
Left and right inverses

In response to a question raised during lecture, we will discuss some formal properties of inverses. In
particular, we will see that the theorem that a left inverse of a matrix is also a right inverse is not a
consequence of formal manipulation.

Definition. A monoid is a set S with an associative binary operation · and a (two-sided) identity element
e. In other words, we have the following two axioms

1. For all a, b, c ∈ S, a · (b · c) = (a · b) · c.

2. For all a ∈ S, a · e = e · a = a.

Example.

– Let S be the set of n×n matrices, then it is a monoid with the binary operation “multiplication” and
identity element In.

– Let S be the set of all functions f : N→ N (where N = {1, 2, · · · } is the set of natural numbers). It is
a monoid with binary operation “composition” and identity element the identity function id(n) = n.

– Let S = {e, a, b, c} be a set with four elements. Define the binary operation by the table

· e a b c
e e a b c
a a e c b
b b c e a
c c b a e

This is a monoid with identity element e.

Definition. Let S be a monoid. Suppose a, b ∈ S satisfies ab = e, then b is a right inverse of a, and a is a
left inverse of b.

The first definition of an inverse of a matrix given in lecture was in fact only a left inverse. The more
usual definition of an inverse is a two-sided inverse, but they are equivalent by the theorems we looked at on
linear systems. In a general monoid, the following is probably the strongest thing you can say.

Lemma. If S is a monoid and a has a left inverse, then a has at most one right inverse. Moreover, if it has
a right inverse, then it is equal to the left inverse.

Proof. Let l be a left inverse of a, so la = e. Suppose ab = ab′ = e, then lab = lab′ = l, so b = b′ = l.

Example. We show that the existence of a left inverse does not imply the existence of a right inverse. In
the second example, consider the function f(n) = 2n. It has a left inverse

g(n) =

{
n
2 if n is even

1 if n is odd

In other words, g(f(n)) = n for all n ∈ N. But f cannot have a right inverse. We give three proofs of this:

– If h is a right inverse, then f(h(n)) = n for all natural numbers n, but f only takes value in the even
numbers, so this cannot hold if n is odd.

– If f has a right inverse, then it must be g by the lemma, but f(g(1)) = 2 6= 1.

– Observe that f has multiple left inverses: just modify the behaviour of g on the odd numbers. This
gives a third proof that f has no right inverse using the lemma.

More is true: a function has a left inverse if and only if it is injective (no two numbers get mapped to the
same number). It has a right inverse if and only if it is surjective (every element of N is the value of the
function at some point).



But we have the following theorem.

Theorem. If S is a monoid in which every element has a left inverse, then every element has a unique
two-sided inverse in S (so S is a group).

Proof. Let a ∈ S, and let b ∈ S be a left inverse of a. We have ba = e, so a is a right inverse of b. Since b
has a left inverse, it follows from the lemma that a is a two-sided inverse of b, so ab = ba = e. Therefore, b
is a two-sided inverse of a.

This theorem does not apply to the first example, since there are non-invertible matrices. It also does
not apply to the sub-monoid of elements with left inverses, since it is not guaranteed that the left inverse of
an element also has a left inverse.

There is a more general version of inverse called the Moore–Penrose pseudoinverse. Given an n × m
matrix, it is an m× n matrix A+ satisfying

– AA+A = A,A+AA+ = A+.

– AA+ and A+A are Hermitian.

This pseudoinverse always exists and is unique. The properties are symmetric in A and A+, so (A+)+ = A.
Using the singular value decomposition, we can write down a formula for the pseudoinverse. Recall that the
motivation for introducing inverse was to solve A~x = ~b. In general, this may be inconsistent or it may have
infinitely many solutions. The next theorem says that A+~b is a good choice of a “solution”.

Theorem. Consider the system of equations A~x = ~b in ~x. Let ~z = A+~b, then

– If the system is consistent, then ~z is the solution with the minimal norm.

– If the system is inconsistent, then ~z is a least-square solution, i.e. the value of ‖A~x−~b‖ is minimized
if ~x = ~z. Moreover, ~z has the minimal norm among all least square solutions.


