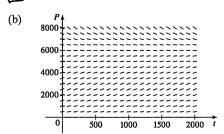
(b) The slopes close to 0 occur where P is near 0 or 100. The largest slopes appear to be on the line P = 50. The solutions are increasing for $0 < P_0 < 100$ and decreasing for $P_0 > 100$.



All of the solutions approach P=100 as t increases. As in part (b), the solutions differ since for $0 < P_0 < 100$ they are increasing, and for $P_0 > 100$ they are decreasing. Also, some have an IP and some don't. It appears that the solutions which have $P_0 = 20$ and $P_0 = 40$ have inflection points at P = 50.

The equilibrium solutions are P=0 (trivial solution) and P=100. The increasing solutions move away from P=0 and all nonzero solutions approach P=100 as $t\to\infty$.





All of the solution curves approach 6000 as $t \to \infty$.



The curves with $P_0=1000$ and $P_0=2000$ appear to be concave upward at first and then concave downward. The curve with $P_0=4000$ appears to be concave downward everywhere. The curve with $P_0=8000$ appears to be concave upward everywhere. The inflection points are where the population grows the fastest.

(d) See the solution to Exercise 9.2.25 for a possible program to calculate P(50). [In this case, we use X=0, H=1, N=50, $Y_1=0.0015y(1-y/6000)$, and Y=1000.] We find that $P(50)\approx 1064$.

Using Equation 7 with
$$M=6000$$
, $k=0.0015$, and $P_0=1000$, we have $P(t)=\frac{M}{1+Ae^{-kt}}=\frac{6000}{1+Ae^{-0.0015t}}$, where $A=\frac{M-P_0}{P_0}=\frac{6000-1000}{1000}=5$. Thus, $P(50)=\frac{6000}{1+5e^{-0.0015(50)}}\approx 1064.1$, which is extremely close to the estimate obtained in part (d).

The curves are very similar.

- 5. (a) $\frac{dy}{dt} = ky\left(1 \frac{y}{M}\right) \implies y(t) = \frac{M}{1 + Ae^{-kt}}$ with $A = \frac{M y(0)}{y(0)}$. With $M = 8 \times 10^7$, k = 0.71, and $y(0) = 2 \times 10^7$, we get the model $y(t) = \frac{8 \times 10^7}{1 + 3e^{-0.71t}}$, so $y(1) = \frac{8 \times 10^7}{1 + 3e^{-0.71}} \approx 3.23 \times 10^7$ kg.
 - (b) $y(t) = 4 \times 10^7 \implies \frac{8 \times 10^7}{1 + 3e^{-0.71t}} = 4 \times 10^7 \implies 2 = 1 + 3e^{-0.71t} \implies e^{-0.71t} = \frac{1}{3} \implies -0.71t = \ln \frac{1}{3} \implies t = \frac{\ln 3}{0.71} \approx 1.55 \text{ years}$
- (a) $\frac{dP}{dt} = 0.4P 0.001P^2 = 0.4P(1 0.0025P) \left[\frac{0.001}{0.4} = 0.0025 \right] = 0.4P \left(1 \frac{P}{400} \right) \left[0.0025^{-1} = 400 \right]$ Thus, by Equation 4, k = 0.4 and the carrying capacity is 400.
 - (b) Using the fact that P(0) = 50 and the formula for dP/dt, we get

$$P'(0) = \frac{dP}{dt}\Big|_{t=0} = 0.4(50) - 0.001(50)^2 = 20 - 2.5 = 17.5.$$

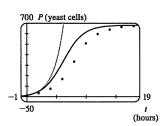
- (c) From Equation 7, $A = \frac{M P_0}{P_0} = \frac{400 50}{50} = 7$, so $P = \frac{400}{1 + 7e^{-0.4t}}$. The population reaches 50% of the carrying capacity, 200, when $200 = \frac{400}{1 + 7e^{-0.4t}} \implies 1 + 7e^{-0.4t} = 2 \implies e^{-0.4t} = \frac{1}{7} \implies -0.4t = \ln\frac{1}{7} \implies t = (\ln\frac{1}{7})/(-0.4) \approx 4.86$ years.
- 7. Using Equation 7, $A = \frac{M P_0}{P_0} = \frac{10,000 1000}{1000} = 9$, so $P(t) = \frac{10,000}{1 + 9e^{-kt}}$. $P(1) = 2500 \implies 2500 = \frac{10,000}{1 + 9e^{-k(1)}} \implies 1 + 9e^{-k} = 4 \implies 9e^{-k} = 3 \implies e^{-k} = \frac{1}{3} \implies -k = \ln \frac{1}{3} \implies k = \ln 3$. After another three years, t = 4, and $P(4) = \frac{10,000}{1 + 9e^{-(\ln 3)4}} = \frac{10,000}{1 + 9(e^{\ln 3})^{-4}} = \frac{10,000}{1 + 9(3)^{-4}} = \frac{10,000}{1 + 9(3)^{-4}} = \frac{10,000}{1 + \frac{1}{5}} = \frac{10,000}{\frac{10}{5}} = 9000$.
 - 8. (a) P (yeast cells)
 700
 100
 0 5 10 15 t
 (hours)
- From the graph, we estimate the carrying capacity M for the yeast population to be 680.
- (b) An estimate of the initial relative growth rate is $\frac{1}{P_0} \frac{dP}{dt} = \frac{1}{18} \cdot \frac{39 18}{2 0} = \frac{7}{12} = 0.58\overline{3}$.

900 CHAPTER 9 DIFFERENTIAL EQUATIONS

(c) An exponential model is $P(t) = 18e^{7t/12}$. A logistic model is $P(t) = \frac{680}{1 + Ae^{-7t/12}}$, where $A = \frac{680 - 18}{18} = \frac{331}{9}$.

(d)	

Time in Hours	Observed Values	Exponential Model	Logistic Model
0	18	18	18
2	39	58	55
4	80	186	149
6	171	596	322
8	336	1914	505
10	509	6147	614
12	597	19,739	658
14	640	63,389	673
16	664	203,558	678
18	672	653,679	679



The exponential model is a poor fit for anything beyond the first two observed values. The logistic model varies more for the middle values than it does for the values at either end, but provides a good general fit, as shown in the figure.

(e)
$$P(7) = \frac{680}{1 + \frac{331}{9}e^{-7(7/12)}} \approx 420$$
 yeast cells

 \P_{ullet} (a) We will assume that the difference in birth and death rates is 20 million/year. Let t=0 correspond to the year 2000. Thus,

$$k \approx \frac{1}{P}\frac{dP}{dt} = \frac{1}{6.1 \text{ billion}} \left(\frac{20 \text{ million}}{\text{year}}\right) = \frac{1}{305}, \text{ and } \frac{dP}{dt} = kP \left(1 - \frac{P}{M}\right) = \frac{1}{305}P \left(1 - \frac{P}{20}\right) \text{ with } P \text{ in billions.}$$

(b)
$$A = \frac{M - P_0}{P_0} = \frac{20 - 6.1}{6.1} = \frac{139}{61} \approx 2.2787.$$
 $P(t) = \frac{M}{1 + Ae^{-kt}} = \frac{20}{1 + \frac{139}{61}e^{-t/305}}$, so

 $P(10) = \frac{20}{1 + \frac{139}{22}e^{-10/305}} \approx 6.24$ billion, which underestimates the actual 2010 population of 6.9 billion.

(c) The years 2100 and 2500 correspond to t=100 and t=500, respectively. $P(100)=\frac{20}{1+\frac{139}{61}e^{-100/305}}\approx 7.57$ billion and $P(500)=\frac{20}{1+\frac{139}{61}e^{-500/305}}\approx 13.87$ billion.

10. (a) Let t = 0 correspond to the year 2000. $A = \frac{M - P_0}{P_0} = \frac{800 - 282}{282} = \frac{259}{141} \approx 1.8369$.

$$P(t) = \frac{M}{1 + Ae^{-kt}} = \frac{800}{1 + \frac{259}{1 + \frac{259}{1 + \frac{1}{1 + 1}}}e^{-kt}}$$
 with P in millions.

(b)
$$P(10) = 309 \Leftrightarrow \frac{800}{1 + \frac{259}{141}e^{-10k}} = 309 \Leftrightarrow \frac{800}{309} = 1 + \frac{259}{141}e^{-10k} \Leftrightarrow \frac{491}{309} = \frac{259}{141}e^{-10k} \Leftrightarrow \frac{491}{309}e^{-10k} \Leftrightarrow \frac{491}{309}e^{-1$$

$$\frac{491 \cdot 141}{309 \cdot 259} = e^{-10k} \quad \Leftrightarrow \quad -10k = \ln \frac{491 \cdot 47}{103 \cdot 259} \quad \Leftrightarrow \quad k = -\frac{1}{10} \ln \frac{23,077}{26.677} \approx 0.0145.$$

(c) The years 2100 and 2200 correspond to t = 100 and t = 200, respectively. $P(100) = \frac{800}{1 + \frac{259}{141}e^{-100k}} \approx 559$ million and

$$P(200) = \frac{800}{1 + \frac{259}{141}e^{-200k}} \approx 727 \text{ million.}$$

(d)
$$P(t) = 500 \Leftrightarrow \frac{800}{1 + \frac{259}{141}e^{-kt}} = 500 \Leftrightarrow \frac{800}{500} = 1 + \frac{259}{141}e^{-kt} \Leftrightarrow \frac{3}{5} = \frac{259}{141}e^{-kt} \Leftrightarrow \frac{3 \cdot 141}{5 \cdot 259} = e^{-kt} \Leftrightarrow -kt = \ln \frac{423}{1295} \Leftrightarrow t = 10 \frac{\ln(423/1295)}{\ln(23,077/26,677)} \approx 77.18$$
 years. Our logistic model predicts that the US population will exceed 500 million in 77.18 years; that is, in the year 2077.

(a) Our assumption is that
$$\frac{dy}{dt} = ky(1-y)$$
, where y is the fraction of the population that has heard the rumor.

(b) Using the logistic equation (4),
$$\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right)$$
, we substitute $y = \frac{P}{M}$, $P = My$, and $\frac{dP}{dt} = M\frac{dy}{dt}$ to obtain $M\frac{dy}{dt} = k(My)(1-y)$ $\Leftrightarrow \frac{dy}{dt} = ky(1-y)$, our equation in part (a).

Now the solution to (4) is
$$P(t) = \frac{M}{1 + Ae^{-kt}}$$
, where $A = \frac{M - P_0}{P_0}$.

We use the same substitution to obtain
$$My = \frac{M}{1 + \frac{M - My_0}{My_0}e^{-kt}} \Rightarrow y = \frac{y_0}{y_0 + (1 - y_0)e^{-kt}}$$
.

Alternatively, we could use the same steps as outlined in the solution of Equation 4.

(c) Let
$$t$$
 be the number of hours since 8 AM. Then $y_0=y(0)=\frac{80}{1000}=0.08$ and $y(4)=\frac{1}{2}$, so

$$\frac{1}{2} = y(4) = \frac{0.08}{0.08 + 0.92e^{-4k}}. \text{ Thus, } 0.08 + 0.92e^{-4k} = 0.16, e^{-4k} = \frac{0.08}{0.92} = \frac{2}{23}, \text{ and } e^{-k} = \left(\frac{2}{23}\right)^{1/4},$$

so
$$y = \frac{0.08}{0.08 + 0.92(2/23)^{t/4}} = \frac{2}{2 + 23(2/23)^{t/4}}$$
. Solving this equation for t , we get

$$2y + 23y \left(\frac{2}{23}\right)^{t/4} = 2 \quad \Rightarrow \quad \left(\frac{2}{23}\right)^{t/4} = \frac{2 - 2y}{23y} \quad \Rightarrow \quad \left(\frac{2}{23}\right)^{t/4} = \frac{2}{23} \cdot \frac{1 - y}{y} \quad \Rightarrow \quad \left(\frac{2}{23}\right)^{t/4 - 1} = \frac{1 - y}{y}.$$

It follows that
$$\frac{t}{4} - 1 = \frac{\ln[(1-y)/y]}{\ln \frac{2}{23}}$$
, so $t = 4 \left[1 + \frac{\ln((1-y)/y)}{\ln \frac{2}{23}} \right]$.

When
$$y=0.9$$
, $\frac{1-y}{y}=\frac{1}{9}$, so $t=4\left(1-\frac{\ln 9}{\ln \frac{2}{23}}\right)\approx 7.6$ h or 7 h 36 min. Thus, 90% of the population will have heard the rumor by 3:36 PM.

(a)
$$P(0) = P_0 = 400$$
, $P(1) = 1200$ and $M = 10,000$. From the solution to the logistic differential equation

$$P(t) = \frac{P_0 M}{P_0 + (M - P_0)e^{-kt}}, \text{ we get } P = \frac{400 (10,000)}{400 + (9600)e^{-kt}} = \frac{10,000}{1 + 24e^{-kt}}. \quad P(1) = 1200 \quad \Rightarrow \quad P(t) = \frac{P_0 M}{P_0 + (M - P_0)e^{-kt}}, \text{ we get } P = \frac{400 (10,000)}{1 + 24e^{-kt}} = \frac{10,000}{1 + 24e^{-kt}}. \quad P(1) = 1200 \quad \Rightarrow \quad P(1) = \frac{P_0 M}{P_0 + (M - P_0)e^{-kt}}, \text{ we get } P = \frac{10,000}{1 + 24e^{-kt}}.$$

$$1 + 24e^{-k} = \frac{100}{12} \implies e^k = \frac{288}{88} \implies k = \ln \frac{36}{11}$$
. So $P = \frac{10,000}{1 + 24e^{-t \ln(36/11)}} = \frac{10,000}{1 + 24 \cdot (11/36)^t}$.

(b)
$$5000 = \frac{10,000}{1 + 24(11/36)^t} \Rightarrow 24\left(\frac{11}{36}\right)^t = 1 \Rightarrow t \ln \frac{11}{36} = \ln \frac{1}{24} \Rightarrow t \approx 2.68 \text{ years.}$$

13. (a)
$$\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right) \Rightarrow \frac{d^2P}{dt^2} = k\left[P\left(-\frac{1}{M}\frac{dP}{dt}\right) + \left(1 - \frac{P}{M}\right)\frac{dP}{dt}\right] = k\frac{dP}{dt}\left(-\frac{P}{M} + 1 - \frac{P}{M}\right)$$

$$= k\left[kP\left(1 - \frac{P}{M}\right)\right]\left(1 - \frac{2P}{M}\right) = k^2P\left(1 - \frac{P}{M}\right)\left(1 - \frac{2P}{M}\right)$$