HW#7, Section 10,1 Solutions

SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS
937

(10)
$$x = \sin t$$
, $y = 1 - \cos t$, $0 \le t \le 2\pi$

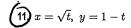
(a)

t	0	$\pi/2$	π	$3\pi/2$	2π
\boldsymbol{x}	0	1	0	-1	0
y	0	1	2	1	0

 $t = 3\pi/2,$ (-1, 1) $t = \pi/2,$ (1, 1) $t = \pi/2,$ (1, 1) (0, 0)

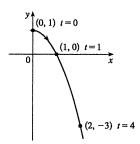
(b)
$$x = \sin t$$
, $y = 1 - \cos t$ [or $y - 1 = -\cos t$] \Rightarrow
 $x^2 + (y - 1)^2 = (\sin t)^2 + (-\cos t)^2 \Rightarrow x^2 + (y - 1)^2 = 1$.

As t varies from 0 to 2π , the circle with center (0, 1) and radius 1 is traced out.



(a)

t	0	1	2	3	4
x	0	1	1.414	1.732	2
y	1	0	-1	-2	-3



(b) $x = \sqrt{t} \implies t = x^2 \implies y = 1 - t = 1 - x^2$. Since $t \ge 0, x \ge 0$.

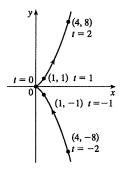
So the curve is the right half of the parabola $y = 1 - x^2$.

12.
$$x = t^2$$
, $y = t^3$

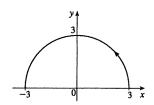
(a)

t	-2	-1	0	1	2
\boldsymbol{x}	4	1	0	1	4
y	-8	-1	0	1	8

(b)
$$y=t^3 \quad \Rightarrow \quad t=\sqrt[3]{y} \quad \Rightarrow \quad x=t^2=\left(\sqrt[3]{y}\right)^2=y^{2/3}. \quad t\in\mathbb{R},\,y\in\mathbb{R},\,x\geq0.$$



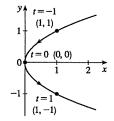
13. (a) $x=3\cos t, \quad y=3\sin t, \quad 0 \leq t \leq \pi$ $x^2+y^2=9\cos^2 t+9\sin^2 t=9(\cos^2 t+\sin^2 t)=9, \text{ which is the equation}$ of a circle with radius 3. For $0 \leq t \leq \pi/2$, we have $3 \geq x \geq 0$ and $0 \leq y \leq 3$. For $\pi/2 < t \leq \pi$, we have $0 > x \geq -3$ and $3 > y \geq 0$. Thus, the curve is the top half of the circle $x^2+y^2=9$ traced counterclockwise.



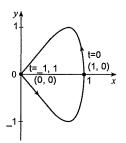
(b)

940 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

- 27. $x = 5 \sin t$, $y = 2 \cos t \implies \sin t = \frac{x}{5}$, $\cos t = \frac{y}{2}$. $\sin^2 t + \cos^2 t = 1 \implies \left(\frac{x}{5}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$. The motion of the particle takes place on an ellipse centered at (0,0). As t goes from $-\pi$ to 5π , the particle starts at the point (0,-2) and moves clockwise around the ellipse 3 times.
- 28. $y = \cos^2 t = 1 \sin^2 t = 1 x^2$. The motion of the particle takes place on the parabola $y = 1 x^2$. As t goes from -2π to $-\pi$, the particle starts at the point (0,1), moves to (1,0), and goes back to (0,1). As t goes from $-\pi$ to 0, the particle moves to (-1,0) and goes back to (0,1). The particle repeats this motion as t goes from 0 to 2π .
- **29.** We must have $1 \le x \le 4$ and $2 \le y \le 3$. So the graph of the curve must be contained in the rectangle [1,4] by [2,3].
- (a) From the first graph, we have $1 \le x \le 2$. From the second graph, we have $-1 \le y \le 1$. The only choice that satisfies either of those conditions is III.
 - (b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
 - (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
 - (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- 31. When t = -1, (x, y) = (1, 1). As t increases to 0, x and y both decrease to 0. As t increases from 0 to 1, x increases from 0 to 1 and y decreases from 0 to -1. As t increases beyond 1, x continues to increase and y continues to decrease. For t < -1, x and y are both positive and decreasing. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.</p>



32. When t = -1, (x, y) = (0, 0). As t increases to 0, x increases from 0 to 1, while y first decreases to -1 and then increases to 0. As t increases from 0 to 1, x decreases from 1 to 0, while y first increases to 1 and then decreases to 0. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.



33. When t = -1, (x, y) = (0, 1). As t increases to 0, x increases from 0 to 1 and y decreases from 1 to 0. As t increases from 0 to 1, the curve is retraced in the opposite direction with x decreasing from 1 to 0 and y increasing from 0 to 1.
We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.

