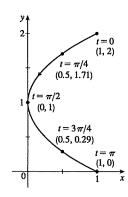
HW#7, SEC 10.1 SOLUTIONS

Sec	10.	1

936 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

6. $x = \cos^2 t$, $y = 1 + \cos t$, $0 \le t \le$	6.
--	----

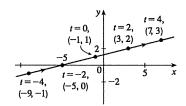
t	0	$\pi/4$	$\pi/2$	$3\pi/4$	π
x	1	0.5	0	0.5	1
y	2	1.707	1	0.293	0



7.
$$x = 2t - 1$$
, $y = \frac{1}{2}t + 1$

(a)

t	-4	-2	0	2	4
\boldsymbol{x}	-9	-5	-1	3	7
y	-1	0	1	2	3

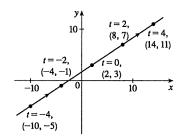


(b)
$$x = 2t - 1 \implies 2t = x + 1 \implies t = \frac{1}{2}x + \frac{1}{2}$$
, so $y = \frac{1}{2}t + 1 = \frac{1}{2}\left(\frac{1}{2}x + \frac{1}{2}\right) + 1 = \frac{1}{4}x + \frac{1}{4} + 1 \implies y = \frac{1}{4}x + \frac{5}{4}$

8.
$$x = 3t + 2$$
, $y = 2t + 3$

t	-4	-2	0	2	4
\boldsymbol{x}	-10	-4	2	8	14
y	-5	-1	3	7	11

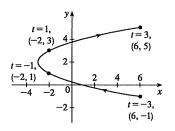
(b)
$$x = 3t + 2 \implies 3t = x - 2 \implies t = \frac{1}{3}x - \frac{2}{3}$$
, so $y = 2t + 3 = 2(\frac{1}{3}x - \frac{2}{3}) + 3 = \frac{2}{3}x - \frac{4}{3} + 3 \implies y = \frac{2}{3}x + \frac{5}{3}$

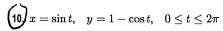


9.
$$x = t^2 - 3$$
, $y = t + 2$, $-3 \le t \le 3$

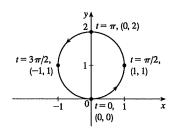
t	-3	-1	1	3
\boldsymbol{x}	6	-2	-2	6
y	-1	1	3	5

(b)
$$y = t + 2 \implies t = y - 2$$
, so $x = t^2 - 3 = (y - 2)^2 - 3 = y^2 - 4y + 4 - 3 \implies x = y^2 - 4y + 1, -1 \le y \le 5$



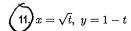


t	0	$\pi/2$	π	$3\pi/2$	2π
\boldsymbol{x}	0	1	0	-1	0
y	0	1	2	1	0



(b)
$$x = \sin t$$
, $y = 1 - \cos t$ [or $y - 1 = -\cos t$] \Rightarrow
 $x^2 + (y - 1)^2 = (\sin t)^2 + (-\cos t)^2 \Rightarrow x^2 + (y - 1)^2 = 1$.

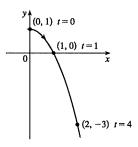
As t varies from 0 to 2π , the circle with center (0,1) and radius 1 is traced out.



t	0	1	2	3	4
\boldsymbol{x}	0	1	1.414	1.732	2
y	1	0	-1	-2	-3

(b) $x = \sqrt{t} \implies t = x^2 \implies y = 1 - t = 1 - x^2$. Since $t \ge 0$, $x \ge 0$.

So the curve is the right half of the parabola $y = 1 - x^2$.

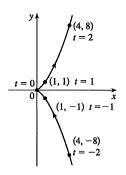


12. $x = t^2$, $y = t^3$

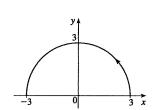
(a)

t	-2	-1	0	1	2
\boldsymbol{x}	4	1	0	1	4
y	-8	-1	0	1	8

(b) $y=t^3 \quad \Rightarrow \quad t=\sqrt[3]{y} \quad \Rightarrow \quad x=t^2=\left(\sqrt[3]{y}\right)^2=y^{2/3}. \quad t\in\mathbb{R}, y\in\mathbb{R}, x\geq 0.$



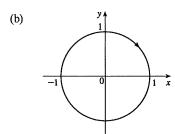
13. (a) $x = 3\cos t$, $y = 3\sin t$, $0 \le t \le \pi$ $x^{2} + y^{2} = 9\cos^{2}t + 9\sin^{2}t = 9(\cos^{2}t + \sin^{2}t) = 9$, which is the equation of a circle with radius 3. For $0 \le t \le \pi/2$, we have $3 \ge x \ge 0$ and $0 \le y \le 3$. For $\pi/2 < t \le \pi$, we have $0 > x \ge -3$ and $3 > y \ge 0$. Thus, the curve is the top half of the circle $x^2 + y^2 = 9$ traced counterclockwise.



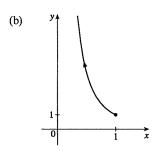
(b)

938 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

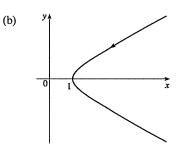
(a) $x = \sin 4\theta$, $y = \cos 4\theta$, $0 \le \theta \le \pi/2$ $x^2 + y^2 = \sin^2 4\theta + \cos^2 4\theta = 1$, which is the equation of a circle with radius 1. When $\theta = 0$, we have x = 0 and y = 1. For $0 \le \theta \le \pi/4$, we have $x \ge 0$. For $\pi/4 < \theta \le \pi/2$, we have $x \le 0$. Thus, the curve is the circle $x^2 + y^2 = 1$ traced clockwise starting at (0, 1).



15. (a) $x=\cos\theta,\quad y=\sec^2\theta,\quad 0\leq\theta<\pi/2.$ $y=\sec^2\theta=\frac{1}{\cos^2\theta}=\frac{1}{x^2}. \text{ For } 0\leq\theta<\pi/2, \text{ we have } 1\geq x>0$ and $1\leq y.$

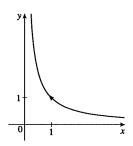


16. (a) $x=\csc t,\,y=\cot t,\,0< t<\pi$ $y^2-x^2=\cot^2 t-\csc^2 t=1. \text{ For }0< t<\pi, \text{ we have }x>1.$ Thus, the curve is the right branch of the hyperbola $y^2-x^2=1.$

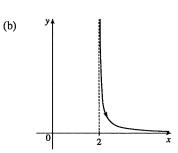


(b)

17. (a) $y = e^t = 1/e^{-t} = 1/x$ for x > 0 since $x = e^{-t}$. Thus, the curve is the portion of the hyperbola y = 1/x with x > 0.



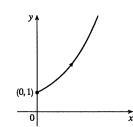
(18) (a) $x=t+2 \Rightarrow t=x-2$. y=1/t=1/(x-2). For t>0, we have x>2 and y>0. Thus, the curve is the portion of the hyperbola y=1/(x-2) with x>2.



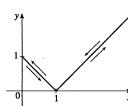
(b)

(b)

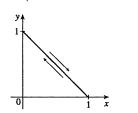
(b)



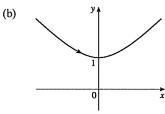
20. (a) $x=|t|,y=\left|1-|t|\right|=|1-x|.$ For all t, we have $x\geq 0$ and $y\geq 0$. Thus, the curve is the portion of the absolute value function y=|1-x| with $x\geq 0$.



21. (a) $x=\sin^2t$, $y=\cos^2t$. $x+y=\sin^2t+\cos^2t=1$. For all t, we have $0\leq x\leq 1$ and $0\leq y\leq 1$. Thus, the curve is the portion of the line x+y=1 or y=-x+1 in the first quadrant.



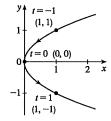
22. (a) $x=\sinh t, y=\cosh t \Rightarrow y^2-x^2=\cosh^2 t-\sinh^2 t=1.$ Since $y=\cosh t\geq 1,$ we have the upper branch of the hyperbola $y^2-x^2=1.$



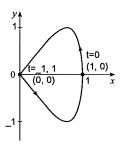
- 23. The parametric equations $x=5\cos t$ and $y=-5\sin t$ both have period 2π . When t=0, we have x=5 and y=0. When $t=\pi/2$, we have x=0 and y=-5. This is one-fourth of a circle. Thus, the object completes one revolution in $4\cdot\frac{\pi}{2}=2\pi$ seconds following a clockwise path.
- 24. The parametric equations $x=3\sin\left(\frac{\pi}{4}t\right)$ and $y=3\cos\left(\frac{\pi}{4}t\right)$ both have period $\frac{2\pi}{\pi/4}=8$. When t=0, we have x=0 and y=3. When t=2, we have x=3 and y=0. This is one-fourth of a circle. Thus, the object completes one revolution in $4\cdot 2=8$ seconds following a clockwise path.
- 25. $x = 5 + 2\cos \pi t$, $y = 3 + 2\sin \pi t$ $\Rightarrow \cos \pi t = \frac{x-5}{2}$, $\sin \pi t = \frac{y-3}{2}$. $\cos^2(\pi t) + \sin^2(\pi t) = 1$ \Rightarrow $\left(\frac{x-5}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$. The motion of the particle takes place on a circle centered at (5,3) with a radius 2. As t goes from 1 to 2, the particle starts at the point (3,3) and moves counterclockwise along the circle $\left(\frac{x-5}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$ to (7,3) [one-half of a circle].
- 26. $x = 2 + \sin t$, $y = 1 + 3\cos t$ \Rightarrow $\sin t = x 2$, $\cos t = \frac{y 1}{3}$. $\sin^2 t + \cos^2 t = 1$ \Rightarrow $(x 2)^2 + \left(\frac{y 1}{3}\right)^2 = 1$. The motion of the particle takes place on an ellipse centered at (2, 1). As t goes from $\pi/2$ to 2π , the particle starts at the point (3, 1) and moves counterclockwise three-fourths of the way around the ellipse to (2, 4).

940 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

- (27) $x = 5 \sin t$, $y = 2 \cos t$ \Rightarrow $\sin t = \frac{x}{5}$, $\cos t = \frac{y}{2}$. $\sin^2 t + \cos^2 t = 1$ \Rightarrow $\left(\frac{x}{5}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$. The motion of the particle takes place on an ellipse centered at (0,0). As t goes from $-\pi$ to 5π , the particle starts at the point (0,-2) and moves clockwise around the ellipse 3 times.
- 28. $y = \cos^2 t = 1 \sin^2 t = 1 x^2$. The motion of the particle takes place on the parabola $y = 1 x^2$. As t goes from -2π to $-\pi$, the particle starts at the point (0,1), moves to (1,0), and goes back to (0,1). As t goes from $-\pi$ to 0, the particle moves to (-1,0) and goes back to (0,1). The particle repeats this motion as t goes from 0 to 2π .
- 29. We must have $1 \le x \le 4$ and $2 \le y \le 3$. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].
- (a) From the first graph, we have $1 \le x \le 2$. From the second graph, we have $-1 \le y \le 1$. The only choice that satisfies either of those conditions is III.
 - (b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
 - (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
 - (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- 31. When t = -1, (x, y) = (1, 1). As t increases to 0, x and y both decrease to 0. As t increases from 0 to 1, x increases from 0 to 1 and y decreases from 0 to -1. As t increases beyond 1, x continues to increase and y continues to decrease. For t < -1, x and y are both positive and decreasing. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.</p>



32. When t = -1, (x, y) = (0, 0). As t increases to 0, x increases from 0 to 1, while y first decreases to -1 and then increases to 0. As t increases from 0 to 1, x decreases from 1 to 0, while y first increases to 1 and then decreases to 0. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.



33. When t = -1, (x, y) = (0, 1). As t increases to 0, x increases from 0 to 1 and y decreases from 1 to 0. As t increases from 0 to 1, the curve is retraced in the opposite direction with x decreasing from 1 to 0 and y increasing from 0 to 1. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.

