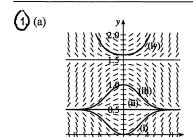
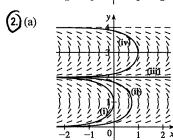
876 CHAPTER 9 DIFFERENTIAL EQUATIONS

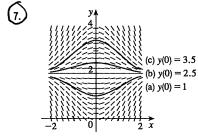
9.2 Direction Fields and Euler's Method



(b) It appears that the constant functions y=0.5 and y=1.5 are equilibrium solutions. Note that these two values of y satisfy the given differential equation $y'=x\cos\pi y$.



- (b) It appears that the constant functions y=0, y=2, and y=4 are equilibrium solutions. Note that these three values of y satisfy the given differential equation $y'=\tan\left(\frac{1}{2}\pi y\right)$.
- 3y'=2-y. The slopes at each point are independent of x, so the slopes are the same along each line parallel to the x-axis. Thus, III is the direction field for this equation. Note that for y=2, y'=0.
- $\mathbf{4}$ y' = x(2-y) = 0 on the lines x = 0 and y = 2. Direction field I satisfies these conditions.
- (5) y' = x + y 1 = 0 on the line y = -x + 1. Direction field IV satisfies this condition. Notice also that on the line y = -x we have y' = -1, which is true in IV.
- 6 $y' = \sin x \sin y = 0$ on the lines x = 0 and y = 0, and y' > 0 for $0 < x < \pi$, $0 < y < \pi$. Direction field II satisfies these conditions.



y ↑ 4 1
(c) y(0) = 3.5
(b) $y(0) = 2.5$ (a) $y(0) = 1$
7/////////////////////////////////////

	\boldsymbol{x}	y	$y' = \frac{1}{2}y$
	0	0	0
	. 0	1	0.5
	0	2	1
	0	-3	-1.5
	0	-2	-1

9.

