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Abstract

We consider the problem of optimal investment and consumption when the investment oppor-
tunity is represented by a hedge-fund charging proportional fees on profit. The value of the fund
evolves as a geometric Brownian motion and the performance of the investment and consumption
strategy is measured using discounted power utility from consumption on infinite horizon. The
resulting stochastic control problem is solved using dynamic programming arguments. We show by
analytical methods that the associated Hamilton-Jacobi-Bellman equation has a smooth solution,
and then obtain the existence and representation of the optimal control in feedback form using
verification arguments.
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1 Introduction

Investment funds (hedge funds, for example) charge different kinds of fees to the investors. Some of the
most typical fees are fixed proportions of the total size of investment, paid as a percentage per year,
and also, very often, a provision to charge a fixed proportion of the profit on investment, whenever
profit is made. The industry standard for hedge-funds is the so called “2/20-rule”: 2% per year of
the total investment and 20% percent of the additional profits are paid to the fund manager. Other
common fee structures are 1% per year and up to 50% of the profits. In order to pay profit-fees, the
total size of the achieved profit of the agent is followed. Whenever the maximum to day, the so called
high-water mark, exceeds the previously attained historic maximum, the fixed proportion of the profit
(relative to the previous maximum) is charged by the fund manager. The goal of the present paper
is to model optimal investment and consumption in such a fund as a stochastic control problem and
analyze it using dynamic programming.

While optimal investment in one or more assets, usually having the meaning of stocks, with the
possibility of buying/selling them for the same price and also the possibility of borrowing/lending cash
for the same rate is a classical topic and well understood in a very general mathematical framework,
there is also a large more recent literature related to the investment in markets with frictions. Trans-
action costs is the prime example of market imperfections: the papers [5], [16], [17] and [10] are just
a few examples of the growing literature on the topic. We study here a new kind of possible frictions
affecting investment, namely the fees that are paid on the profit of the investment in a hedge-fund as
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described above, the so called high -watermark profit fees. Mathematically, this problem does not fit in
the existing literature related to investment with frictions/constraints, because the existing literature
mainly addresses the constraints associated to investing directly in the equities.

A number of papers recently considered the presence of high-watermark fees from the point of view
of the fund manager. Guasoni and Obloj [9] study the problem of a fund manager with large time
horizon and constant investment opportunity, who maximizes his/her expected utility from accumu-
lated profit fees. This paper is closest to our work since the equation describing the evolution of the
fund share in [9] has similar path-wise solutions to the state equation describing the evolution of the
investor’s wealth in the present work. However, the stochastic control problem in [9] is different from
ours. Panagea and Westerfield [14] consider a risk-neutral fund manager maximizing the present value
of future fees. Grossman, Ingersol Jr. and Ross [7] study the incentive that the high-watermark fees
represent for the fund manager, and provide a closed form solution for the high-watermark provision
as a claim on the investor’s wealth. The effect of the high-watermark fees on the investment manager’s
behavior is to seek long term growth, which is consistent with the investor’s objective, see [1], [2].

To the best of our knowledge, the effect of the high-watermark fees on the investor decisions is not
yet addressed in the literature. In order to understand this effect, we model the fund share/unit price
exogenously. The investor is making the trading decisions. The fund charges the profit fee for the
service of offering a positive expected return for the investor. This modeling approach describes well
the real-world applications. We are interested in analyzing the behavior of the investor who can only
invest in the fund and the money market. The main goal is to understand how the high-watermark fee
changes the behavior of the investor, compared to the case when the fund has an identical evolution
but no profit fees are paid.

The main findings of the paper can be summarized as follows: first, the optimal investment problem
can be modeled as the stochastic control of a two-dimensional reflected diffusion. Then, the control
problem is well posed (there exist unique optimal controls), and solving the problem can be reduced
to finding the smooth solution of the associated Hamilton-Jacobi-Bellman equation. The numerical
results show that, compared to the case of no fee (the classical Merton problem), the fees change the
behavior of the investor with reasonable levels of risk aversion by making the investor invest more in the
fund when the high-watermark is reached, in order to increase the high-watermark and avoid paying
future fees (see Remark 4.3). When the investor is far from paying fees, the investment/consumption
strategies are very close to those corresponding to paying no fees. This is proved analytically and can
also be seen from the numerics.

Since our model consists in controlling a reflected diffusion, where the reflection is actually coming
from a running maximum, our problem is technically related to the problem of optimal investment
with draw-down constrains in [8], [4], [15] and [6]. However, unlike the papers [15] and [6], our problem
does not have a closed form solution. Therefore we need to prove that the Hamilton-Jacobi-Bellman
equation has a smooth solution. We prove this analytically, using Perron’s method to obtain existence
of a viscosity solution and then upgrade regularity. Our analysis allows us to avoid proving the
Dynamic Programming Principle, and the measurability technicalities associated with it. The reason
why there is no closed form solution, as opposed to the problem of draw-down constraints in [15]
and [6] is the fact that consumption is present in the running-maximum. This is an important part
of our model, and comes form the fact that fees are assessed based on profit, independently of the
consumption choices of the investor.

The paper is organized as follows: in Section 2.1 we model optimal investment/consumption as a
stochastic control problem. In Section 3 we present the main results. We analyze the impact of the
high-watermark fee in Section 4 and present the conclusions. Since the control problem does not have
a closed-form solution, we complement the analysis with some numerical case-studies in Subsection
4.3. For convenience of the reader, we defer the technical proofs to Section 5. More precisely, we
first show in Subsection 5.1 that the Hamilton-Jacobi-Bellman equation has a viscosity solution by
Perron’s method, and then we upgrade its regularity in Subsection 5.2. We go over the verification
arguments in Subsection 5.3.
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2 The model

2.1 A general model of profits from dynamic investment in a hedge-fund

Consider an investor who chooses as investment vehicle a risky fund (hedge-fund) with share/unit
price Ft at time t. We assume that the investor can freely move money in and out of the risky fund
and therefore continuously rebalance her investment. If the investor chooses to hold θt capital in the
fund at time t and no fees of any kind are imposed, then her accumulated profit from investing in the
fund evolves as {

dPt = θt
dFt
Ft
, 0 ≤ t <∞

P0 = 0.

Assume now that a proportion λ > 0 of the profits achieved by investing in the fund is paid by the
investor to the fund manager. The fee is a commission to the fund manager for offering an investment
opportunity for the investor (usually with a positive expected return). The fund manager keeps track
of the accumulated profit that the investor made by holding the fund shares. More precisely, the
manager tracks the high-watermark of the investor’s achieved profit

Mt , sup
0≤s≤t

Ps.

Anytime the high-water mark increases, a λ percentage of this increase is paid to the fund manager,
i.e., λ∆Mt = λ(Mt+∆t−Mt) is paid by the investor to the manager in the interval [t, t+∆t]. Therefore,
the evolution of the profit Pt of the investor is given by{

dPt = θt
dFt
Ft
− λdMt, P0 = 0

Mt = sup0≤s≤t Ps.
(1)

We emphasize that the fund price process F is exogenous to the investor.

Remark 2.1 1. There exist several kinds of hedge-funds. For some, the accounting for the purpose
of assessing fees is done per share, so for each share bought/sold fees are computed separately,
and the accounting is based on the high-watermark of the fund as a whole. Alternatively, the
accounting is done per personal account of the investor, who is actually allowed to rebalance his
portfolio, and fees are assessed the way described above.

2. While dynamic investment in a hedge-fund is the original motivation for our equation (2), this
is also a good model of taxation.1 More precisely, this is a model of capital gains taxation at the
rate λ, in case the taxes are paid at the time the gain is realized. Past losses are deducted from
gains in order to asses taxes exactly the way described in equation (2). If we decide to consider
this interpretation of the model, then F has the meaning of any risky/asset (stock) and multiple
assets F can be considered.

While this is usually not done in practice, for mathematical reasons related to dynamic programming,
we can assume that the investor is given an initial high-watermark for her profits, i ≥ 0. This way,
the profits of the investor will not be taxed before P reaches at least value i. More precisely, for fixed
i ≥ 0, we have the evolution of the profits P (and the high-watermark of the profits M) given by{

dPt = θt
dFt
Ft
− λdMt, P0 = 0

Mt = sup0≤s≤t(Ps ∨ i).
(2)

Equation (2) is implicit, so the existence and uniqueness of the solution should be analyzed carefully.
This is done in Proposition 2.1 below, and fortunately, can be done in closed form path-wise. A similar
representation appears in the Appendix of Guasoni and Obloj [9]. The paper [9] studies a different

1We thank Paolo Guasoni who pointed out this interpretation.
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optimization problem, related to maximizing utility of the fund manager as opposed to the utility of
the investor in our case. However, their state equation is similar to our equation (2), so we resort to
the same path-wise representation.

Proposition 2.1 Assume that the share/unit prices process F is a continuous and strictly positive
semimartingale. Assume also that the predictable processes θ is such that the accumulated profit process
corresponding to the trading strategy θ, in case no profit fees are imposed, namely

It =
∫ t

0
θu
dFu

Fu
, 0 ≤ t <∞,

is well defined. Then equation (2) has a unique solution, which can be represented path-wise by

Pt = It −
λ

1 + λ
sup

0≤s≤t
[Is − i]+, 0 ≤ t <∞, (3)

Mt = i+
1

1 + λ
max
0≤s≤t

[Is − i]+, 0 ≤ t <∞. (4)

Proof: Equation (2) can be rewritten as

(Pt − i) + λ sup
0≤s≤t

[Ps − i]+ = It − i, 0 ≤ t <∞.

Taking the positive part and the supremum on both sides we get

(1 + λ)(Mt − i) = (1 + λ) sup
0≤s≤t

[Ps − i]+ = sup
0≤s≤t

[Is − i]+, 0 ≤ t <∞.

Replacing this equality in (2) we finish the proof of uniqueness. Existence follows easily, by checking
that the process in (3) is a solution of (2). ♦

2.2 Optimal investment and consumption in a special model

We now assume that the investor starts with initial capital x > 0 and the only additional investment
opportunity is the money market paying zero interest rate. The investor is given the initial high-
watermark i ≥ 0 for her profits. We further assume that the investor consumes at a rate γt > 0 per
unit of time. Consumption can be made either from the money market account or from the risky
fund, as wealth can be moved from one another at any time. We denote by

Ct ,
∫ t

0
γsds, 0 ≤ t <∞,

the accumulated consumption. Since the money market pays zero interest rate, the wealth Xt of the
investor at time t is given as initial wealth plus profit from the fund minus accumulated consumption

Xt = x+ Pt − Ct, 0 ≤ t <∞.

Taking this into account, the high-watermark of investor’s achieved profit can be computed by tracking
her wealth and accumulated consumption. More precisely, the high-watermark can be represented as

Mt = sup
0≤s≤t

[(Xs + Cs − x) ∨ i] + = i+ sup
0≤s≤t

[{Xs + Cs} − n]+ ,

where n , x+ i ≥ x > 0. The investor’s wealth follows the evolution equation{
dXt = θt

dFt
Ft
− γtdt− λdMt, X0 = x

Mt = i+ sup0≤s≤t

[{
Xs +

∫ s
0 γudu

}
− n

]+
.

(5)
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So far, this is a general model of investment/consumption in a hedge-fund, which is also a good model
of taxation as pointed out in Remark 2.1.

In what follows, we choose a particular model for which we solve the problem of optimal investment
and consumption by dynamic programming. More precisely, we assume that the fund share/unit price
F evolves as a geometric Brownian motion, which means

dFt

Ft
= αdt+ σdWt, 0 ≤ t <∞.

Here (Wt)0≤t<∞ is a Brownian motion on the filtered probability space (Ω,F , (Ft)0≤t<∞,P), where
the filtration (Ft)0≤t<∞ satisfies the usual conditions. With these notation, equation (5) for the wealth
of the investor becomes {

dXt =
(
θtα− γt

)
dt+ θtσdWt − λdMt, X0 = x

Mt = i+ sup0≤s≤t

[{
Xs +

∫ s
0 γudu

}
− n

]+
.

(6)

In order to use dynamic programming, we want to represent the control problem using a state process
of minimal dimension. As usual, the wealth X has to be a part of the state. Simply using (X,M) as
state is not a possibility, since M does not contain the information on past consumption, just of past
profits. In order to choose the additional state(s), we observe that the fee is being paid as soon as the
current profit Pt = Xt + Ct − x (current wealth plus accumulated consumption minus initial wealth)
hits the high-watermark Mt = i+ sup0≤s≤t [(Xt + Ct)− n]+. In other words, fees are paid whenever

Xt + Ct − n = sup
0≤s≤t

[(Xt + Ct)− n]+ ,

which is the same as X = N for

Nt , n+ sup
0≤s≤t

[(Xs + Cs)− n]+ − Ct = sup
0≤s≤t

({Xs + Cs} ∨ n)− Ct ≥ Xt.

We now choose as state process the two-dimensional process (X,N) which satisfies X ≤ N and is
reflected whenever X = N . The controlled state process (X,N) follows the evolution{

dXt =
(
θtα− γt

)
dt+ θtσdWt − λ(dNt + γtdt), X0 = x

Nt = sup0≤s≤t

({
Xs +

∫ s
0 γudu

}
∨ n
)
−
∫ t
0 γudu.

(7)

Equation (7) is again implicit, as is equation (2). The path-wise representation in Proposition 2.1 can
be easily translated into a path-wise solution for (7). More precisely, we have the following proposition,
whose proof is a direct consequence of Proposition 2.1, so we omit it.

Proposition 2.2 Assume that the predictable processes (θ, γ) satisfy the following integrability prop-
erty:

P
(∫ t

0
(|θu|2 + γu)du <∞, (∀) 0 ≤ t <∞

)
= 1. (8)

Denote by

Yt =
∫ t

0
θu(αdu+ σdWu), Ct =

∫ t

0
γudu, 0 ≤ t <∞,

the accumulated profit process corresponding to the trading strategy θ, in case no profit fees are imposed
and the accumulated consumption. Equation (7) has a unique solution, which can be represented path-
wise by

Xt = x+ Yt − Ct −
λ

1 + λ
sup

0≤s≤t
[Ys − i]+, 0 ≤ t <∞, (9)

Nt = n+
1

1 + λ
sup

0≤s≤t
[Ys − i]+ − Ct, 0 ≤ t <∞. (10)
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The high-watermark is computed as

Mt = i+
1

1 + λ
max
0≤s≤t

[Ys − i]+.

Fix an initial capital x > 0 and an initial high-watermark of profits i ≥ 0. Recall that n , x+i ≥ x.
An investment/consumption strategy (θ, γ) is called admissible with respect to the initial data (x, n) if
it satisfies the integrability conditions (8), the consumption stream is positive (γt ≥ 0) and the wealth
is strictly positive: Xt > 0 for all times t. We denote by A(x, n) the set of all admissible strategies
at (x, n). Admissible strategies can be equivalently represented in terms of the proportions π = θ/X
and c = γ/X. Surprisingly, we do not have a similar path-wise representation for (X,N) in terms of
(π, c) as in Proposition 2.2, unless c = 0 as in [9], when one can solve path-wise for logX.

We model the preferences of the investor by the well known concept of expected utility from con-
sumption. Namely, we consider a concave utility function U : (0,∞) → R to define the expected utility
from consumption E[

∫∞
0 e−βtU(ct)dt]. The discount factor β > 0 accounts for either impatience or for

the the idea that “whatever happens later matters less”. In this model, the problem of optimal invest-
ment/consumption amounts to finding, for each fixed (x, n), (the) optimal (θ, γ) in the optimization
problem

V (x, n) , sup
(θ,γ)∈A(x,n)

E
[∫ ∞

0
e−βtU(γt)dt

]
, 0 < x ≤ n. (11)

The function V defined above is called the value function. We further assume that the agent has
homogeneous preferences, meaning that the utility function U has the particular form

U(γ) =
γ1−p

1− p
, γ > 0,

for some p > 0, p 6= 1 called relative risk aversion coefficient.

Remark 2.2 In our framework, we can easily analyze the case when, in addition to the proportional
profit-fee λ, the investor pays a continuous proportional fee with size ν > 0 (percentage of the wealth
under investment management per units of time). In order to do this we just need to reduce the size
of the excess return α by the proportional fee to α− ν in the evolution of the fund share/unit.

Before we proceed, we would like to point out that, mathematically, the optimization problem (11)
amounts to controlling a two-dimensional reflecting diffusion. More precisely, using the controls (θ, γ)
the investor controls the diffusion (X,N) in (7) which is restricted to the domain {0 < x ≤ n} and is
reflected on the diagonal {x = n} in the direction given by the vector

r̃ ,

(
−λ

1

)
.

The reflection comes at the rate dMt, where M is the high-watermark. More precisely, equation (7)
can be rewritten as

d

(
Xt

Nt

)
=
( (

θtα− γt

)
dt+ θtσdWt

−γtdt

)
+ r̃dMt, (12)

where ∫ t

0
I{Xs 6=Ns}dMs = 0.

Fortunately, the reflected equation (12) can be solved closed-form in terms of (θ, γ) by Proposition
2.2.

The state equation (7) and therefore (12) are obtained based on the assumption that the money
market pays zero interest, and hinges on the observation that tracking the wealth X and the accumu-
lated consumption C allows to recover the high-watermark M . Using a different state variable, we can
analyze more general models, including interest rates, hurdles, and additional investment opportuni-
ties. This is the subject of work in progress and will be presented in a forthcoming paper. The main
goal of the present paper is to analyze the impact of fees on the investment/consumption strategies.
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3 Dynamic Programming and Main Results

3.1 Formal Derivation of the HJB Equation

The result below is a simple application of Itô’s lemma and is easiest to see in the formulation (12) of
the state equation (7).

Lemma 3.1 Let v be a C2 function on {(x, n) ∈ R2; 0 < x ≤ n} and (X,N) a solution to the state
equation (7) for (θ, γ) ∈ A(x, n). Then

d

(∫ t

0
e−βsU(γs)ds+ e−βtv(Xt, Nt)

)
=

e−βt

{
− βv(Xt, Nt) + U(γt) + (αθt − γt)vx(Xt, Nt) +

1
2
σ2θ2

t vxx(Xt, Nt)− γtvm(Xt, Nt)
}
dt

+e−βt

{
− λvx(Xt, Nt) + vn(Xt, Nt)

}
dMt + σe−βtθtvx(Xt, Nt)dWt,

where Mt = Nt +
∫ t
0 γsds− x.

Taking into account that dM is a singular measure with support on the set of times {t ≥ 0 : Xt = Nt},
we can formally write down the Hamilton-Jacobi-Bellman equation ((HJB) in the sequel):

sup
γ≥0,θ

{
−βv + U(γ) + (αθ − γ)vx +

1
2
σ2θ2vxx − γvn

}
= 0, for x > 0, n > x,

−λvx(x, x) + vn(x, x) = 0, for x > 0.

If we can find a smooth solution for the HJB then the optimal consumption will actually be given in
feedback form by

γ̂(x, n) = I(vx(x, n) + vn(x, n)), (13)

where I , U ′−1 is the inverse of marginal utility. In addition, we expect the optimal amount invested
in the fund π̂ to be given by

θ̂(x, n) = − α

σ2

vx(x, n)
vxx(x, n)

(14)

and that the smooth solution of the HJB is actually the value function, namely that

v(x, n) = V (x, n), 0 < x ≤ n,

where V was defined in (11).

3.2 Dimension Reduction

As mentioned above, we expect that the solution of the (HJB) is actually the value function for the
optimization problem (11). Therefore, we can use the homotheticity property for the power utility
function to reduce the number of variables to only one. More precisely, we expect that

v(x, n) = x1−pv
(
1,
n

x

)
, x1−pu(z) for z ,

n

x
.

In addition, instead of looking for the optimal amounts θ̂(x, n) and γ̂(x, n) in (14) and (13) we look
for the proportions

ĉ(x, n) =
I(vx(x, n) + vn(x, n))

x
, (15)

and
π̂(x, n) = − α

σ2

xvx(x, n)
x2vxx(x, n)

. (16)
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Since

vn(x, n) = u′(z) · x−p,

vx(x, n) =
(
(1− p)u(z)− zu′(z)

)
· x−p,

vxx(x, n) =
(
−p(1− p)u(z) + 2pzu′(z) + z2u′′(z)

)
· x−1−p,

(17)

we get the one-dimensional HJB equation for u(z), z > 1:

sup
c≥0,π

{
−βu+

c1−p

1− p
+
(
θα− c

)(
(1− p)u− zu′

)
− cu′ +

1
2
π2σ2

(
−p(1− p)u+ 2pzu′ + z2u′′

)}
= 0,

−λ(1− p)u(1) + (1 + λ)u′(1) = 0.
(18)

We also expect that

lim
z→∞

u(z) =
1

1− p
c−p
0

with c0 given by (21) below, see (23).
The optimal investment proportion in (16) could therefore be expressed (provided we can find a

smooth solution for the reduced HJB (18)) as

π̂(z) =
α

pσ2
· (1− p)u− zu′

(1− p)u− 2zu′ − 1
pz

2u′′
, (19)

and the optimal consumption proportion ĉ in (15) would be given by

ĉ(z) =
(vx + vn)−

1
p

x
=
(
(1− p)u− (z − 1)u′

)− 1
p . (20)

Remark 3.1 [The case when paying no fee, λ = 0.] This is the classical problem in Merton [12]
and [13] and can be solved in closed form. The optimal investment and consumption proportions are
constant. One can either take the solution from [12] and [13] or solve our equation (18) and then use
(19) and (20) to obtain the same results.

More precisely, for λ = 0, the optimal investment proportion is

π0 ,
α

pσ2
,

while the optimal consumption is given by

c0 ,
β

p
− 1

2
1− p

p2
· α

2

σ2
. (21)

The Merton value function (and solution of the HJB) equals

v0(x, n) =
1

1− p
c−p
0 x1−p, 0 < x ≤ n. (22)

It follows that, for λ = 0,

u0(z) =
1

1− p
c−p
0 , z ≥ 1. (23)

As can be easily seen from above, for the case 0 < p < 1 an additional constraint needs to be imposed
on the parameters in order to obtain a finite value function. This is equivalent to c0 in (21) being
strictly positive, which translates to the standing assumption

β >
1
2

1− p

p
· α

2

σ2
, if 0 < p < 1. (24)
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3.3 Main Results

We denote by

(Lc,θu)(z) , −βu+
c1−p

1− p
+
(
θα− c

)(
(1− p)u− zu′

)
− cu′ + 1

2
θ2σ2

(
−p(1− p)u+ 2pzu′ + z2u′′

)
. (25)

The (HJB) for u can therefore be formally rewritten (with the implicit assumption that −p(1− p)u+
2pzu′ + z2u′′ < 0 and (1− p)u− (z − 1)u′ > 0) as supc≥0,θ Lc,θu = −βu+ Ṽ

(
(1− p)u− (z − 1)u′)

)
− 1

2
α2

σ2

(
(1−p)u−zu′

)2
−p(1−p)u+2pzu′+z2u′′ = 0, z > 1

−λ(1− p)u(1) + (1 + λ)u′(1) = 0, limz→∞ u(z) = 1
1−p c

−p
0 ,

(26)

where Ṽ (y) = p
1−py

p−1
p , y > 0.

Let w∗ be the Merton value function for α = 0, i.e., with zero investment and optimized consump-
tion. Then from (21) and (23) we get c0 = β/p, and

w∗ =
1

1− p

(
β

p

)−p

< u0. (27)

Note that w∗ is also the unique non-trivial solution to the equation

−βw + Ṽ
(
(1− p)w)

)
= 0,

and
−βw + Ṽ

(
(1− p)w)

)
< 0, w∗ < w ≤ u0.

Next Theorem shows that the reduced (HJB) (26) has a classical solution which satisfies some addi-
tional properties.

Theorem 3.1 There exists a strictly increasing function u which is C2 on [1,∞), satisfies the condi-
tion u(1) > w∗ and

−p(1− p)u+ 2pzu′ + z2u′′ < 0, (1− p)u− (z − 1)u′ > 0, (1− p)u− zu′ > 0, z ≥ 1,

together with
zu′(z), z2u′′(z) → 0, as z →∞,

and is a solution to (26).

The Proposition below shows that the so called closed-loop equation has a unique global solution.

Proposition 3.1 Fix 0 < x ≤ n. Consider the feed-back proportions π̂(z) and ĉ(z) defined in (19)
and (20), where u is the solution in Theorem 3.1. Define the feed-back controls

θ̂(x, n) , xπ̂(n/x), γ̂(x, n) , xĉ(n/x), for 0 < x ≤ n.

The closed loop equation{
dXt = θ̂(Xt, Nt)

(
αdt+ σdWt

)
− γ̂(Xt, Nt)dt− λ(dNt + γ̂(Xt, Nt)dt), X0 = x

Nt = sup0≤s≤t

({
Xs +

∫ s
0 γ̂(Xu, Nu)du

}
∨ n
)
−
∫ t
0 γ̂(Xu, Nu)du,

(28)

has a unique strong global solution (X̂, N̂) such that 0 < X̂ ≤ N̂ .

Next Theorem is the main result of the paper:

Theorem 3.2 Consider the solution u in Theorem 3.1. For each 0 < x ≤ n, the feedback proportions
(π̂, ĉ) in (19) and (20) are optimal and

u
(n
x

)
x1−p , v(x, n) = V (x, n) , sup

(θ,γ)∈A(x,n)
E
[∫ ∞

0
e−βtU(γt)dt

]
.
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4 The Impact of the High-Watermark Fee on Investors

In this section we analyze the impact of paying the high-watemark fee on the optimal investment
and consumption strategy. In Subsection 4.1 we present some important qualitative properties of
the optimal controls. In Subsection 4.2 we compare the optimal investment problem in the hedge-
fund with a high-watermark performance fee with the classical Merton problem. From the certainty
equivalence point of view, paying the high-watermark fee is equivalent to either reducing the initial
wealth (for the same excess return) or to reducing the excess return (for the same initial wealth), all
other parameters being equal. Since the problem does not have a closed form solution, we present
some numerical Examples in Subsection 4.3

4.1 Some Qualitative Properties and Remarks

The Proposition below analyzes the proportions π̂ and ĉ, defined in (19) and (20), based on the solution
u of the (HJB) given by Theorem 3.1. Proposition 4.1 is needed in order to prove the existence and
uniqueness of the solution of the closed-loop equation in Proposition 3.1. Once Proposition 3.1 and
Theorem 3.2 are proved we actually know that π̂ and ĉ are the optimal proportions.

Proposition 4.1 The feedback controls π̂ and ĉ satisfy

0 < ĉ(z) → c0, 0 < π̂(z) → π0, z →∞, (29)

and
zĉ′(z) → 0, zπ̂′(z) → 0, z →∞. (30)

In addition,
ĉ(z) > c0 for z ≥ 1 if p < 1, and ĉ(1) < c0 if p > 1. (31)

The proof of Proposition 4.1 is deferred to Subsection 5.2.

Remark 4.1 Note that for any value of λ, no matter how large, the feedback control π̂ is strictly
positive. The investor makes a positive investment in the fund even for λ > 1. The intuition is that
even if fees are higher than 100% of the achieved profit, after crossing the high-water mark and paying
the high fee, the high-water mark is increased. The net profit of the investor grows in the long run
with positive fund return α for any size of λ > 0.

Remark 4.2 The optimal investment problem we consider allows for short-sales of the hedge-fund
share (performance fees are still paid to the fund manager in this case). However, the optimal propor-
tion π̂ is positive, so this is the optimal portfolio selection even if short-sale constraints are imposed.

The solution u cannot be computed in closed form, so we need to appeal to numerical methods,
as in the examples in Subsection 4.3 below. However, closed form approximations of the solution u
(and, more importantly of the optimal controls) are possible. For example, one could consider the
suboptimal controls π0 and c0 from the Merton proportion and solve the linear equation{

Lc0,θ0u = 0
−λ(1− p)u(1) + (1 + λ)u′(1) = 0, limz→∞ u(z) = 1

1−p c
−p
0 .

(32)

This can be done in closed form (with the help of Mathematica), and provides a subsolution of the
HJB (26). However, the solution to (32) would be useful for our purposes only for some values of
λ (since we need the technical condition u(1) ≥ w∗), so we still need to construct the subsolution
(37) in Subsection 5.1 below for the general case. Taking also into account that solving (32) involves
hypergeometric functions, in order to keep the presentation simple we leave this computation aside
for future work on the the asymptotic analysis as λ↘ 0, in the spirit of [17] and [10]. The closed form
solution of (32) will play a central role in the asymptotic analysis.
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4.2 Certainty Equivalent Analysis

We evaluate the quantitative impact of paying profit share fee λ on the initial wealth of the investor.
The size of the value function does not provide any intuitive interpretation. A useful method is to
compute the so-called certainty equivalent wealth. By definition, the certainty equivalent is such a
size of initial bankroll x̃ that the agent would be indifferent between x̃ when paying zero fees, and
wealth x when paying profit-share fees λ, all other parameters being the same.

From (22) we infer the proper transformation by equating v0(x̃) and v(x, n) = x1−pu(z). We solve
for the quantity

x̃(z)
x

=
(
u(z)
u0

) 1
1−p

=
(
(1− p)cp0 u(z)

) 1
1−p z, z ≥ 1, (33)

which is the relative amount of wealth needed to achieve the same utility if no fee is paid (which also
quantifies the proportional loss of wealth).

It is also useful to evaluate the size of the proportional fee (percentage per year, as in Remark
2.2) that would cause the same loss in utility as the current high-watermark performance fee. More
precisely, we want to find the certainty equivalent excess return α̃ < α so that the value function
obtained by using α̃ and no fee is equal to the value function when the return is α but the performance
fee is paid.

Keeping all the other parameters the same, the value function for zero performance-fee correspond-
ing to excess return α̃ is given by

ũ0(α̃) =
1

1− p
c̃0(α̃)−p,

with

c̃0(α̃) =
β

p
− 1− p

2p2
· α̃

2

σ2
.

Therefore, we are looking for the solution to the equation

ũ0

(
α̃(z)

)
= u(z)

which is given by

α̃2(z) = 2σ2 p2

1− p

(
β

p
−
(
(1− p)u(z)

)− 1
p

)
, z ≥ 1.

The relative size of the certainty equivalent excess return is therefore

α̃(z)
α

=
√

2σp
α

 β
p −

(
(1− p)u(z)

)− 1
p

1− p


1
2

, z ≥ 1. (34)

4.3 Numerical Examples

To the best of our knowledge, there is no closed form solution for the problem at hand. In order
to properly understand the impact of the high-watermark fee on the investor, we need to resort to
numerics.

In the next few charts we exhibit numerical results for various values of the parameters p, β, α,
σ and, most importantly, the size of the high-watemark fee λ. All quantities are actually compared
to the corresponding values in the Merton case λ = 0. More precisely, we present four graphs, each
representing, respectively,

• The size of the relative optimal investment proportion θ̂(z)/θ0, z ≥ 1.

• The size of the relative optimal consumption proportion ĉ(z)/c0, z ≥ 1.
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• The relative size of the certainty equivalent initial wealth (which means the proportions x̃0(z)/x, z ≥
1, in (33)).

• The relative size of the certainty equivalent excess return (which means α̃(z)/α, z ≥ 1, in (34))

We remind the reader that the values for zero fee are obtained for z ↗ ∞. This means that all
the relative quantities presented in the graphs below approach one as z ↗ ∞. For each of the four
graphs representing the quantities described above, several values of the parameters p, β, α, σ, and λ
are considered in the following manner:

• First, the size of the volatility is fixed to σ = 30%. This is actually not restrictive since a model
with given α and σ has an identical value function as a scaled model with return kα and standard
deviation kσ, while the investment proportion scales by 1/k. Since we draw the graph for the
relative investment proportion (compared to the Merton case), this would actually not change
at all, even by scaling.

• After that, we fix the benchmark parameters

p = 3, β = 5%, α = 10%, λ = 20%.

Each of the parameters p, β, α and λ is then varied around the benchmark values, keeping all
the other parameters identical.

Remark 4.3 1. For the numerical examples below we can see that the optimal investment pro-
portion at the high-watermark level π̂(1) is greater than the Merton proportion π0. The intu-
itive explanation for this feature is that the agent wants to play the “local time game” at the
boundary. When making a high investment proportion for a short time the loss in value due to
over-investment is small, while the agent is able to push the high-watermark a little bit extra and
benefit from an increased high-water mark in the future. This additional increase in high-water
mark can be also interpreted as hedging.

2. The numerical analysis indicates that we can find sufficiently high β so that π̂(1) < π0 for any set
of parameters (with λ > 0). However, we conjecture that π̂(z) is strictly decreasing at z = 1 where
the effect of pushing the high-watermark prevails over time preferences. We further conjecture
that for β = 0 (no time preferences of the investor) the function π̂(z) is strictly decreasing for
all z ≥ 1.

Remark 4.4 From Proposition 2.2 we see that paying the high-watemark has the effect of reducing the
wealth of the investor by a factor of 1 + λ in the long-run. At the same time, the certainty equivalent
relative excess return α̃(z)/α is usually (for reasonable values of the parameters, as below) larger than
1/(1 + λ). The intuitive reason is that the fees are paid only when an additional profit is being made,
and thus the fees “hurt less” from utility point of view. No fees are paid in states when the investor
loses money which would be the most painful from the utility point of view.
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5 Proofs

The proof of Theorem 3.1 is split in between Subsections 5.1 and 5.2 below. In Subsection 5.1 we
proof the existence of a viscosity solution using Perron’s method, and then we upgrade its regularity
in Subsection 5.2. We refer the reader to the seminal paper [3] for an introduction to the theory of
viscosity solutions. We use here only the well-known notion of viscosity solution on an open domain,
since boundary conditions can be interpreted in the classical sense. In order to keep the presentation
more streamlined, we do not include the definition here.

5.1 Existence of a viscosity solution

We observe that the constant solution u0 corresponding to the case λ = 0 (defined in (23) in Remark
3.1) is actually a classical supersolution of the HJB (26), which reads supc>0,θ Lc,θu = −βu+ Ṽ

(
(1− p)u− (z − 1)u)

)
− 1

2
α2

σ2

(
(1−p)u−zu′

)2
−p(1−p)u+2pzu′+z2u′′ ≤ 0

−λ(1− p)u(1) + (1 + λ)u′(1) ≤ 0, limz→∞ u(z) ≥ 1
1−p c

−p
0 .

(35)

For technical reasons we also need a subsolution with certain properties. We remind the reader that
the critical value w∗ was defined in (27).

Proposition 5.1 There exists a value z∗ ∈ (1,∞) and a function

us ∈ C1[1,∞) ∩ C2(1, z∗] ∩ C2[z∗,∞)

such that
w∗ ≤ us ≤ u0

and us is a strict viscosity subsolution for (26). More precisely, us satisfies

sup
c>0,θ

Lc,θus > 0 (36)

in the viscosity sense on (1,∞), and

−λ(1− p)us(1) + (1 + λ)u′s(1) > 0, lim
z→∞

us(z) <
1

1− p
c−p
0 .

Proof: For
λ

1 + λ
(1− p)w∗ < a < (1− p)w∗,

we consider the function

us(z) =

{
w∗ + a(z − 1)− 2a

1+ε(z − 1)1+ε, 1 ≤ z ≤ 1 +
(

1
2

) 1
ε

w∗ + a ε
1+ε

(
1
2

) 1
ε , z ≥ 1 +

(
1
2

) 1
ε

(37)

Since

Ṽ
(
(1− p)(w∗ + a(z − 1)− 2a

1 + ε
(z − 1)1+ε)− a((z − 1)− 2(z − 1)1+ε)

)
≥ Ṽ ((1− p)w∗)) +

+Ṽ ′((1− p)w∗))
(
(1− p)(a(z − 1)− 2a

1 + ε
(z − 1)1+ε)− a((z − 1)− 2(z − 1)1+ε)

)
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we notice that

sup
c,π

Lc,πus(z) ≥ −β(a(z − 1)− 2a
1 + ε

(z − 1)1+ε)+

+Ṽ ′((1− p)w∗))
(
(1− p)(a(z − 1)− 2a

1 + ε
(z − 1)1+ε)− a((z − 1)− 2(z − 1)1+ε)

)
+

1
2
α2

σ2

((
(1− p)w∗

)
∧
(
(1− p)(w∗ + aε

1+ε(
1
2)

1
ε )
)
− (1 + (1

2)
1
ε )a
)2

p
((

(1− p)w∗
)
∨
(
(1− p)(w∗ + aε

1+ε(
1
2)

1
ε )
))

+
(
1 + (1

2)
1
ε

)2
2aε(z − 1)−(1−ε)

Since a < (1− p)w∗, it turns out that we can choose some constants C and D as well as F,G,H > 0,
independent of small ε such that, for all 1 < z ≤ 1 + (1

2)
1
ε , we have

sup
c,π

Lc,πus(z) ≥
F

G+Hε(z − 1)−(1−ε)
− C(z − 1)−D(z − 1)1+ε ≥

≥ F

G+Hε(z − 1)−(1−ε)
− |C|(z − 1)− |D|(z − 1)1+ε.

We now see that(
G+Hε(z − 1)−(1−ε)

)(
|C|(z − 1) + |D|(z − 1)1+ε

)
=

=
(
G(z − 1)1−ε +Hε

)(
|C|(z − 1)ε + |D|(z − 1)2ε

)
≤

≤
(
2G(

1
2
)

1
ε +Hε

)(1
2
|C|+ 1

4
|D|
)
< F, for all 1 < z ≤ 1 +

(
1
2

) 1
ε

,

if ε is small enough. Therefore, for such an ε we will have

sup
c,π

Lc,πus(z) > 0, 1 < z ≤ 1 +
(

1
2

) 1
ε

.

Since us is constant for z ≥ 1 + (1
2)

1
ε and is extended to be C1 we obtain

sup
c,π

Lc,πus(z) > 0, z > 1,

in the viscosity sense, and actually in the classical sense for any z 6= z∗ , (1/2)1/ε. ♦
We now construct a viscosity solution of the HJB using Perron’s method. More precisely, we

denote by S the set of functions
h : [1,∞) → R,

which satisfy the following properties

1. h is continuous on [1,∞)

2. for fixed n, the function x→ x1−ph(n/x) is concave and nondecreasing in x ∈ (0, n]

3. h is a viscosity supersolution of the (HJB) equation on the open interval (1,∞)

4. −λ(1− p)h(1) + (1 + λ)h′(1) ≤ 0

5. us ≤ h ≤ u0
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Theorem 5.1 Define
u , inf{h, h ∈ S}.

Then, us ≤ u ≤ u0 is continuous on [1,∞), is a viscosity solution of the (HJB) on the open interval
(1,∞), and satisfies −λ(1 − p)u(1) + (1 + λ)u′(1) = 0. In addition, for fixed n, the function x →
x1−pu(n/x) is concave and nondecreasing in x ∈ (0, n], and u(1) > w∗.

Proof: The proof follows the ideas of the proof of Theorem 4.1 in [3], with the necessary technical
modifications to take into account the boundary condition at z = 1 and to keep track of the convexity
properties.

1. By construction, as an infimum of concave nondecreasing functions, we have that for fixed n,
the function x→ x1−pu(n/x) is concave and nondecreasing in x ∈ (0, n].

2. Since x → x1−pu(n/x) is concave and nondecreasing in x ∈ (0, n] we conclude that x →
x1−pu(n/x) is continuous on (0, n], which translates to u is continuous on [1,∞)

3. Assume a C2 function ϕ touches u from below at an interior point z ∈ (1,∞). For fixed c, θ,
each h ∈ S is a viscosity supersolution of Lc,θh ≤ 0, so taking the inf over h ∈ S we still get a
supersolution, according to Lemma 4.2 in [3]. In other words, (Lc,θϕ)(z) ≤ 0, and then we can
take the sup over (c, θ) to get that u is a supersolution of the (HJB).

We would like to mention that Lemma 4.2 in [3] works without the fundamental monotonicity
condition (0.1) in [3].

4. By construction, us ≤ u ≤ u0.

5. (The boundary condition.) For each h ∈ S, we have

h′(1) ≤ λ

1 + λ
(1− p)h(1),

which translates in terms of g(x, n) , x1−ph(n/x) as

gx(1, 1) = (1− p)h(1)− h′(1) ≥ 1
1 + λ

(1− p)h(1).

Taking into account the concavity of g(x, n) in x ∈ (0, n], this is equivalent to

g(x, 1) = x1−ph(m/x) ≤ 1
1 + λ

(1− p)h(1)(x− 1) + h(1), 0 < x ≤ 1. (38)

Since (38) holds for each h ∈ S the same thing will hold for the infimum, which means that u
satisfies (38), which reads:

u′(1) ≤ λ

1 + λ
(1− p)u(1).

Assume now that the inequality above is strict. Since u′s(1) = a > λ
1+λ(1− p)us(1) and u ≥ us,

this rules out the possibility that u(1) = us(1), so we have u(1) > us(1) = w∗. This implies

−βu(1) + Ṽ ((1− p)u(1)) < 0.

In addition, we have

(1− p)u(1)− u′(1) >
1

1 + λ
(1− p)u(1) ≥ 0.

Therefore, we can find a number a′ such that

u′(1) < a′ <
λ

1 + λ
(1− p)u(1),
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and a very large b > 0 such that the function

ψ(z) = u(1) + a′(z − 1)− 1
2
b(z − 1)2

is, in a small neighborhood (1, 1 + δ) of z = 1, a classical supersolution. In addition, it satisfies
ψ(1)′ = a′ < λ

1+λψ(1). Thus, if δ is small enough, we have that u(z) < ψ(z) on (1, 1 + δ), and

(1− p)ψ(z)− zψ′(z) > 0, −p(1− p)ψ(z) + 2pzψ′(z) + z2ψ′′(z) < 0, z ∈ [1, 1 + δ].

Now, for a very small ε, at least as small as

ε0 , min
z∈[1+ δ

2
,1+δ]

ψ(z)− u(z)

but possibly even smaller, we have that the function

ũ(z) ,

{
min{u(z), ψ(z)− ε}, z ∈ [1, 1 + δ]
u(z), z ∈ [1 + δ,∞)

is actually an element of S, contradicting the assumption that u is the infimum over S.

6. Let us show that u is a viscosity subsolution. We first start by making the following simple
observation on the function u: By construction, the function (x, n) → x1−pu(n/x) is concave in
x ∈ [0, n]. Since

vx(x−, n) =
(
(1− p)u(z)− zu′(z+)

)
· x−p, vx(x+, n) =

(
(1− p)u(z)− zu′(z−)

)
· x−p,

we obtain
(1− p)u(z)− zu′(z+) ≥ (1− p)u(z)− zu′(z−), z > 1,

which of course means that u′(z−) ≥ u′(z+) for z > 1. Assume, by contradiction, that for
some z0 > 1 we have

(
(1− p)u(z0)− zu′(z0−)

)
= 0. Then, we have that vx( 1

z0
+, 1) = 0, which,

together with the fact that x→ v(x, 1) is concave and nondecreasing for x ∈ [ 1
z0
, 1], shows that

actually v(x, 1) = v(1, 1) for x ∈ [ 1
z0
, 1]. This means that

vx(1, 1) = (1− p)u(1)− u′(1) = 0

which is a contradiction to the boundary condition

u′(1) =
λ

1 + λ
(1− p)u(1).

Therefore, for any z > 1 we have

(1− p)u(z)− zu′(z+) ≥ (1− p)u(z)− zu′(z−) > 0. (39)

Assume now that a C2 function ϕ touches u from above at some interior point z ∈ (1,∞). If
u(z) = us(z) we can use the test function us (which is a strict subsolution) for the supersolution
u to obtain a contradicition. The contradiction argument works even if z = (1/2)1/ε is the only
exceptional point where us is not C2. Therefore, u(z) > us(z). From (39) we can easily conclude
that

(1− p)ϕ(z)− zϕ′(z) > 0.

Assume now, that u does not satisfy the sub-solution property, which translates to

sup
c,θ

(L(c,θ)ϕ)(z) < 0.
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Since (1− p)ϕ(z)− zϕ′(z) > 0 we can conclude that

−p(1− p)ϕ(z) + 2pzϕ′(z) + z2ϕ′′(z) < 0, (1− p)ϕ(z)− (z − 1)ϕ′(z) > 0, (40)

and

−βϕ(z) + Ṽ
(
(1− p)ϕ(z)− (z− 1)ϕ′(z))

)
− 1

2
α2

σ2

(
(1− p)ϕ(z)− zϕ′(z)

)2
−p(1− p)ϕ(z) + 2pzϕ′(z) + z2ϕ′′(z)

< 0. (41)

Actually, relations (40) and (41) hold in a small neighborhood (z − δ, z + δ) of z, not just at z.
Furthermore, for η > 0 small enough, relations (40) and (41) hold in(z − δ, z + δ) for the slightly
modified function

ψ(w) , ϕ(w) +
η

2
(w − z)2.

Considering an even a smaller δ we have that u(w) < ψ(w), for w ∈ [z − δ, z + δ] if w 6= z. Now, for a
ε small enough, which means at least as small as

ε0 , min
δ
2
≤|w−z|≤δ

ψ(w)− u(w),

but maybe much smaller, we define the function

ũ(w) ,

{
min{u(w), ψ(w)− ε}, w ∈ [z − δ, z + δ]
u(w), w /∈ [z − δ, z + δ].

We note that, if ε is indeed small enough, we have that ũ ∈ S and ũ is strictly smaller than u (around
z), which is a contradiction. ♦

5.2 Smoothness of the viscosity solution

Theorem 5.2 The function u in Theorem 5.1 is C2 on [1,∞), and satisfies the conditions

−p(1− p)u+ 2pzu′ + z2u′′ < 0, (1− p)u− (z − 1)u′ > 0, (1− p)u− zu′ > 0, z ≥ 1.

Moreover it is a solution of the equation supc>0,θ Lc,θu = −βu+ Ṽ
(
(1− p)u− (z − 1)u)

)
− 1

2
α2

σ2

(
(1−p)u−zu′

)2
−p(1−p)u+2pzu′+z2u′′ = 0, z ≥ 1,

−λ(1− p)u(1) + (1 + λ)u′(1) = 0.
(42)

Proof: First, we remind the reader that the dual function Ṽ (y) is defined for all values of y, not only
for y > 0. More precisely

Ṽ (y) =

{
p

1−py
p−1

p , y > 0
+∞, y ≤ 0

for p < 1, Ṽ (y) =

{
p

1−py
p−1

p , y ≥ 0
+∞, y < 0

for p > 1.

Let z0 > 1 such that u′(z0−) > u′(z0+). For each u′(z0+) < a < u′(z0−) and b > 0 large enough we
use the function

ψ(z) , u(z0) + a(z − z0)−
1
2
b(z − z0)2

as a test function for the viscosity subsolution property, so

sup
c,θ

{
−βu(z0)+

c1−p

1− p
+
(
θα−c

)(
(1−p)u(z0)−z0a

)
−ca+

1
2
θ2σ2

(
−p(1−p)u(z0)+2pz0a+z2

0(−b)
)}

≥ 0.

(43)
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Since (1− p)u(z0)− z0a > (1− p)u(z0)− z0u
′(z0−) > 0 the above equation can be rewritten as

−βu(z0) + Ṽ
(
(1− p)u(z0)− (z0 − 1)a)

)
− 1

2
α2

σ2

(
(1− p)u(z0)− z0a

)2
p(1− p)u(z0) + 2pz0a− bz2

0

≥ 0.

Letting b→∞, we obtain

−βu(z0) + Ṽ
(
(1− p)u(z0)− (z0 − 1)a)

)
≥ 0, a ∈ (u′(z0+), u′(z0−)),

so
−βu(z0) + Ṽ

(
(1− p)u(z0)− (z0 − 1)u′(z0−))

)
> 0.

Since u′(z−) is left continuous, and the function u is two times differentiable on a dense set D ⊂ (1,∞)
by convexity, there exists 1 < z < z0 such that z ∈ D, and

−βu(z) + Ṽ
(
(1− p)u(z)− (z − 1)u′(z))

)
≥ 0.

However, this would contradict the viscosity supersolution property at z, which reads

−βu(z) + Ṽ
(
(1− p)u(z)− (z − 1)u′(z))

)
+

+sup
θ
{θα

(
(1− p)u(z)− zu′(z)

)
+

1
2
θ2σ2

(
− p(1− p)u(z) + 2pzu′(z)− z2u′′(z)

)
} ≤ 0,

since we have shown that (1− p)u(z)− zu′(z) > 0 (actually all left and right derivatives like that are
positive). We obtained a contradiction, so we have proved that

u′(z0−) = u′(z0+), for all z0 > 1.

In other words, u′ is well defined and continuous on [1,∞). In addition, (1− p)u(z)− zu′(z) > 0 for
z ≥ 1. Applying again the viscosity solution property at a point where u is two times differentiable
we obtain

−βu(z) + Ṽ
(
(1− p)u(z)− (z − 1)u′(z))

)
< 0, z ∈ D,

and

z2u′′ + 2pzu′ − p(1− p)u =
α2

2σ2

(
(1− p)u− zu′

)2
−βu+ Ṽ

(
(1− p)u− (z − 1)u′

) < 0, z ∈ D.

Using continuity and the density of D, we get

f(z) , βu(z)− Ṽ
(
(1− p)u(z)− (z − 1)u′(z))

)
≥ 0, z ≥ 1. (44)

Taking into account the bounds we have on u, we can use (44) to obtain

(1− p)u(z)− (z − 1)u′(z)) > 0, z ≥ 1.

The function f defined in (44) is continuous. We claim that on any open interval (a, b) ⊂ [1,∞)
such that f(z) > 0 on [a, b], we have that u is C2 and satisfies the equation. The claim is easy to
prove, noting that u is a viscosity solution of the equation

u− u′′ = u− 1
z2

[
−
(
2pzu′ − p(1− p)

)
+

α2

2σ2

(
(1− p)u− zu′

)2
−βu+ Ṽ

(
(1− p)u− (z − 1)u′

)], z ∈ (a, b),

and the right hand side is continuous up to the boundaries of (a, b). Comparing to the classical solution
of this equation with the very same right hand side and Dirichlet boundary conditions at a and b,
we finish the proof of the claim. We would like to point out that the comparison argument between
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the viscosity solution and the classical solution is straightforward, and does not involve any doubling
argument.

It, therefore, remains to show that f(z) > 0 for all z ≥ 1. According to Theorem 5.1 we have
u(1) > w∗, so f(1) > 0. Continuity implies that f > 0 in a small neighborhood to the right of z = 1.
Assume that the function f vanishes for some z > 1. Let some b > 1 be the smallest z such that the
function vanishes at z. This means that 1 < b and f(b) = 0, and f(z) > 0 for z ∈ (1, b). On (1, b) we
know that u is C2 and the equation is satisfied, so we have

f(z)− f(b)
z − b

= bu′(η)− Ṽ ′((1− p)u(η)− (η − 1)u′(η))
{
(1− p)u′(η)− u′(η)− (η − 1)u′′(η)

}
.

From the fact that the equation is satisfied on (a, b) and f(b) = 0, we have that

lim
η↗b

u′′(η) = −∞,

so
lim
z↗b

f(z)− f(b)
z − b

= +∞,

since Ṽ ′ is continuous on (0,∞) and Ṽ ′((1 − p)u(b) − (b − 1)u′(b)) < 0. However, this is impossible,
since

f(z)− f(b)
z − b

≤ 0.

Therefore u is C2 in (1,∞) and satisfies the (HJB). Since u(1) > w∗ which reads f(1) > 0, for f
defined in (44), we can use continuity and pass to the limit in the (HJB) for z ↘ 1 to conclude that
actually u is C2 in [1,∞) and the (HJB) is satisfied at the boundary as well.

Lemma 5.1 The function u is strictly increasing on [1,∞) and

lim
z→∞

u(z) = u0, lim
z→∞

zu′(z) = 0, lim
z→∞

z2u′′(z) = 0.

Proof: Assume that the function u admits an interior minimum point z0 over an interval [a, b] ⊂ [1,∞).
Then u′(z0) = 0 and u′′(z0) ≥ 0. Replacing this into the equation (26) we get

−βu(z0) + Ṽ
(
(1− p)u(z0)− (z0 − 1)u′(z0))

)
− 1

2
α2

σ2

(
(1− p)u(z0)− z0u

′(z0)
)2

−p(1− p)u(z0) + 2pz0u′(z0) + z2
0u

′′(z0)
= 0,

so

βu(z0)− Ṽ
(
(1− p)u(z0))

)
=

1
2
α2

σ2

(
(1− p)u(z0)

)2
p(1− p)u(z0)− z2

0u
′′(z0)

≥ 1
2
α2

σ2

1− p

p
u(z0).

This can be rewritten as (
β − 1

2
α2

σ2

1− p

p

)
u(z0) ≥ Ṽ

(
(1− p)u(z0))

)
.

Since

β − 1
2
α2

σ2

1− p

p
> 0, and

(
β − 1

2
α2

σ2

1− p

p

)
u0 = Ṽ

(
(1− p)u0)

)
we obtain that u(z0) ≥ u0 so u(z0) = u0. Now, we have two distinct classical global solutions u, u0 of
the differential equation

z2u′′ + 2pzu′ − p(1− p)u =
α2

2σ2

(
(1− p)u− zu′

)2
−βu+ Ṽ

(
(1− p)u− (z − 1)u′

) < 0, z > 1,
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satisfying u(z0) = u0(z0) and u′(z0) = u′0(z0) = 0, which is a contradiction. This means that u can
only attain its minimum at the boundaries of an interval, which precludes the possibility

lim inf
z→∞

u(z) < lim sup
z→∞

u(z).

Since u is bounded we conclude that there exists

u(∞) , lim
z→∞

u(z) ∈ (−∞,∞).

Now, since u is bounded and u′ is continuous we conclude, by contradiction, that there exist a sequence
zn ↗∞ such that

znu
′(zn) → 0, n→∞.

(Otherwise we would have z|u′(z)| ≥ ε for some ε for large z, which contradicts boundedness). Denote
now

0 ≥ A := lim inf
z→∞

zu′(z) ≤ lim sup
z→∞

zu′(z) =: B ≥ 0.

For fixed C ∈ R, denote by
fC(z) = Cu+ zu′, z ≥ 1.

The function fC is continuous and

lim inf
z→∞

fC(z) = Cu(∞) +A ≤ Cu(∞) +B = lim sup fz→∞fC(z).

Assume, by contradiction, that 0 < B ≤ ∞. Since limn→∞ fC(zn) = Cu(∞) < Cu(∞) + B, then
we can choose the points ηn ∈ (zn, zn+1) (interior points, and eventually for a subsequence nk rather
than for each n) for which fC attains the max on [zn, zn+1] such that fC(ηn) → Cu(∞) + B, which
is the same as ηnu

′(ηn) → B. Since fC attains the interior maximum on on interval at ηn, we have
f ′C(ηn) = (1 + C)u′(ηn) + ηnu

′′(ηn) = 0. Now, we know that

−p(1− p)u(ηn) + 2pηnu
′(ηn) + η2

nu
′′(ηn) ≤ 0

or
−p(1− p)u(ηn) + (2p− 1− C)ηnu

′(ηn) ≤ 0.

Passing to the limit, we obtain that

−p(1− p)u(∞) + (2p− 1− C)B ≤ 0,

for each C ∈ R, which means that B = 0. Similarly, we obtain A = 0 so zu′(z) → 0. Now, since zu′ is
bounded and (zu′)′ is continuous we conclude, by contradiction, that there exist a sequence zn ↗∞
such that

(zn)2u′′(zn) → 0, n→∞.

Passing to the limit along zn’s in the HJB, we obtain

βu(∞)− Ṽ
(
(1− p)u(∞))

)
=

1
2
α2

σ2

1− p

p
u(∞).

As already pointed out, the above equation has a unique solution u(∞) in [w∗, u0], namely u(∞) = u0

so u(z) → u0 as z →∞. Going back to the ODE for all z →∞ and not only along the subsequence,
we actually obtain z2u′′(z) → 0 as well.

Let now 1 ≤ z1 < z2. Using the global uniqueness argument above, it is easy to see that u(z1) < u0.
If u(z1) ≥ u(z2), since limuz→∞u(z) = u0, we conclude that there exists z3 large enough such that
u(z2) ≤ u(z1) < u(z3). This means that u would necessarily have an interior minimum in [z1, z3],
which is impossible. Therefore, u is strictly increasing. ♦
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Proof of Proposition 4.1: The limits of ĉ and π̂ as z →∞ are easy consequences of their representations
(20) and (19) together with the fact that zu′(z), z2u′′(z) → 0 as z → ∞. Taking derivatives of the
(HJB) in the form

d

dz

(
− p(1− p)u+ 2pzu′ + z2u′′

)
=

d

dz

(
1
2
α2

σ2

(
(1− p)u− zu′

)2
−βu+ Ṽ

(
(1− p)u− (z − 1)u)

)) ,
and using again that zu′(z), z2u′′(z) → 0 as z →∞, we conclude that we also have

z3u′′′(z) → 0, z →∞.

We can now use the representations (19) and (20) and take their derivatives to obtain (30). The
qualitative description of consumption (31) is obtained from the representation (20) using the fact
that u′ ≥ 0 and u ≤ u0. ♦

5.3 Optimal policies and verification

Proposition 5.2 Let θ(x, n) and γ(x, n) two Lipschitz functions in both arguments on the two-
dimensional domain {(x, n) ∈ R2; x ≤ n}. The closed loop state equation (7) corresponding to
θs = θ(Xs, Ns) and γs = γ(Xs, Ns), which means the SDE{

Xt = x+
∫ t
0 θ(Xs, Ns)

(
αds+ σdWs

)
−
∫ t
0 γ(Xs, Ns)ds− λ(Nt +

∫ t
0 γ(Xs, Ns)ds− n),

Nt = max0≤s≤t{
(
Xs +

∫ s
0 γ(Xu, Nu)du

)
∨ n} −

∫ t
0 γ(Xs, Ns)ds,

(45)

has a unique strong solution (X,N).

Proof: Consider the operator
(Y, L) → (X,N)

defined by{
Xt = x+

∫ t
0 θ(Ys, Ls)

(
αds+ σdWs

)
−
∫ t
0 γ(Ys, Ls)ds− λ(Nt +

∫ t
0 γ(Ys, Ls)ds− n),

Nt = max0≤s≤t{
(
Xs +

∫ s
0 γ(Yu, Lu)du

)
∨ n} −

∫ t
0 γ(Ys, Ls)ds.

(46)

In other words, we obtain (X,N) from (Y, L) by solving the state equation (7) for θs = θ(Ys, Ls) and
γs = γ(Ys, Ls). According to Proposition 2.2, the solution (X,N) is given by

Xt = x+
∫ t

0
θ(Ys, Ls)

(
(α− ν)ds+ σdWs

)
−
∫ t

0
γ(Ys, Ls)ds−

− λ

1 + λ
max
0≤s≤t

[∫ s

0
θ(Yu, Lu)

(
(α− ν)du+ σdWu

)
− i

]+

,

and

Nt = n+
1

1 + λ
max
0≤s≤t

[∫ s

0
θ(Yu, Lu)

(
(α− ν)du+ σdWu

)
− i

]+

−
∫ t

0
γ(Ys, Ls)ds.

Now we can use the usual estimates in the Itô theory of stochastic differential equations to obtain

E
[

max
0≤s≤t

‖(X1
s −X2

s , N
1
s −N2

s )‖2

]
≤ C∗(L, T )

∫ t

0
E
[
‖(Y 1

s − Y 2
s , L

1
s − L2

s)‖2
]
ds, 0 ≤ t ≤ T

for each fixed T > 0, where C∗(L, T ) <∞ is a constant depending on the Lipschitz constant of θ and γ
as well as the time horizon T . This allows to prove path-wise uniqueness using Gronwall’s Inequality,
and also to prove existence using a Picard Iteration. ♦

23



Proof of Proposition 3.1: From Proposition 4.1 we can easily see that

θ̂(x, n) ,

{
xπ̂(n/x), 0 < x ≤ n
0, x ≤ 0, x ≤ n

and

γ̂(x, n) ,

{
xĉ(n/x), 0 < x ≤ n
0, x ≤ 0, x ≤ n,

are globally Lipschitz in the domain x ≤ n < ∞. Therefore, according to Proposition (5.2) the
equation has a unique solution X̂ ≤ N̂ . It only remains to prove that 0 < X̂ in order to finish the
proof of Proposition 3.1, and this is done in the Proposition below. ♦

Proposition 5.3 Let 0 < x ≤ n. Assume that the predictable process (π, c) satisfies the integrability
condition

P
(∫ t

0
(|πu|2 + cu)du <∞, (∀) 0 ≤ t <∞

)
= 1. (47)

If (X,N) is a solution to the equation{
dXt = Xt

(
πtα− ct

)
dt+ πtXtσdWt − λ(dNt + ctXtdt), X0 = x

Nt = sup0≤s≤t

{(
Xs +

∫ s
0 cuXudu

)
∨ n
}
−
∫ t
0 csXsds

(48)

then
Nt ≥ Xt > 0, 0 ≤ t <∞.

Proof: Denote by τ , min{t ≥ 0 : Xt = 0}. We can apply Itô’s formula to Yt = log(Xt) and take
into account that X = N on the support of dM to obtain

Yt = log x+Rt−λ
∫ t

0

dMs

Ns
= log x+Rt−λ

∫ t

0
cs
Xs

Ns
ds−λ(logNt−logm) ≥ log x+Lt−λ sup

0≤s≤t
[Yt−logm]+,

where

Rt ,
∫ t

0

(
πsα− cs −

1
2
π2

sσ
2

)
ds+

∫ t

0
πsσdWs, 0 ≤ t,

and

Lt , Rt − λ

∫ t

0
cs
Xs

Ns
ds, 0 ≤ t < τ.

Observing that, because 0 ≤ Xs/Ns ≤ 1, we have

lim
t↗τ

Lt > −∞ on {τ <∞},

we can then obtain that τ = ∞. ♦
Proof of Theorem 3.2: According to Lemma 3.1, the process

Vt =
∫ t

0
e−βsU(γs)ds+ e−βtv(Xt, Nt), t ≥ 0,

is a local supermartingale for each admissible control and a local martingale for the feedback control
(θ̂, γ̂).

1. If p > 1, then, for a sequence of stopping times τk we have

v(x, n) = E
[∫ τk

0
e−βsU(γ̂s)ds+ e−βτkv(X̂τk

, N̂τk
)
]
≤ E

[∫ τk

0
e−βsU(γ̂s)ds

]
. (49)

Letting k →∞ and using Monotone Convergence, we get
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v(x, n) ≤ E
[∫ ∞

0
e−βsU(γ̂s)ds

]
. (50)

Now, let (θ, γ) ∈ A(x, n) be admissible controls . It is easy to see from Proposition 2.2 that
(θ, γ) ∈ A(x + ε, n + ε), and the wealth X corresponding to (θ, γ) starting at x + ε with high-
watermark i actually satisfies X > ε. Using the local supermartingale property along the solution
(X,N) starting at (x+ ε, n+ ε) with controls (θ, γ), we obtain

v(x+ ε, n+ ε) ≥ E
[∫ τk

0
e−βsU(γs)ds+ e−βτkv(Xτk

, Nτk
)
]
. (51)

However, since X > ε then we obtain

|v(X,N)| ≤ Cε1−p,

where C is a bound on |u|. Therefore, we can let again k →∞ and use Monotone convergence
together with Bounded Convergence theorem (respectively for the two terms on the right hand
side) to obtain

v(x+ ε, n+ ε) ≥ E
[∫ ∞

0
e−βsU(γs)ds

]
, (52)

for all (θ, c) ∈ A(x, n). This means that

v(x+ ε, n+ ε) ≥ sup
(θ,γ)∈A(x,n)

E
[∫ ∞

0
e−βsU(γs)ds

]
= V (x, n)

and the conclusion follows from letting ε↘ 0.

2. Let p < 1. Then by using the local supermartingale property we obtain

v(x, n) ≥ E
[∫ τk

0
e−βsU(γs)ds+ e−βτkv(Xτk

, Nτk
)
]
≥ E

[∫ τk

0
e−βsU(γs)ds

]
. (53)

Letting k →∞ we get

v(x, n) ≥ E
[∫ ∞

0
e−βsU(γs)ds

]
for each (θ, γ) ∈ A(x, n).

Now, for the optimal (π̂, ĉ) (in proportion form) we have

v(x, n) = E
[∫ τk

0
e−βsU(ĉsX̂s)ds+ e−βτkv(X̂τk

, N̂τk
)
]
. (54)

If we can show that
E
[
e−βτkv(X̂τk

, N̂τk
)
]
→ 0, (55)

then we use Monotone Convergence to obtain

v(x, n) = E
[∫ ∞

0
e−βsU(ĉsX̂s)ds

]
, (56)

and finish the proof. Let us now prove (55).

The value function v0(x, n) , u0x
1−p corresponding to λ = 0 is a supersolution of the HJB since

the constant function u0 is a supersolution to equation (35). Using Lemma 3.1 for the function
v0 and denoting by

Zt , e−βtv0(X̂t, N̂t) = u0e
−βt(X̂t)1−p,
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we obtain that

dZt + e−βt (ĉX̂t)1−p

1− p
dt = dZt +

ĉ1−p

(1− p)u0
Ztdt ≤ (1− p)π̂σZtdWt.

Recall that, from Proposition 4.1, we have that ĉ ≥ c0. This means that, if we denote by

δ ,
c1−p
0

(1− p)u0
> 0,

then we have
dZt + δZtdt ≤ (1− p)π̂σZtdWt.

Denoting by

Lt ,
∫ t

0
(1− p)π̂σdWu,

we can easily integrate the formal inequality above to obtain

Zt ≤ Z0e
Lt− 1

2
〈L〉t−δt.

Since π̂ is actually bounded, we conclude that there exists a constant C <∞ such that 〈L〉t ≤ Ct,
so actually we have that

Zt ≤ Z0e
Lt−( 1

2
+ δ

C
)〈L〉t .

Using the exponential distribution of maximum of the Brownian Motion with drift together with
the DDS representation, we obtain that

E[ sup
0≤t<∞

Zt] <∞.

Taking into account that

e−βtv(X̂t, N̂t) ≤ Zt → 0 a.s for t→∞,

we obtain (55) and the proof is complete.
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