
Determinant (Theory)

This document is a more in-depth discussion of determinant from the point of view of multilinear algebra.

Definition. Let V be a vector space. An n-variable function f on V is multilinear if it is linear in each
variable when the other variables are fixed, i.e. for each i, we have

f(~v1, · · · , ~vi−1, λ~vi + µ~v′i, ~vi+1, · · · , ~vn) = λf(~v1, · · · , ~vi, · · · , ~vn) + µf(~v1, · · · , ~v′i, · · · , ~vn)

If ~e1, · · · , ~em is a basis for V , then f is determined by the values f(~ei1 , · · · , ~ein), where 1 ≤ i1, · · · , in ≤ m.
This gives a total of (dimV )n values, which is sometimes called a tensor in applied math settings, where it
is treated as a multi-dimensional generalization of matrices.

Example. If n = 2 and V = Rm, then we have a bilinear form, which has the general form

f(~v, ~w) = ~vTA~w

where A is an m×m matrix such that Aij = f(~ei, ~ej).

Definition. A multilinear form f is (totally) symmetric if its value does not change when the inputs are
permuted, i.e.

f(~v1, · · · , ~vi, · · · , ~vj , · · · , ~vn) = f(~v1, · · · , ~vj , · · · , ~vi, · · · , ~vn)

It is (totally) anti-symmetric or alternating if

f(~v1, · · · , ~vi, · · · , ~vj , · · · , ~vn) = −f(~v1, · · · , ~vj , · · · , ~vi, · · · , ~vn)

This is equivalent to forcing f(~v1, · · · , ~vn) = 0 if two of the inputs are equal.1

Definition. Let V be a vector space of dimension n. A volume form is an alternating multilinear n-form.

Theorem. All volume forms on V are proportional to each other.

Proof. Let ω be a volume form on V . Let ~v1, · · · , ~vn be a basis of V , then by multilinearity, ω is determined
by its values ω(~vi1 , · · · , ~vin). Since ω is alternating, this is zero if two of the indices agree, so i1, · · · , in is a
permutation of 1, · · · , n. But by anti-symmetry, we have

ω(~vi1 , · · · , ~vin) = (−1)sign(i1,··· ,in)ω(~v1, · · · , ~vn)

It follows that ω is uniquely determined by its value ω(~v1, · · · , ~vn).

Theorem. Let ω be a volume form on V , and let T : V → V be a linear transformation, then the function
T ∗ω defined by

T ∗ω(~v1, · · · , ~vn) = ω(T (~v1), · · · , T (~vn))

is also a volume form on V .

Proof. This follows from the axioms of a volume form.

By the previous two theorems, we can make the following definition.

Definition. The determinant of a linear transformation T : V → V is the number det(T ) such that

T ∗ω = (detT )ω

for any volume form ω on V .

Corollary. If T and S are two linear transformations V → V , then

det(T ◦ S) = det(T ) det(S)

1We are working with scalars R or C. It may not be true in general.



Proof. This is immediate from the observation that (T ◦ S)∗ω = S∗T ∗ω.

Suppose now V = Rn, so it has a standard basis ~e1, · · · , ~en. There are now two ways to view the
determinant of an n× n matrix:

1. An n× n matrix is a linear transformation from Rn to itself, so we can use the above definition of the
determinant of a linear transformation.

2. A sequence of n vectors form an n×n matrix, so the determinant can be defined as the unique volume
form such that (~e1, · · · , ~en) is sent to 1.

The usual properties of determinants, especially det(AB) = det(A) det(B) follow immediately from this
definition. The column expansion formula is also easy to show. The difficulty property to prove from this
point of view is

Theorem. det(A) = det(AT ).

This is difficult because we haven’t introduced a coordinate-free way of looking at the transpose, which comes
from the dual space. Instead, we will use the formula for determinant in terms of permutations.

We now present a generalization of det(AB) = det(A) det(B).

Theorem (Binet–Cauchy formula). Let A be an n× p matrix and B be a p× n matrix, then

det(AB) =
∑

1≤i1<···<in≤p

det(A[1, · · · , n; i1, · · · , in]) det(B[i1, · · · , in; 1 · · ·n])

where A[1, · · · , n; i1, · · · , in] denote the n×n minor of A defined by taking columns i1, · · · , in, and similarly
for B[i1, · · · , in; i, · · · , n].

Proof. We view A and B as linear transformations. Let ω be a volume form on Rn, then A∗ω is an alternating
n-form on Rp, which is determined by its values

A∗ω(~ei1 , · · · , ~ein) = det(A[1, · · · , n; i1, · · · , in])

over all 1 ≤ i1 < · · · < in ≤ p. Using this formula to compute B∗A∗ω gives the right hand side of the
theorem times ω. But this is (AB)∗ω, which is by definition det(AB)ω.

Example. Let A =
( a1 ··· an
b1 ··· bn

)
, then

AAT =

( ∑
a2i

∑
aibi∑

aibi
∑
b2i

)
so det(AAT ) = (

∑
a2i )(

∑
b2i )− (

∑
aibi)

2. On the other hand, by the Binet–Cauchy formula, this is

det(AAT ) =
∑

1≤i<j≤n

det(A[1, 2; i, j]) det(A[1, 2; i, j]T ) =
∑

1≤i<j≤n

(aibj − ajbi)2

This gives the identity used in our proof of the Cauchy–Schwarz inequality.

Volume

This section tries to justify calling the determinant a volume form. The volume should be a function vol(·)
whose input is a subset of Rn and outputs a non-negative real number. It should also satisfy

1. Additivity: If A ∩B = ∅, then vol(A ∪B) = vol(A) + vol(B).

2. Translation-invariance: If ~v ∈ Rn, then vol(~v +A) = vol(A).

3. Normalization: The unit cube [0, 1]n has volume 1.



It is true that something like the first two properties characterizes volume up to a constant multiple, and it
is completely determined when the third property is added. We will pretend that this is true, so we do not
have to introduce measure theory.

Now let T be a linear transformation of Rn. The function S 7→ vol(T−1(S)) also satisfies additivity and
translation-invariance, so it is a multiple of the volume, i.e. there exists a constant cT such that vol(T (S)) =
cT vol(S) for all S ⊆ Rn. We want to show that cT = |detT |. The sign of the determinant keeps track of
the orientation, which is a whole other story.

Both sides of the equation are multiplicative, so by the singular value decomposition, we just need to
prove it for orthogonal transformations and scaling in one coordinate direction.

– Orthogonal case: by definition, T preserves the unit ball B = {~x ∈ Rn|‖~x‖ ≤ 1}. Setting S = B in
the above formula gives vol(B) = cT vol(B), so cT = 1 (we also need vol(B) 6= 0, which is not hard to
show from the axioms).

– Scaling: let T be the transformation which scales the first entry by α > 0. Let C be the unit cube,
then T (C) is the cube Cα = [0, α]× [0, 1]n−1. By additivity, and translation invariance, we have

vol(Cα+β) = vol(Cα) + vol(Cβ)

Therefore, vol(Cα) is an increasing, additive function in α. All such functions have the form cα for
some constant c, which we know must be 1 since vol(C1) = 1 by normalization. This shows that
cT = vol(Cα) = α = |detT |.

Cayley–Hamilton theorem

Theorem. Let A be an n× n matrix. Let p(λ) be its characteristic polynomial, so

p(λ) = det(λIn −A)

then p(A) = 0.

Proof. Let B = adj(λIn −A), then each entry of B is the determinant of an (n− 1)× (n− 1) matrix, each
entry of which is a polynomial in λ of degree at most 1, so it is a polynomial of degree at most n − 1, and
we can write

B = B0 +B1λ+ · · ·+Bn−1λ
n−1

where B0, B1, · · · , Bn−1 are n× n matrices.
Using the property of the adjugate matrix, we have

det(λIn −A)In = (B0 +B1λ+ · · ·+Bn−1λ
n−1)(λIn −A)

= −B0A+

n−1∑
i=1

(Bi−1 −BiA)λi +Bn−1λ
n

Suppose p(λ) =
∑n
i=0 ciλ

i, then we have

Bn−1 = cnIn, −B0A = c0In, Bi−1 −BiA = ciIn for i = 1, 2, · · · , n− 1

Multiply the equation involving ci by Ai on the right and sum:

p(A) = c0In + c1A+ · · ·+ cnA
n

= −B0A+ (B0 −B1A)A+ (B1 −B2A)A2 + · · ·+ (Bn−2 −Bn−1A)An−1 +Bn−1A
n

= (−B0A+B0A) + (−B1A
2 +B1A

2) + · · ·+ (−Bn−1An +Bn−1A
n)

= 0

This finishes the proof.


