SECTION 11.4 THE COMPARISON TESTS

1083

(b) Use the Limit Comparison Test with
$$a_n=rac{n^2-n}{n^3+2}$$
 and $b_n=rac{1}{n}$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 - n}{n^3 + 2} \cdot \frac{n}{1} = \lim_{n \to \infty} \frac{n^3 - n^2}{n^3 + 2} = \lim_{n \to \infty} \frac{1 - 1/n}{1 + 2/n^3} = \frac{1 - 0}{1 + 0} = 1 > 0$$

Since $\sum_{n=2}^{\infty} \frac{1}{n}$ is a divergent (partial) p-series $[p=1 \le 1]$, the series $\sum_{n=2}^{\infty} \frac{n^2-n}{n^3+2}$ also diverges.

- 5. An inequality can be used to show that a series converges if its general term can be shown to be less than or equal to the general term of a known convergent series. The only inequality that satisfies this condition is given in part (c) since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent p-series [p=2>1].
- 6. An inequality can be used to show that a series diverges if its general term can be shown to be greater than or equal to the general term of a known divergent series. The only inequality that satisfies this condition is given in part (c) since $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ is half of the harmonic series, which is divergent.
- 7. $\frac{1}{n^3+8} < \frac{1}{n^3}$ for all $n \ge 1$, so $\sum_{n=1}^{\infty} \frac{1}{n^3+8}$ converges by direct comparison with $\sum_{n=1}^{\infty} \frac{1}{n^3}$, which converges because it is a p-series with p=3>1.
- 8. $\frac{1}{\sqrt{n}-1} > \frac{1}{\sqrt{n}}$ for all $n \ge 2$, so $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$ diverges by direct comparison with $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$, which diverges because it is a p-series with $p=\frac{1}{2} \le 1$.
- 9. $\frac{n+1}{n\sqrt{n}} > \frac{n}{n\sqrt{n}} = \frac{1}{\sqrt{n}}$ for all $n \ge 1$, so $\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$ diverges by direct comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, which diverges because it is a p-series with $p = \frac{1}{2} \le 1$.
- $\underbrace{ \underbrace{\frac{n}{10}}_{n^3+1} < \frac{n}{n^3+1} < \frac{n}{n^3} = \frac{1}{n^2} \text{ for all } n \geq 1, \text{ so } \sum_{n=1}^{\infty} \frac{n-1}{n^3+1} \text{ converges by direct comparison with } \sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ which converges because it is a } p\text{-series with } p=2>1.$
- 11. $\frac{9^n}{3+10^n} < \frac{9^n}{10^n} = \left(\frac{9}{10}\right)^n$ for all $n \ge 1$. $\sum_{n=1}^{\infty} \left(\frac{9}{10}\right)^n$ is a convergent geometric series $\left(|r| = \frac{9}{10} < 1\right)$, so $\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$ converges by the Direct Comparison Test.
- 12. $\frac{6^n}{5^n-1} > \frac{6^n}{5^n} = \left(\frac{6}{5}\right)^n$ for all $n \ge 1$. $\sum_{n=1}^{\infty} \left(\frac{6}{5}\right)^n$ is a divergent geometric series $\left(|r| = \frac{6}{5} > 1\right)$, so $\sum_{n=1}^{\infty} \frac{6^n}{5^n-1}$ diverges by the Direct Comparison Test.
- 13. For $n \ge 2$, $\ln n < n$, so $\frac{1}{\ln n} > \frac{1}{n}$. Thus, $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges by direct comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges because it is a p-series with $p=1 \le 1$ (the harmonic series).

23. Use the Limit Comparison Test with $a_n = \frac{n+1}{n^3+n}$ and $b_n = \frac{1}{n^2}$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(n+1)n^2}{n(n^2+1)} = \lim_{n \to \infty} \frac{n^2+n}{n^2+1} = \lim_{n \to \infty} \frac{1+1/n}{1+1/n^2} = 1 > 0. \text{ Since } \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is a convergent } p\text{-series}$$

[p=2>1], the series $\sum_{n=1}^{\infty} \frac{n+1}{n^3+n}$ also converges.

24. Use the Limit Comparison Test with $a_n = \frac{n^2 + n + 1}{n^4 + n^2}$ and $b_n = \frac{1}{n^2}$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(n^2 + n + 1)n^2}{n^2(n^2 + 1)} = \lim_{n \to \infty} \frac{n^2 + n + 1}{n^2 + 1} = \lim_{n \to \infty} \frac{1 + 1/n + 1/n^2}{1 + 1/n^2} = 1 > 0. \text{ Since } \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is a convergent } \frac{1}{n^2} = 1 > 0.$$

p-series [p=2>1], the series $\sum_{n=1}^{\infty} \frac{n^2+n+1}{n^4+n^2}$ also converges

25 Use the Limit Comparison Test with $a_n = \frac{\sqrt{1+n}}{2+n}$ and $b_n = \frac{1}{\sqrt{n}}$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\sqrt{1+n}\sqrt{n}}{2+n}=\lim_{n\to\infty}\frac{\sqrt{n^2+n}/\sqrt{n^2}}{(2+n)/n}=\lim_{n\to\infty}\frac{\sqrt{1+1/n}}{2/n+1}=1>0. \text{ Since }\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}\text{ is a divergent }p\text{-series }$$

[$p = \frac{1}{2} \le 1$], the series $\sum_{n=1}^{\infty} \frac{\sqrt{1+n}}{2+n}$ also diverges.

(26) Use the Limit Comparison Test with $a_n = \frac{n+2}{(n+1)^3}$ and $b_n = \frac{1}{n^2}$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2(n+2)}{(n+1)^3} = \lim_{n \to \infty} \frac{1 + \frac{2}{n}}{\left(1 + \frac{1}{n}\right)^3} = 1 > 0. \text{ Since } \sum_{n=3}^{\infty} \frac{1}{n^2} \text{ is a convergent (partial) } p\text{-series } [p=2>1],$$

the series $\sum_{n=3}^{\infty} \frac{n+2}{(n+1)^3}$ also converges.

27. Use the Limit Comparison Test with $a_n = \frac{5+2n}{(1+n^2)^2}$ and $b_n = \frac{1}{n^3}$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^3(5+2n)}{(1+n^2)^2} = \lim_{n \to \infty} \frac{5n^3+2n^4}{(1+n^2)^2} \cdot \frac{1/n^4}{1/(n^2)^2} = \lim_{n \to \infty} \frac{\frac{5}{n}+2}{\left(\frac{1}{n^2}+1\right)^2} = 2 > 0. \text{ Since } \sum_{n=1}^{\infty} \frac{1}{n^3} \text{ is a convergent } \frac{1}{n^3} = \frac{1}{n^3}$$

p-series [p=3>1], the series $\sum_{n=1}^{\infty} \frac{5+2n}{(1+n^2)^2}$ also converges.

28.
$$\frac{n+3^n}{n+2^n} > \frac{3^n}{n+2^n} > \frac{3^n}{2^n+2^n} = \frac{3^n}{2 \cdot 2^n} = \frac{1}{2} \left(\frac{3}{2}\right)^n$$
, so the series $\sum_{n=1}^{\infty} \frac{n+3^n}{n+2^n}$ diverges by direct comparison with

 $\frac{1}{2}\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^n$, which is a constant multiple of a divergent geometric series $[|r|=\frac{3}{2}>1]$. Or: Use the Limit Comparison

Test with $a_n = \frac{n+3^n}{n+2^n}$ and $b_n = \left(\frac{3}{2}\right)^n$.

29. $\frac{e^n+1}{ne^n+1} \ge \frac{e^n+1}{ne^n+n} = \frac{e^n+1}{n(e^n+1)} = \frac{1}{n}$ for $n \ge 1$, so the series $\sum_{n=1}^{\infty} \frac{e^n+1}{ne^n+1}$ diverges by direct comparison with the

divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$. Or: Use the Limit Comparison Test with $a_n = \frac{e^n + 1}{ne^n + 1}$ and $b_n = \frac{1}{n}$.