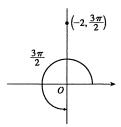
972 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.3 Polar Coordinates

1. (a) $(1, \frac{\pi}{4})$

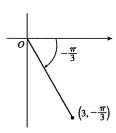
By adding 2π to $\frac{\pi}{4}$, we obtain the point $\left(1,\frac{9\pi}{4}\right)$, which satisfies the r>0 requirement. The direction opposite $\frac{\pi}{4}$ is $\frac{5\pi}{4}$, so $\left(-1,\frac{5\pi}{4}\right)$ is a point that satisfies the r<0 requirement.

(b) $\left(-2, \frac{3\pi}{2}\right)$



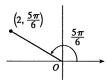
 $r > 0: (-(-2), \frac{3\pi}{2} - \pi) = (2, \frac{\pi}{2})$ $r < 0: (-2, \frac{3\pi}{2} + 2\pi) = (-2, \frac{7\pi}{2})$

(c) $(3, -\frac{\pi}{3})$



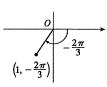
 $r > 0: (3, -\frac{\pi}{3} + 2\pi) = (3, \frac{5\pi}{3})$ $r < 0: (-3, -\frac{\pi}{3} + \pi) = (-3, \frac{2\pi}{3})$

(2) $(2, \frac{5\pi}{6})$



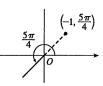
r > 0: $\left(2, \frac{5\pi}{6} + 2\pi\right) = \left(2, \frac{17\pi}{6}\right)$ r < 0: $\left(-2, \frac{5\pi}{6} - \pi\right) = \left(-2, -\frac{\pi}{6}\right)$

(b) $(1, -\frac{2\pi}{3})$



 $r > 0: (1, -\frac{2\pi}{3} + 2\pi) = (1, \frac{4\pi}{3})$ $r < 0: (-1, -\frac{2\pi}{3} + \pi) = (-1, \frac{\pi}{3})$

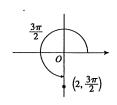
(c) $\left(-1, \frac{5\pi}{4}\right)$



r > 0: $\left(-(-1), \frac{5\pi}{4} - \pi\right) = \left(1, \frac{\pi}{4}\right)$

r < 0: $\left(-1, \frac{5\pi}{4} - 2\pi\right) = \left(-1, -\frac{3\pi}{4}\right)$

3. (a)



 $x=2\cos\frac{3\pi}{2}=2(0)=0$ and $y=2\sin\frac{3\pi}{2}=2(-1)=-2$ give us the Cartesian coordinates (0,-2).

(b)
$$(\sqrt{2}, \frac{\pi}{4})$$

 $x=\sqrt{2}\cos\frac{\pi}{4}=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=1 \text{ and } y=\sqrt{2}\sin\frac{\pi}{4}=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=1$ give us the Cartesian coordinates (1, 1).

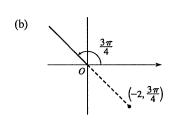
(c)
$$O \leftarrow \begin{pmatrix} -\frac{\pi}{6} \\ (-1, -\frac{\pi}{6}) \end{pmatrix}$$

$$x=-1\cos\Bigl(-rac{\pi}{6}\Bigr)=-1\Bigl(rac{\sqrt{3}}{2}\Bigr)=-rac{\sqrt{3}}{2}$$
 and
$$y=-1\sin\Bigl(-rac{\pi}{6}\Bigr)=-1\Bigl(-rac{1}{2}\Bigr)=rac{1}{2} ext{ give us the Cartesian}$$
 coordinates $\Bigl(-rac{\sqrt{3}}{2},rac{1}{2}\Bigr)$.

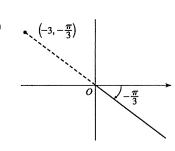
4. (a)
$$\frac{4\pi}{3}$$

$$\sqrt{4, \frac{4\pi}{3}}$$

 $x=4\cos{4\pi\over 3}=4\left(-{1\over 2}
ight)=-2$ and $y=4\sin{4\pi\over 3}=4\left(-{\sqrt 3}\over 2
ight)=-2\sqrt 3$ give us the Cartesian coordinates $\left(-2,-2\sqrt 3\right)$.



 $x=-2\cosrac{3\pi}{4}=-2igg(-rac{\sqrt{2}}{2}igg)=\sqrt{2}$ and $y=-2\sinrac{3\pi}{4}=-2igg(rac{\sqrt{2}}{2}igg)=-\sqrt{2}$ give us the Cartesian coordinates $(\sqrt{2},-\sqrt{2})$.



 $x = -3\cos\left(-\frac{\pi}{3}\right) = -3\left(\frac{1}{2}\right) = -\frac{3}{2} \text{ and}$ $y = -3\sin\left(-\frac{\pi}{3}\right) = -3\left(-\frac{\sqrt{3}}{2}\right) = \frac{3\sqrt{3}}{2} \text{ give us the Cartesian}$ coordinates $\left(-\frac{3}{2}, \frac{3\sqrt{3}}{2}\right)$.

(5) (a) x = -4 and y = 4 \Rightarrow $r = \sqrt{(-4)^2 + 4^2} = 4\sqrt{2}$ and $\tan \theta = \frac{4}{-4} = -1$ $[\theta = -\frac{\pi}{4} + n\pi]$. Since (-4, 4) is in the second quadrant, the polar coordinates are (i) $(4\sqrt{2}, \frac{3\pi}{4})$ and (ii) $(-4\sqrt{2}, \frac{7\pi}{4})$.

(b) x=3 and $y=3\sqrt{3}$ \Rightarrow $r=\sqrt{3^2+\left(3\sqrt{3}\right)^2}=\sqrt{9+27}=6$ and $\tan\theta=\frac{3\sqrt{3}}{3}=\sqrt{3}$ $[\theta=\frac{\pi}{3}+n\pi].$ Since $\left(3,3\sqrt{3}\right)$ is in the first quadrant, the polar coordinates are (i) $\left(6,\frac{\pi}{3}\right)$ and (ii) $\left(-6,\frac{4\pi}{3}\right)$.

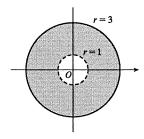
© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part

974 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

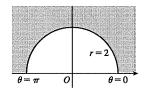
(6.) (a)
$$x = \sqrt{3}$$
 and $y = -1$ \Rightarrow $r = \sqrt{\left(\sqrt{3}\right)^2 + (-1)^2} = 2$ and $\tan \theta = \frac{-1}{\sqrt{3}}$ $[\theta = -\frac{\pi}{6} + n\pi]$. Since $(\sqrt{3}, -1)$ is in the fourth quadrant, the polar coordinates are (i) $(2, \frac{11\pi}{6})$ and (ii) $(-2, \frac{5\pi}{6})$.

(b)
$$x=-6$$
 and $y=0 \Rightarrow r=\sqrt{(-6)^2+0^2}=6$ and $\tan\theta=\frac{0}{-6}=0$ $[\theta=n\pi]$. Since $(-6,0)$ is on the negative x -axis, the polar coordinates are (i) $(6,\pi)$ and (ii) $(-6,0)$.

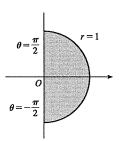
7. $1 < r \le 3$. The curves r=1 and r=3 represent circles centered at O with radius 1 and 3, respectively. So $1 < r \le 3$ represents the region outside the radius 1 circle and on or inside the radius 3 circle. Note that θ can take on any value.



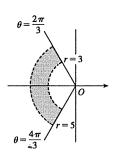
8. $r \geq 2$, $0 \leq \theta \leq \pi$. This is the region on or outside the circle r=2 in the first and second quadrants.



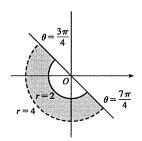
9. $0 \le r \le 1$, $-\pi/2 \le \theta \le \pi/2$. This is the region on or inside the circle r=1 in the first and fourth quadrants.



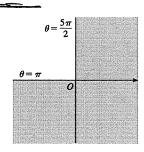
(10.)
$$3 < r < 5, \ 2\pi/3 \le \theta \le 4\pi/3$$



11. $2 \le r < 4$, $3\pi/4 \le \theta \le 7\pi/4$



12. $r \ge 0$, $\pi \le \theta \le 5\pi/2$. This is the region in the third, fourth, and first quadrants including the origin and points on the negative x-axis and positive y-axis.



13. Converting the polar coordinates $\left(4, \frac{4\pi}{3}\right)$ and $\left(6, \frac{5\pi}{3}\right)$ to Cartesian coordinates gives us $\left(4\cos\frac{4\pi}{3}, 4\sin\frac{4\pi}{3}\right) = \left(-2, -2\sqrt{3}\right)$ and $\left(6\cos\frac{5\pi}{3}, 6\sin\frac{5\pi}{3}\right) = \left(3, -3\sqrt{3}\right)$. Now use the distance formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{[3 - (-2)]^2 + [-3\sqrt{3} - (-2\sqrt{3})]^2}$$
$$= \sqrt{5^2 + (-\sqrt{3})^2} = \sqrt{25 + 3} = \sqrt{28} = 2\sqrt{7}$$

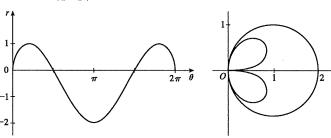
14. The points (r_1, θ_1) and (r_2, θ_2) in Cartesian coordinates are $(r_1 \cos \theta_1, r_1 \sin \theta_1)$ and $(r_2 \cos \theta_2, r_2 \sin \theta_2)$, respectively. The *square* of the distance between them is

$$\begin{split} &(r_2\cos\theta_2 - r_1\cos\theta_1)^2 + (r_2\sin\theta_2 - r_1\sin\theta_1)^2 \\ &= \left(r_2^2\cos^2\theta_2 - 2r_1r_2\cos\theta_1\cos\theta_2 + r_1^2\cos^2\theta_1\right) + \left(r_2^2\sin^2\theta_2 - 2r_1r_2\sin\theta_1\sin\theta_2 + r_1^2\sin^2\theta_1\right) \\ &= r_1^2 \left(\sin^2\theta_1 + \cos^2\theta_1\right) + r_2^2 \left(\sin^2\theta_2 + \cos^2\theta_2\right) - 2r_1r_2 (\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2) \\ &= r_1^2 - 2r_1r_2\cos(\theta_1 - \theta_2) + r_2^2, \end{split}$$

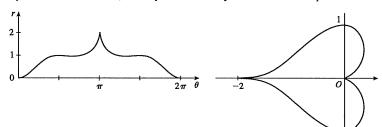
so the distance between them is $\sqrt{r_1^2-2r_1r_2\cos(\theta_1-\theta_2)+r_2^2}$.

- (15) $r^2 = 5 \Leftrightarrow x^2 + y^2 = 5$, a circle of radius $\sqrt{5}$ centered at the origin.
- **16.** $r = 4 \sec \theta \iff \frac{r}{\sec \theta} = 4 \iff r \cos \theta = 4 \iff x = 4$, a vertical line.
- 17. $r = 5\cos\theta \implies r^2 = 5r\cos\theta \iff x^2 + y^2 = 5x \iff x^2 5x + \frac{25}{4} + y^2 = \frac{25}{4} \iff (x \frac{5}{2})^2 + y^2 = \frac{25}{4},$ a circle of radius $\frac{5}{2}$ centered at $(\frac{5}{2}, 0)$. The first two equations are actually equivalent since $r^2 = 5r\cos\theta \implies r(r 5\cos\theta) = 0 \implies r = 0$ or $r = 5\cos\theta$. But $r = 5\cos\theta$ gives the point r = 0 (the pole) when $\theta = 0$. Thus, the equation $r = 5\cos\theta$ is equivalent to the compound condition $(r = 0 \text{ or } r = 5\cos\theta)$.
- **18.** $\theta = \frac{\pi}{3} \implies \tan \theta = \tan \frac{\pi}{3} \implies \frac{y}{x} = \sqrt{3} \iff y = \sqrt{3}x$, a line through the origin.
- 19. $r^2 \cos 2\theta = 1 \iff r^2(\cos^2\theta \sin^2\theta) = 1 \iff (r\cos\theta)^2 (r\sin\theta)^2 = 1 \iff x^2 y^2 = 1$, a hyperbola centered at the origin with foci on the x-axis.
- (20) $r^2 \sin 2\theta = 1 \iff r^2 (2 \sin \theta \cos \theta) = 1 \iff 2(r \cos \theta)(r \sin \theta) = 1 \iff 2xy = 1 \iff xy = \frac{1}{2}$, a hyperbola centered at the origin with foci on the line y = x.

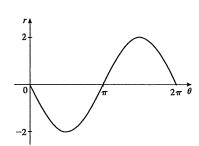
31. r has a maximum value of approximately 1 slightly before $\theta=\frac{\pi}{4}$ and slightly after $\theta=\frac{7\pi}{4}$. r has a minimum value of -2 when $\theta=\pi$. The graph touches the pole (r=0) when $\theta=0,\frac{\pi}{2},\frac{3\pi}{2}$, and 2π . Since r is positive in the θ -intervals $\left(0,\frac{\pi}{2}\right)$ and $\left(\frac{3\pi}{2},2\pi\right)$, and negative in the interval $\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$, the graph lies entirely in the first and fourth quadrants.

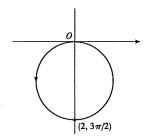


32. r increases from 0 to 1 (local max) in the interval $\left[0, \frac{\pi}{2}\right]$. It then decreases slightly, after which r increases to a maximum of 2 at $\theta = \pi$. The graph is symmetric about $\theta = \pi$, so the polar curve is symmetric about the polar axis.

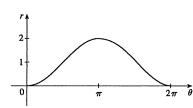


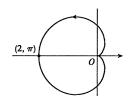
33. $r=-2\sin\theta$



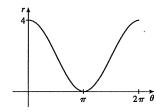


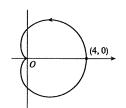
34. $r = 1 - \cos \theta$



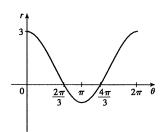


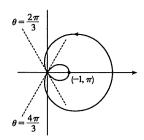
 $(35) r = 2(1 + \cos \theta)$



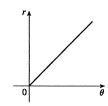


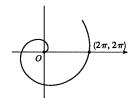
36. $r = 1 + 2\cos\theta$



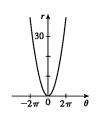


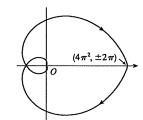
37. $r=\theta$, $\theta \geq 0$



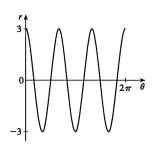


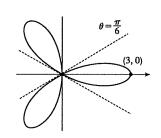
38. $r = \theta^2, -2\pi \le \theta \le 2\pi$



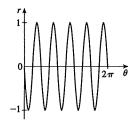


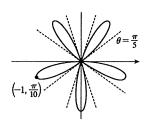
 $(39.)r = 3\cos 3\theta$



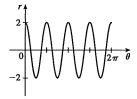


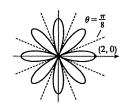
40. $r = -\sin 5\theta$

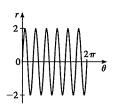


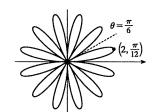


41. $r=2\cos 4\theta$

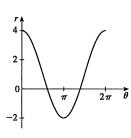


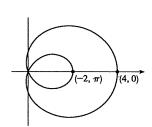




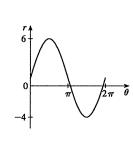


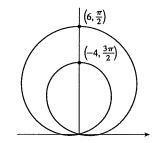
 $\boxed{\textbf{43}} \ r = 1 + 3\cos\theta$



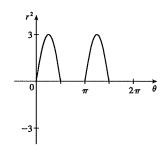


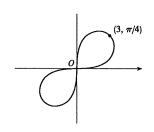
44. $r = 1 + 5\sin\theta$





45. $r^2 = 9 \sin 2\theta$





46. $r^2 = \cos 4\theta$

