HW#7, PART VI - A J'SECTION 10.5 Solutions (ON PARABOLAS)

1004 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

 $ds = \sqrt{(dx/d\theta)^2 + (dy/d\theta)^2} d\theta = \sqrt{r^2 + (dr/d\theta)^2} d\theta$ [see the derivation of Equation 10.4.6]. Therefore, for a polar equation rotated around $\theta = \frac{\pi}{2}$, $S = \int_a^b 2\pi r \cos\theta \sqrt{r^2 + (dr/d\theta)^2} d\theta$.

(b) As in the solution for Exercise 75(b), we can double the surface area generated by rotating the curve from $\theta = 0$ to $\theta = \frac{\pi}{4}$ to obtain the total surface area.

$$S = 2 \int_0^{\pi/4} 2\pi \sqrt{\cos 2\theta} \cos \theta \sqrt{\cos 2\theta + (\sin^2 2\theta)/\cos 2\theta} d\theta$$

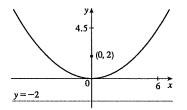
$$= 4\pi \int_0^{\pi/4} \sqrt{\cos 2\theta} \cos \theta \sqrt{\frac{\cos^2 2\theta + \sin^2 2\theta}{\cos 2\theta}} d\theta$$

$$= 4\pi \int_0^{\pi/4} \sqrt{\cos 2\theta} \cos \theta \frac{1}{\sqrt{\cos 2\theta}} d\theta = 4\pi \int_0^{\pi/4} \cos \theta d\theta$$

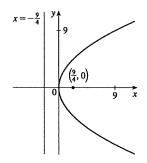
$$= 4\pi \left[\sin \theta \right]_0^{\pi/4} = 4\pi \left(\frac{\sqrt{2}}{2} - 0 \right) = 2\sqrt{2}\pi$$

10.5 Conic Sections

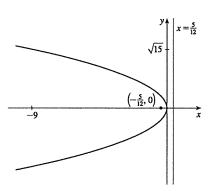
1. $x^2 = 8y$ and $x^2 = 4py \implies 4p = 8 \iff p = 2$. The vertex is (0,0), the focus is (0,2), and the directrix is y = -2.



2. $9x = y^2$, so $4p = 9 \Leftrightarrow p = \frac{9}{4}$. The vertex is (0,0), the focus is $(\frac{9}{4},0)$, and the directrix is $x = -\frac{9}{4}$.

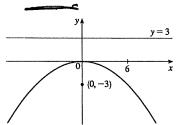


3. $5x + 3y^2 = 0 \Leftrightarrow y^2 = -\frac{5}{3}x$, so $4p = -\frac{5}{3} \Leftrightarrow p = -\frac{5}{12}$. The vertex is (0,0), the focus is $\left(-\frac{5}{12},0\right)$, and the directrix is $x = \frac{5}{12}$.

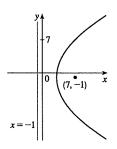


 $\sqrt{4}x^2 + 12y = 0 \iff x^2 = -12y$, so $4p = -12 \iff p = -3$.

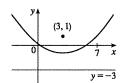
The vertex is (0,0), the focus is (0,-3), and the directrix is y=3.



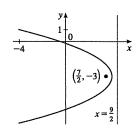
5. $(y+1)^2 = 16(x-3)$, so $4p = 16 \Leftrightarrow p = 4$. The vertex is (3,-1), the focus is (3+4,-1)=(7,-1), and the directrix is x = 3 - 4 = -1.



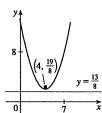
6. $(x-3)^2 = 8(y+1)$, so $4p = 8 \Leftrightarrow p = 2$. The vertex is (3,-1), the focus is (3, -1 + 2) = (3, 1), and the directrix is y = -1 - 2 = -3.



7. $y^2 + 6y + 2x + 1 = 0 \Leftrightarrow y^2 + 6y = -2x - 1 \Leftrightarrow$ $y^2 + 6y + 9 = -2x + 8 \Leftrightarrow (y+3)^2 = -2(x-4), \text{ so } 4p = -2 \Leftrightarrow$ $p=-\frac{1}{2}$. The vertex is (4,-3), the focus is $(\frac{7}{2},-3)$, and the directrix is $x = \frac{9}{2}$.



(8) $2x^2 - 16x - 3y + 38 = 0 \Leftrightarrow 2x^2 - 16x = 3y - 38 \Leftrightarrow$ $2(x^2 - 8x + 16) = 3y - 38 + 32 \Leftrightarrow 2(x - 4)^2 = 3y - 6 \Leftrightarrow$ $(x-4)^2 = \frac{3}{2}(y-2)$, so $4p = \frac{3}{2} \iff p = \frac{3}{8}$. The vertex is (4, 2), the focus is $(4, \frac{19}{8})$, and the directrix is $y = \frac{13}{8}$.



- 9. The equation has the form $y^2 = 4px$, where p < 0. Since the parabola passes through (-1, 1), we have $1^2 = 4p(-1)$, so 4p=-1 and an equation is $y^2=-x$ or $x=-y^2$. 4p=-1, so $p=-\frac{1}{4}$ and the focus is $\left(-\frac{1}{4},0\right)$ while the directrix is $x=\frac{1}{4}$.
- (10) The vertex is (2,-2), so the equation is of the form $(x-2)^2=4p(y+2)$, where p>0. The point (0,0) is on the parabola, so $4=4p(2) \Rightarrow 4p=2$. Thus, an equation is $(x-2)^2=2(y+2)$. 4p=2, so $p=\frac{1}{2}$ and the focus is $\left(2,-\frac{3}{2}\right)$ while the directrix is $y = -\frac{5}{2}$.

- **28.** $4x^2 = y + 4 \iff x^2 = \frac{1}{4}(y + 4)$. This is an equation of a *parabola* with $4p = \frac{1}{4}$, so $p = \frac{1}{16}$. The vertex is (0, -4) and the focus is $(0, -4 + \frac{1}{16}) = (0, -\frac{63}{16})$.
- **29.** $x^2 = 4y 2y^2 \Leftrightarrow x^2 + 2y^2 4y = 0 \Leftrightarrow x^2 + 2(y^2 2y + 1) = 2 \Leftrightarrow x^2 + 2(y 1)^2 = 2 \Leftrightarrow \frac{x^2}{2} + \frac{(y 1)^2}{1} = 1$. This is an equation of an *ellipse* with vertices at $(\pm \sqrt{2}, 1)$. The foci are at $(\pm \sqrt{2} 1, 1) = (\pm 1, 1)$.
- **30.** $y^2 2 = x^2 2x \iff y^2 x^2 + 2x = 2 \iff y^2 (x^2 2x + 1) = 2 1 \iff \frac{y^2}{1} \frac{(x 1)^2}{1} = 1$. This is an equation of a *hyperbola* with vertices $(1, \pm 1)$. The foci are at $(1, \pm \sqrt{1 + 1}) = (1, \pm \sqrt{2})$.
- 31. $3x^2 6x 2y = 1 \Leftrightarrow 3x^2 6x = 2y + 1 \Leftrightarrow 3(x^2 2x + 1) = 2y + 1 + 3 \Leftrightarrow 3(x 1)^2 = 2y + 4 \Leftrightarrow (x 1)^2 = \frac{2}{3}(y + 2)$. This is an equation of a *parabola* with $4p = \frac{2}{3}$, so $p = \frac{1}{6}$. The vertex is (1, -2) and the focus is $(1, -2 + \frac{1}{6}) = (1, -\frac{11}{6})$.
- 32. $x^2 2x + 2y^2 8y + 7 = 0 \Leftrightarrow (x^2 2x + 1) + 2(y^2 4y + 4) = -7 + 1 + 8 \Leftrightarrow (x 1)^2 + 2(y 2)^2 = 2 \Leftrightarrow \frac{(x 1)^2}{2} + \frac{(y 2)^2}{1} = 1$. This is an equation of an *ellipse* with vertices at $(1 \pm \sqrt{2}, 2)$. The foci are at $(1 \pm \sqrt{2} 1, 2) = (1 \pm 1, 2)$.
- 33. The parabola with vertex (0,0) and focus (1,0) opens to the right and has p=1, so its equation is $y^2=4px$, or $y^2=4x$.
- 34. The parabola with focus (0,0) and directrix y=6 has vertex (0,3) and opens downward, so p=-3 and its equation is $(x-0)^2=4p(y-3)$, or $x^2=-12(y-3)$.
- 35. The distance from the focus (-4,0) to the directrix x=2 is 2-(-4)=6, so the distance from the focus to the vertex is $\frac{1}{2}(6)=3$ and the vertex is (-1,0). Since the focus is to the left of the vertex, p=-3. An equation is $y^2=4p(x+1)$ $\Rightarrow y^2=-12(x+1)$.
- (36.) The parabola with vertex (2,3) and focus (2,-1) opens downward and has p=-1-3=-4, so its equation is $(x-2)^2=4p(y-3)$, or $(x-2)^2=-16(y-3)$.
 - 37. The parabola with vertex (3, -1) having a horizontal axis has equation $[y (-1)]^2 = 4p(x 3)$. Since it passes through $(-15, 2), (2 + 1)^2 = 4p(-15 3)$ \Rightarrow 9 = 4p(-18) \Rightarrow $4p = -\frac{1}{2}$. An equation is $(y + 1)^2 = -\frac{1}{2}(x 3)$.
 - 38. The parabola with vertical axis and passing through (0,4) has equation $y=ax^2+bx+4$. It also passes through (1,3) and (-2,-6), so

$$\begin{cases} 3=a+b+4 \\ -6=4a-2b+4 \end{cases} \Rightarrow \begin{cases} -1=a+b \\ -10=4a-2b \end{cases} \Rightarrow \begin{cases} -1=a+b \\ -5=2a-b \end{cases}$$

Adding the last two equations gives us 3a = -6, or a = -2. Since a + b = -1, we have b = 1, and an equation is $y = -2x^2 + x + 4$.