The Vector Equation of Line L

OP = $\vec{r} = <x, y, z>$ is a general point on Line L

$P_0 (x_0, y_0, z_0)$
$P_1 (x_1, y_1, z_1)$

$\vec{r}_0 = <x_0, y_0, z_0>$
$\vec{r}_1 = <x_1, y_1, z_1>$

$\vec{p}_p = \vec{r}_1 - \vec{r}_0 = \vec{v} = <a, b, c>$

\vec{v} (or any $k\vec{v}, k \neq 0$) is a direction vector for L

The Equations of Line L

The Vector Equation of Line L \[\vec{OP} = \vec{r} = \vec{r}_0 + t\vec{v}, \quad -\infty < t < \infty \]

\[<x, y, z> = <x_0, y_0, z_0> + t <a, b, c> \]

\[<x, y, z> = <x_0 + ta, y_0 + tb, z_0 + tc> \]

The parametric equations of Line L.

The line segment from \vec{r}_0 to \vec{r}_1 (along L), \vec{p}_p above, has equation: \[\vec{r} = (1-t)\vec{r}_0 + t\vec{r}_1, \quad 0 \leq t \leq 1. \]
To review: When line \(L \) has point \(P_0 = <x_0, y_0, z_0> \) on the line and it has direction vector \(\vec{v} = <a, b, c> \), its equations are:

Vector Equation: \(\vec{r} = \vec{r}_0 + t \vec{v}, \ -\infty < t < \infty \)

Parametric Equations:
\[
\begin{align*}
 x &= x_0 + at \\
 y &= y_0 + bt \\
 z &= z_0 + ct
\end{align*}
\]

Symmetric Equations:
\[
\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c} \quad (=t)
\]

Fact: If lines \(L_1 \) and \(L_2 \) have parallel direction vectors, then \(L_1 \) and \(L_2 \) are parallel lines or \(L_1 = L_2 \).

Fact: If lines \(L_1 \) and \(L_2 \) intersect and have orthogonal direction vectors, then \(L_1 \perp L_2 \).

Fact: If line \(L \) is parallel to the \(yz \)-plane, then the direction vector is \(\vec{v} = <0, b, c> \) and the symmetric equations are
\[
\begin{align*}
 x &= x_0 \\
 \frac{y-y_0}{b} &= \frac{z-z_0}{c}
\end{align*}
\]
(assuming \(b \neq 0 \) and \(c \neq 0 \)).

Similarly, when \(L \) is parallel to the \(xz \)-plane or to the \(xy \)-plane.
Problem: Line \(L \) has direction vector \(\vec{v} = \langle 9, 5, -3 \rangle \) and it passes through the point \(P(4, -14, 5) \).

Find the vector equation of \(L \), the parametric equations of \(L \), and the symmetric equations of \(L \).

Solution: Direction vector \(\vec{v} = \langle 9, 5, -3 \rangle \)

Point \(\vec{r}_0 = \langle 4, -14, 5 \rangle \)

Vector Equation:
\[
\vec{r} = \vec{r}_0 + t \vec{v} \\
\vec{r} = \langle 4, -14, 5 \rangle + t \langle 9, 5, -3 \rangle
\]

Parametric Equations:
\[
\langle x, y, z \rangle = \langle 4 + 9t, -14 + 5t, 5 - 3t \rangle
\]

\[
\begin{align*}
x &= 4 + 9t \\
y &= -14 + 5t \\
z &= 5 - 3t
\end{align*}
\]

\[
\begin{align*}
9t &= x - 4 \\
5t &= y + 14 \\
-3t &= z - 5
\end{align*}
\]

Write all as \(t = \) ______

Symmetric Equations:
\[
\begin{align*}
\frac{x - 4}{9} &= \frac{y + 14}{5} = \frac{z - 5}{-3} \\
(= t)
\end{align*}
\]

What point on line \(L \) has \(x \)-coord = 22?

Set \(x = 22 \) in the symmetric EQs and solve for \(y \) and \(z \).

\[
\begin{align*}
\frac{22 - 4}{9} &= \frac{18}{9} = \frac{2}{1} \\
2 &= \frac{y + 14}{5} \Rightarrow 10 = y + 14 \Rightarrow y = -4 \\
2 &= \frac{z - 5}{-3} \Rightarrow -6 = z - 5 \Rightarrow z = -1
\end{align*}
\]

Point \(A(22, -4, -1) \) is on line \(L \) (use \(t = 2 \) in the parametric equations).
Fact: If P_0 and P_1 are two points on line L, then the displacement vector $\vec{w} = \overrightarrow{P_0P_1}$ is a direction vector for line L.

Problem: Line L passes through points $P(2, -1, 8)$ and $Q(5, 6, -3)$.

Find the parametric equations for L.

Solution: $P(2, -1, 8)$ has position vector $\vec{r}_0 = \langle 2, -1, 8 \rangle$.

$Q(5, 6, -3)$ has position vector $\vec{r}_1 = \langle 5, 6, -3 \rangle$.

$\vec{w} = \overrightarrow{PQ} = \vec{r}_1 - \vec{r}_0 = \langle 5 - 2, 6 - (-1), -3 - 8 \rangle$

$\vec{w} = \langle 3, 7, -11 \rangle$ is a direction vector for L.

$\langle x, y, z \rangle = \langle 2, -1, 8 \rangle + t \langle 3, 7, -11 \rangle$

$\begin{align*}
x &= 2 + 3t \\
y &= -1 + 7t \\
z &= 8 - 11t
\end{align*}$

Problem: Find the vector equation and the parametric equations of the line segment from $(2, 4, -3)$ to $(3, 1, 1)$.

Solution: Position vector $\vec{r}_0 = \langle 2, 4, -3 \rangle$ represents $(2, 4, -3)$

Position vector $\vec{r}_1 = \langle 3, 1, 1 \rangle$ represents $(3, 1, 1)$

Vector Equation: $\vec{r} = (1-t)\vec{r}_0 + t\vec{r}_1 \Rightarrow \vec{r} = (1-t) \langle 2, 4, -3 \rangle$

$+ t \langle 3, 1, 1 \rangle$

$0 \leq t \leq 1$
Problem: Find the equations of line \(L_1 \) which passes through point \(P_0 (1, 6, 2) \) and which is parallel to the line \(L_2 \), where line \(L_2 \) passes through \(P_1 (5, 4, 8) \) and \(P_2 (9, 4, 0) \).

Solution: Since \(L_1 \parallel L_2 \), the direction vector for \(L_2 \) can also serve as a direction vector for \(L_1 \). The vector \(\overrightarrow{P_1P_2} = \langle 9-5, 4-4, 0-8 \rangle = \langle 4, 0, -8 \rangle \) can serve as a direction vector for \(L_2 \), but \(\overrightarrow{v} = \frac{1}{4} \langle 4, 0, -8 \rangle = \langle 1, 0, -2 \rangle \) can also be a direction vector for \(L_2 \) and so also for \(L_1 \).

The vector equation of \(L_1 \) is \(\overrightarrow{r} = \langle 1, 6, 2 \rangle + t \langle 1, 0, -2 \rangle \)

\[\langle x, y, z \rangle = \langle 1 + t, 6 + 0t, 2 + (-2)t \rangle \]

- \(x = 1 + t \)
- \(y = 6 \)
- \(z = 2 - 2t \)

Parametric equations: \(L_1 \)

\[t = x - 1 \]

\[z - 2 = -2t \]

\[t = \frac{z - 2}{-2} \]

Symmetric equations: \(x - 1 = \frac{z - 2}{-2} \), \(y = 6 \), \(z = 2 \)

Note: \(L_1 \) is parallel to the \(xz \)-plane.