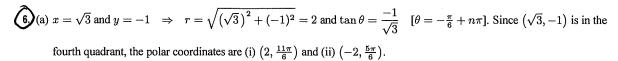
HW#7 SEC 10.3 SOLUTIONS

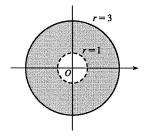
974

CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

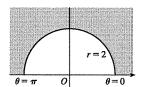


(b)
$$x=-6$$
 and $y=0 \Rightarrow r=\sqrt{(-6)^2+0^2}=6$ and $\tan\theta=\frac{0}{-6}=0$ $[\theta=n\pi]$. Since $(-6,0)$ is on the negative x -axis, the polar coordinates are (i) $(6,\pi)$ and (ii) $(-6,0)$.

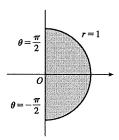
7. $1 < r \le 3$. The curves r=1 and r=3 represent circles centered at O with radius 1 and 3, respectively. So $1 < r \le 3$ represents the region outside the radius 1 circle and on or inside the radius 3 circle. Note that θ can take on any value.



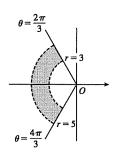
8. $r \ge 2, \ 0 \le \theta \le \pi$. This is the region on or outside the circle r=2 in the first and second quadrants.



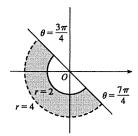
9. $0 \le r \le 1$, $-\pi/2 \le \theta \le \pi/2$. This is the region on or inside the circle r=1 in the first and fourth quadrants.



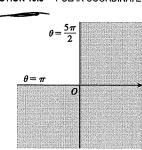
(10.) $3 < r < 5, \ 2\pi/3 \le \theta \le 4\pi/3$



11. $2 \le r < 4, 3\pi/4 \le \theta \le 7\pi/4$



12. $r \ge 0$, $\pi \le \theta \le 5\pi/2$. This is the region in the third, fourth, and first quadrants including the origin and points on the negative x-axis and positive y-axis.



13. Converting the polar coordinates $(4, \frac{4\pi}{3})$ and $(6, \frac{5\pi}{3})$ to Cartesian coordinates gives us $(4\cos\frac{4\pi}{3}, 4\sin\frac{4\pi}{3}) = (-2, -2\sqrt{3})$ and $(6\cos\frac{5\pi}{3}, 6\sin\frac{5\pi}{3}) = (3, -3\sqrt{3})$. Now use the distance formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{[3 - (-2)]^2 + [-3\sqrt{3} - (-2\sqrt{3})]^2}$$
$$= \sqrt{5^2 + (-\sqrt{3})^2} = \sqrt{25 + 3} = \sqrt{28} = 2\sqrt{7}$$

14. The points (r_1, θ_1) and (r_2, θ_2) in Cartesian coordinates are $(r_1 \cos \theta_1, r_1 \sin \theta_1)$ and $(r_2 \cos \theta_2, r_2 \sin \theta_2)$, respectively. The *square* of the distance between them is

$$\begin{split} &(r_2\cos\theta_2 - r_1\cos\theta_1)^2 + (r_2\sin\theta_2 - r_1\sin\theta_1)^2 \\ &= \left(r_2^2\cos^2\theta_2 - 2r_1r_2\cos\theta_1\cos\theta_2 + r_1^2\cos^2\theta_1\right) + \left(r_2^2\sin^2\theta_2 - 2r_1r_2\sin\theta_1\sin\theta_2 + r_1^2\sin^2\theta_1\right) \\ &= r_1^2 \left(\sin^2\theta_1 + \cos^2\theta_1\right) + r_2^2 \left(\sin^2\theta_2 + \cos^2\theta_2\right) - 2r_1r_2 \left(\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2\right) \\ &= r_1^2 - 2r_1r_2\cos(\theta_1 - \theta_2) + r_2^2, \end{split}$$

so the distance between them is $\sqrt{r_1^2-2r_1r_2\cos(\theta_1-\theta_2)+r_2^2}$

15. $r^2 = 5 \iff x^2 + y^2 = 5$, a circle of radius $\sqrt{5}$ centered at the origin.

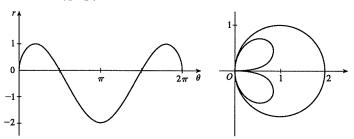
16. $r=4\sec\theta \iff \frac{r}{\sec\theta}=4 \iff r\cos\theta=4 \iff x=4$, a vertical line.

17. $r = 5\cos\theta \implies r^2 = 5r\cos\theta \iff x^2 + y^2 = 5x \iff x^2 - 5x + \frac{25}{4} + y^2 = \frac{25}{4} \iff (x - \frac{5}{2})^2 + y^2 = \frac{25}{4}$, a circle of radius $\frac{5}{2}$ centered at $(\frac{5}{2}, 0)$. The first two equations are actually equivalent since $r^2 = 5r\cos\theta \implies r(r - 5\cos\theta) = 0 \implies r = 0$ or $r = 5\cos\theta$. But $r = 5\cos\theta$ gives the point r = 0 (the pole) when $\theta = 0$. Thus, the equation $r = 5\cos\theta$ is equivalent to the compound condition $(r = 0 \text{ or } r = 5\cos\theta)$.

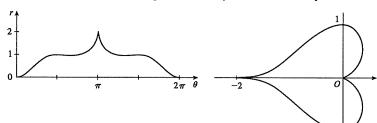
18. $\theta = \frac{\pi}{3} \implies \tan \theta = \tan \frac{\pi}{3} \implies \frac{y}{x} = \sqrt{3} \iff y = \sqrt{3}x$, a line through the origin.

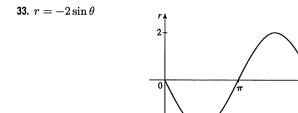
19. $r^2 \cos 2\theta = 1 \iff r^2 (\cos^2 \theta - \sin^2 \theta) = 1 \iff (r \cos \theta)^2 - (r \sin \theta)^2 = 1 \iff x^2 - y^2 = 1$, a hyperbola centered at the origin with foci on the x-axis.

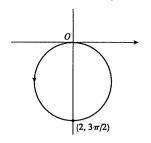
31. r has a maximum value of approximately 1 slightly before $\theta=\frac{\pi}{4}$ and slightly after $\theta=\frac{7\pi}{4}$. r has a minimum value of -2 when $\theta=\pi$. The graph touches the pole (r=0) when $\theta=0,\frac{\pi}{2},\frac{3\pi}{2}$, and 2π . Since r is positive in the θ -intervals $\left(0,\frac{\pi}{2}\right)$ and $\left(\frac{3\pi}{2},2\pi\right)$, and negative in the interval $\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$, the graph lies entirely in the first and fourth quadrants.

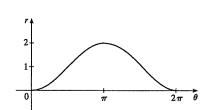


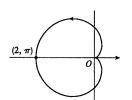
32. r increases from 0 to 1 (local max) in the interval $\left[0, \frac{\pi}{2}\right]$. It then decreases slightly, after which r increases to a maximum of 2 at $\theta = \pi$. The graph is symmetric about $\theta = \pi$, so the polar curve is symmetric about the polar axis.



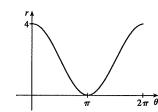


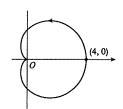






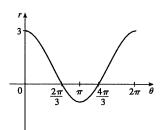
$$(35) r = 2(1 + \cos \theta)$$

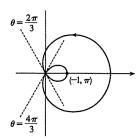




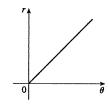
978 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

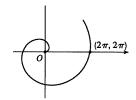
36. $r = 1 + 2\cos\theta$



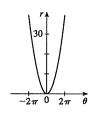


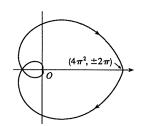
37. $r = \theta$, $\theta \ge 0$



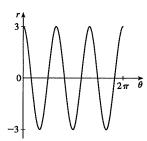


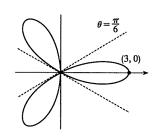
38. $r = \theta^2, -2\pi \le \theta \le 2\pi$



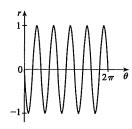


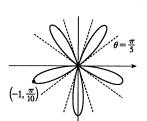
 $(39) r = 3\cos 3\theta$





40. $r = -\sin 5\theta$





41. $r = 2\cos 4\theta$

