KORK ERKER ADAM ADA

Local Harmonic Analysis and Euler Systems (joint work with Li Cai and Yangyu Fan)

Shilin Lai

University of Texas, Austin

AMS Fall Central Sectional Meeting, September 2024

Diagonal cycle

 E/F CM extension $W \subseteq V$ Hermitian spaces of dimensions *n* and $n + 1$. \rightsquigarrow Unitary groups $H = U(W)$, $G = U(W) \times U(V)$

 $H \hookrightarrow G$

KORK EXTERNE PROVIDE

Diagonal cycle

 E/F CM extension $W \subseteq V$ Hermitian spaces of dimensions *n* and $n+1$. \rightsquigarrow Unitary groups $H = U(W)$, $G = U(W) \times U(V)$

$H \hookrightarrow G$

 \rightsquigarrow Embedding of Shimura varieties

$$
\mathrm{Sh}_H(\mathcal{K}_H) \hookrightarrow \mathrm{Sh}_G(\mathcal{K}_G)
$$

 \rightsquigarrow Diagonal cycle

$$
\triangle = [\mathrm{Sh}_H] \in \mathrm{CH}^*(\mathrm{Sh}_G(\mathcal{K}_G))
$$

GGP setting

Suppose W and V are "nearly definite", so their signatures are

- $(1, n-1), (1, n)$ at one fixed archimedean place.
- $(0, n)$, $(0, n + 1)$ at other archimedean places.

Then dim $\text{Sh}_{H} = n - 1$, dim $\text{Sh}_{G} = 2n - 1$, so obtain

 $\triangle \in \mathrm{CH}^n(\mathrm{Sh}_\mathsf{G}(\mathcal{K}_\mathsf{G}))$

GGP setting

Suppose W and V are "nearly definite", so their signatures are

- $(1, n-1)$, $(1, n)$ at one fixed archimedean place.
- $(0, n)$, $(0, n + 1)$ at other archimedean places.

Then dim $\text{Sh}_{H} = n - 1$, dim $\text{Sh}_{G} = 2n - 1$, so obtain

 $\triangle \in \mathrm{CH}^n(\mathrm{Sh}_\mathsf{G}(\mathcal{K}_\mathsf{G}))$

Let p be a prime, then can take the p -adic étale realization

$$
\triangle_p \in \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}(K_{\mathbf{G}}), \mathbb{Z}_p(n))
$$

Can also replace coefficient \mathbb{Z}_p by a \mathbb{Z}_p -local system L, subject to branching law conditions.

Main theorem

Theorem (L.–Skinner)

The class \triangle_p extends to an Euler system.

Main theorem

Theorem (L.–Skinner)

The class \triangle _p extends to an Euler system.

Using usual techniques of sign projector and Abel–Jacobi map, this produces Euler systems for certain Rankin–Selberg motives.

 $+$ Jetchev–Nekovář–Skinner \implies progress towards rank 1 cases of Bloch–Kato conjecture.

New feature

We work integrally already at the motivic level, so our Bloch–Kato result applies to all primes p in many cases.

Tame part

Key step: for all but finitely many F-places ℓ which splits in E, we construct classes

$$
\triangle_{\rho}^{(\ell)} \in \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathsf{G}}(\mathcal{K}_{\mathsf{G}})_{/E[\ell]}, \mathbb{L}(n))
$$

such that

$$
\mathsf{Tr}_{\mathsf{E}}^{\mathsf{E}[\ell]} \triangle_{\mathsf{p}}^{(\ell)} = \mathscr{L} \cdot \triangle_{\mathsf{p}}
$$

where $\mathscr L$ is the Hecke operator on $\mathbf G(F_\ell)$ whose Satake transform is

$$
\hat{\mathscr{L}} = \prod_{1 \leq i \leq n} \prod_{1 \leq j \leq n+1} \left(1 - \mathbf{N} \ell^{-\frac{1}{2}} Z_i W_j\right)
$$

i.e. inverse of the local L-factor.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

Proof in L.–Skinner

Use twisting element

$$
\delta_1' = \sum_{\eta \in \mathscr{N}_n'} \mu_H(K_H^{\varphi})^{-1} (-1)^{s(\eta)} (\ell - 1)^n \mathbf{1}[(1, \eta)K_G \times J_1]
$$

Prove "local Birch lemma" by explicit matrix computations.

Goal of the talk

Construct Euler systems by pure thought.

Goal of the talk

Construct Euler systems by pure thought.

 \bullet For $\mathsf{X}=\mathsf{H}\backslash\mathsf{G}$, construct $\mathsf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$
\Theta^{p\infty}: C_c^{\infty}(\mathbf{X}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}_{\mathrm{cont}}^{2n}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L}(n))
$$

- 2 Describe the image of a certain trace map on $\,C^{\infty}_c(\mathsf{X}(F_\ell), \mathbb{Z}_p)$
- **3** Show that the function $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O}_\ell)]$ lands in the image using relative Satake transform.

All steps should be part of a broader picture.

Twisting formalism

Theorem (Loeffler–Skinner–Zerbes)

There is a $\mathsf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$
C_c^{\infty}(\mathbf{G}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\text{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L} \otimes \mathbb{Q}_p(n))
$$

which is right $\mathsf{H}(\mathbb{A}^{p\infty})$ -invariant.

Twisting formalism

Theorem (Loeffler–Skinner–Zerbes)

There is a $\mathsf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$
C_c^{\infty}(\mathbf{G}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\text{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L} \otimes \mathbb{Q}_p(n))
$$

which is right $\mathsf{H}(\mathbb{A}^{p\infty})$ -invariant.

Idea of proof: $\mathbf{1}[gU]$ should be sent to the translate by g of the special cycle $[\text{Sh}_{\mathbf{H}}(\mathbf{H} \cap U)]$

Twisting formalism

Theorem (Loeffler–Skinner–Zerbes)

There is a $\mathsf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$
C_c^{\infty}(\mathbf{G}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\text{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L} \otimes \mathbb{Q}_p(n))
$$

which is right $\mathsf{H}(\mathbb{A}^{p\infty})$ -invariant.

Idea of proof: $1[gU]$ should be sent to the translate by g of the special cycle $[\text{Sh}_{\mathbf{H}}(\mathbf{H} \cap U)]$

Integrality issue

For this to be well-defined, need to multiply by volume terms, destroying integrality.

Miracle?

We have the following commutative diagram

The coinvariant map and the LSZ-map both destroy integrality, but in the same way.

Proposition (Cai–Fan–L., used in L.–Skinner) There is a $\mathsf{G}(\mathbb{A}^{p\infty})$ -equivariant map $\Theta^{p\infty} : \mathcal{C}_c^\infty(\mathsf{X}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_\mathsf{G}, \mathbb{L}(n))$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Field extension

Recall that ℓ is a place in F which splits in E. Introduce level structures

$$
K = \mathbf{G}(\mathcal{O}_{\ell}) = \mathrm{GL}_{n}(\mathcal{O}_{\ell}) \times \mathrm{GL}_{n+1}(\mathcal{O}_{\ell})
$$

$$
K^{1} = \{ (g_{n}, g_{n+1}) \in K \mid \det g_{n} \equiv 1 \pmod{\varpi} \}
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

Field extension

Recall that ℓ is a place in F which splits in E. Introduce level structures

$$
K = \mathbf{G}(\mathcal{O}_{\ell}) = \mathrm{GL}_{n}(\mathcal{O}_{\ell}) \times \mathrm{GL}_{n+1}(\mathcal{O}_{\ell})
$$

$$
K^{1} = \{ (g_{n}, g_{n+1}) \in K \mid \det g_{n} \equiv 1 \pmod{\varpi} \}
$$

Easy fact:

$$
\operatorname{Sh}_{\mathsf{G}}(K^1) = \operatorname{Sh}_{\mathsf{G}}(K) \times_{E} E[\ell]
$$

$$
\operatorname{Tr}_{K}^{\kappa^1} \leftrightsquigarrow \operatorname{Tr}_{E}^{E[\ell]}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Tame norm relation

We are reduced to a purely local question.

Goal

For almost all split ℓ , construct

$$
\phi^1 \in C_c^\infty(\mathbf{X}(\mathcal{F}_\ell), \mathbb{Z}_p)^{K^1}
$$

such that

$$
\mathsf{Tr}_{K}^{K^{1}} \phi^{1} = \mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]
$$

By applying $\Theta^{p\infty}$, this implies the main theorem.

Generalized Cartan decomposition

F now local field, ℓ now size of residue field.

Theorem (Gaitsgory–Nadler, Sakellaridis)

Let Λ^+ be the positive coweights of **G**. Concretely,

$$
\check\lambda\in\Lambda^+\leftrightarrow (a_1\geq\cdots\geq a_n), (b_1\geq\cdots\geq b_{n+1})\in\mathbb{Z}^n\times\mathbb{Z}^{n+1}
$$

Then there is a decomposition

$$
\mathbf{X}(F) = \bigsqcup_{\breve{\lambda} \in \Lambda^+} x_{\breve{\lambda}} \mathbf{G}(\mathcal{O})
$$

for some explicit $x_{\tilde{X}}$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Image of trace

Proposition

The image of $\,C^{\infty}_c(X(\digamma),\mathbb{Z}_p)^{K^1}\,$ under $\operatorname{Tr}^{K^1}_K$ is given by the divisibility conditions

$$
\phi(x_{\check{\lambda}}) \in \begin{cases} \mathbb{Z}_p & \text{if all } a_i \text{ and all } b_j \text{ are distinct} \\ (\ell - 1)\mathbb{Z}_p & \text{otherwise} \end{cases}
$$

KORK EXTERNE PROVIDE

Image of trace

Proposition

The image of $\,C^{\infty}_c(X(\digamma),\mathbb{Z}_p)^{K^1}\,$ under $\operatorname{Tr}^{K^1}_K$ is given by the divisibility conditions

$$
\phi(x_{\check{\lambda}}) \in \begin{cases} \mathbb{Z}_p & \text{if all } a_i \text{ and all } b_j \text{ are distinct} \\ (\ell - 1)\mathbb{Z}_p & \text{otherwise} \end{cases}
$$

Abstract statement

The image is the set of K-invariant functions ϕ such that

 $\ell - 1 | \phi(x_\lambda)$

whenever $\check{\lambda}$ lies on a wall (of type T).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Unramified question

New question: Does $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ satisfy the divisibility conditions?

Unramified question

New question: Does $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ satisfy the divisibility conditions?

 $\mathscr L$ is explicitly described by its Satake transform $\hat{\mathscr L}$, so hard to compute $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ directly.

KORKAR KERKER SAGA

Unramified question

New question: Does $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ satisfy the divisibility conditions?

 $\mathscr L$ is explicitly described by its Satake transform $\hat{\mathscr L}$, so hard to compute $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ directly.

New input

Compute $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ using the inverse *relative* Satake transform.

KORK ERKER ADAM ADA

Relative Satake transform

Theorem (Sakellaridis)

```
There is an isomorphism
```

$$
\begin{array}{ccc}\nC_c^{\infty}(\mathbf{X}(F), \mathbb{C})^K & \xrightarrow{\sim} & \mathbb{C}[A^*]^W \\
\circlearrowleft & \circlearrowright & \circlearrowright & \\
\mathcal{H}(\mathbf{G}, \mathbb{C}) & \xrightarrow{\sim} & \mathbb{C}[A^*]^W\n\end{array}
$$

where the bottom arrow is the usual Satake isomorphism, and the right action is multiplication.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Relative Satake transform

Theorem (Sakellaridis)

```
There is an isomorphism
```

$$
\begin{array}{ccc}\nC_c^{\infty}(\mathbf{X}(F), \mathbb{C})^K & \xrightarrow{\sim} & \mathbb{C}[A^*]^W \\
\circlearrowleft & \circlearrowright & \circlearrowright & \circlearrowright \\
\mathcal{H}(\mathbf{G}, \mathbb{C}) & \xrightarrow{\sim} & \mathbb{C}[A^*]^W\n\end{array}
$$

where the bottom arrow is the usual Satake isomorphism, and the right action is multiplication.

Let $\phi = \mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$, then $\hat{\phi} = \hat{\mathscr{L}} = \prod \left(1 - \ell^{-\frac{1}{2}} Z_i W_j\right)$ i,j

Inverse relative Satake

Theorem (Sakellaridis)

Define the function

$$
\tilde{\phi}(-)=\hat{\phi}(-^{-1})\cdot\frac{\prod_{i_1< i_2}\left(1-\frac{Z_{i_1}}{Z_{i_2}}\right)\prod_{j_1< j_2}\left(1-\frac{W_{i_1}}{W_{i_2}}\right)}{\prod_{i,j}\left(1-\ell^{-\frac{1}{2}}(Z_iW_j)^{\varepsilon_{ij}}\right)}
$$

where

$$
\varepsilon_{ij} = \begin{cases} +1 & \text{if } i+j \le n+1 \\ -1 & \text{if } i+j > n+1 \end{cases}
$$

Then for $\breve{\lambda}\leftrightarrow (\underline{\textit{a}},\underline{\textit{b}})\in \Lambda^+$, the value $\phi({\sf x}_{\breve{\lambda}})$ is the coefficient of $Z^{\underline{a}}W^{\underline{b}}$ in the power series expansion of

$$
\tilde{\phi}(\ell^{-\frac{n+1-2i}{2}}Z_i,\ell^{-\frac{n+2-2j}{2}}W_j)
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ÷. 2990

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Apply the theorem to

$$
\hat{\phi} = \prod_{i,j} \left(1 - \ell^{-\frac{1}{2}} Z_i W_j \right)
$$

The following is immediate.

Proposition

$$
\phi(x_{\check{\lambda}}) \in \mathbb{Z}[\ell^{\pm 1}]
$$

This implies integrality ($\ell \neq p$), but what about divisibility by $\ell - 1$ on walls?

Apply the theorem to

$$
\hat{\phi} = \prod_{i,j} \left(1 - \ell^{-\frac{1}{2}} Z_i W_j \right)
$$

The following is immediate.

Proposition

$$
\phi(x_{\check{\lambda}}) \in \mathbb{Z}[\ell^{\pm 1}]
$$

This implies integrality ($\ell \neq p$), but what about divisibility by $\ell - 1$ on walls?

Idea

"Specialize" at $\ell = 1$, i.e. show that

$$
\phi(x_{\check{\lambda}})|_{\ell=1}=0
$$

if $\check{\lambda}$ is on a wall.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

Exceptional divisibility

What happens when we exchange $Z_i \leftrightarrow Z_{i+1}$ in

$$
\tilde{\phi}|_{\ell=1}(-)=\hat{\phi}(-^{-1})\cdot\frac{\prod_{i_1
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Exceptional divisibility

What happens when we exchange $Z_i \leftrightarrow Z_{i+1}$ in

$$
\tilde{\phi}|_{\ell=1}(-)=\hat{\phi}(-^{-1})\cdot\frac{\prod_{i_1
$$

- \bullet $\hat{\phi}$ is invariant because it is Weyl-invariant.
- Numerator multiplied by $-\frac{Z_i}{Z_i}$ $\frac{Z_i}{Z_{i+1}}$.
- Denominator multiplied by $+\frac{Z_i}{Z_{i+1}}$.

$$
\implies \tilde{\phi}|_{\ell=1} \leadsto -\tilde{\phi}|_{\ell=1}.
$$

KORKAR KERKER SAGA

Exceptional divisibility

What happens when we exchange $Z_i \leftrightarrow Z_{i+1}$ in

$$
\tilde{\phi}|_{\ell=1}(-)=\hat{\phi}(-^{-1})\cdot\frac{\prod_{i_1
$$

- \bullet $\hat{\phi}$ is invariant because it is Weyl-invariant.
- Numerator multiplied by $-\frac{Z_i}{Z_i}$ $\frac{Z_i}{Z_{i+1}}$.
- Denominator multiplied by $+\frac{Z_i}{Z_{i+1}}$.

$$
\implies \tilde{\phi}|_{\ell=1} \leadsto -\tilde{\phi}|_{\ell=1}.
$$

If $a_i = a_{i+1}$ in λ , then this implies automatically

$$
\phi(x_{\check{\lambda}})|_{\ell=1}=0
$$

Similarly for the operation $W_i \leftrightarrow W_{i+1}$.

Speculation

Let X be a spherical variety for any reductive group G . There should be a "motivic theta element"

 $\Theta \in \text{Hom}_{\mathbf{G}}(\text{Fun}(\mathbf{X}(\mathbb{A}), \mathbb{Z}),$ "integral motivic classes")

- Examples/realizations should include diagonal cycles, Eisenstein classes, arithmetic theta lifts,...
- Hamiltonian induction should correspond to pushforward constructions.
- Archimedean place in our setting corresponds to choice of fixed vector in local systems.
- Arithmetic analogue of theta elements of relative Langlands program.

KORK ERKER ADAM ADA

Euler system applications

Given such a motivic theta element (p -adic realization is enough), the rest of our construction holds in great generality.

Euler system applications

Given such a motivic theta element (p -adic realization is enough), the rest of our construction holds in great generality.

Correct set-up for subgroup K^1 is a "combinatorially trivial" **G**-equivariant G_m -bundle $X \rightarrow X$.

Euler system applications

Given such a motivic theta element (p -adic realization is enough), the rest of our construction holds in great generality.

- Correct set-up for subgroup K^1 is a "combinatorially trivial" **G**-equivariant G_m -bundle $X \rightarrow X$.
- Image of $\text{Tr}_{K}^{K^1}$ requires divisibility by $\ell-1$ on certain walls of type T carries over. Prove this by refining Gaitsgory–Nadler's proof of generalized Cartan decomposition.

KORKAR KERKER SAGA

Euler system applications

Given such a motivic theta element (p -adic realization is enough), the rest of our construction holds in great generality.

- Correct set-up for subgroup K^1 is a "combinatorially trivial" **G**-equivariant G_m -bundle $X \rightarrow X$.
- Image of $\text{Tr}_{K}^{K^1}$ requires divisibility by $\ell-1$ on certain walls of type T carries over. Prove this by refining Gaitsgory–Nadler's proof of generalized Cartan decomposition.
- In cases covered by BZSV local unramified conjecture, above $\ell \rightarrow 1$ argument proves automatic divisibility along walls of type T.

Euler system applications

Given such a motivic theta element (p -adic realization is enough), the rest of our construction holds in great generality.

- Correct set-up for subgroup K^1 is a "combinatorially trivial" **G**-equivariant G_m -bundle $X \rightarrow X$.
- Image of $\text{Tr}_{K}^{K^1}$ requires divisibility by $\ell-1$ on certain walls of type T carries over. Prove this by refining Gaitsgory–Nadler's proof of generalized Cartan decomposition.
- In cases covered by BZSV local unramified conjecture, above $\ell \rightarrow 1$ argument proves automatic divisibility along walls of type T.

This appears to uniformly recover most known examples of Euler systems.