
Fredholm alternative

Since there was some confusion in lecture, here is the statement again. This is non-examinable in the sense
that it is not in the textbook, but you may be asked some True/False questions in the exams based on this.
Also, it is good to know.

Theorem. Let A be an n× n square matrix. Exactly one of the following two statements hold:

1. For every ~b ∈ Rn, the equation A~x = ~b has a solution, xor

2. The equation A~x = ~0 has at least one solution which is not ~0.

Moreover,

• In the first case, A~x = ~b has exactly one solution for every ~b ∈ Rn.

• In the second case, A~x = ~0 has infinitely many solutions.

After Chapter 3, I may refer back to this and give a nicer statement. In the meantime, here is a proof.
It is not the shortest one, but it is a good review of things we did in lecture.

Proof. Let r = rank(A), then either r = n xor r < n. In the first case, by the statement I labelled (b’) in

lecture, the system A~x = ~b is consistent for all ~b ∈ Rn, so statement (1) holds.

In the second case, the statement I labelled (c1’) shows that for each ~b ∈ Rn, the system A~x = ~b is either

inconsistent or has infinitely many solutions. In particular, let ~b = ~0. Observe that A~0 = ~0, so the system
A~x = ~0 is consistent. Therefore, it has infinitely many solutions, and statement (2) holds.

Moreover, suppose statement (1) holds, then the rref of A must be the identity matrix

In =


1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1


n×n

Otherwise, we would have a zero row, and setting the corresponding row in ~b to 1 will give an inconsistent
system. It follows that A~x = ~0 has the unique solution ~0. This shows that statements (1) and (2) cannot
simultaneously hold.

As an application, we consider the problem introduced in Lecture 1, which is officially known as the
discrete Dirichlet boundary problem.

Theorem. Consider the following wire grid

B

A

Suppose the temperature at each interior point is the average of the temperatures at its four neighbours.
Given any temperature distribution on the boundary, the temperatures in the interior are uniquely defined.

Proof. Let n be the number of lines on each side, so n = 6 in the above diagram. Recall that we set up a
system of n2 equations in n2 unknowns. For an interior point, it corresponds to an equation of the form

4A− (N1 + N2 + N3 + N4) = 0

and for a boundary point, it is simply
B = (given value)



The conclusion follows from statement (1) of the Fredholm alternative, so we show that statement (2) of the
Fredholm alternative does not hold. The negation of statement (2) is that A~x = ~0 has exactly one solution.
Physically, we are setting the temperatures at the boundary to be 0.

Now, the point with the maximal temperature must occur at the boundary, since otherwise it is an
average of its four neighbours. Similarly, this holds for the minimal temperature. But the maximal and
minimal temperatures of the boundary are both 0, so the temperatures inside must all be 0. Therefore,
A~x = ~0 has a unique solution, disproving statement (2) of the Fredholm alternative.

Note that the proof is quite general and does not really use much about the exact nature of the grid. In
addition, the Fredholm alternative also holds for “infinite dimensional systems”, interpreted correctly (this
was a small part of Fredholm’s work). In this form, it is used extensively in research, for example to prove
theorems such as

Theorem. Given a smooth flat heat conducting plate. Suppose its temperature at boundary is specified
and the plate is in thermal equilibrium, then there exists a unique interior temperature profile.

Mathematically, this is equivalent to finding the electric potential inside a conductor. Both are described
by the Laplace equation, and the grid problem is a discretization of this problem.

In some cases, we can actually write down the solution to the continuous problem as an infinite series, but
the series converges very slowly if the boundary temperature is discontinuous (for example, one side is 600K
while the other three sides are 300K). In practice, people find the interior temperature by first discretizing
it and then solving the linear system. Gauss–Jordan elimination is O((n2)3) = O(n6) time, which is not
practical. When we do eigenvalues, I may talk about the discrete Fourier transform, which can solve it in
O(n2 log n) time. Of course, the log n came from Fast Fourier Transform.


