Left and right inverses

In response to a question raised during lecture, we will discuss some formal properties of inverses. In particular, we will see that the theorem that a left inverse of a matrix is also a right inverse is not a consequence of formal manipulation.

Definition. A monoid is a set S with an associative binary operation • and a (two-sided) identity element e. In other words, we have the following two axioms

1. For all $a, b, c \in S, a \cdot(b \cdot c)=(a \cdot b) \cdot c$.
2. For all $a \in S, a \cdot e=e \cdot a=a$.

Example.

- Let S be the set of $n \times n$ matrices, then it is a monoid with the binary operation "multiplication" and identity element I_{n}.
- Let S be the set of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ (where $\mathbb{N}=\{1,2, \cdots\}$ is the set of natural numbers). It is a monoid with binary operation "composition" and identity element the identity function id $(n)=n$.
- Let $S=\{e, a, b, c\}$ be a set with four elements. Define the binary operation by the table

\cdot	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

This is a monoid with identity element e.
Definition. Let S be a monoid. Suppose $a, b \in S$ satisfies $a b=e$, then b is a right inverse of a, and a is a left inverse of b.

The first definition of an inverse of a matrix given in lecture was in fact only a left inverse. The more usual definition of an inverse is a two-sided inverse, but they are equivalent by the theorems we looked at on linear systems. In a general monoid, the following is probably the strongest thing you can say.

Lemma. If S is a monoid and a has a left inverse, then a has at most one right inverse. Moreover, if it has a right inverse, then it is equal to the left inverse.

Proof. Let l be a left inverse of a, so $l a=e$. Suppose $a b=a b^{\prime}=e$, then $l a b=l a b^{\prime}=l$, so $b=b^{\prime}=l$.
Example. We show that the existence of a left inverse does not imply the existence of a right inverse. In the second example, consider the function $f(n)=2 n$. It has a left inverse

$$
g(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{cases}
$$

In other words, $g(f(n))=n$ for all $n \in \mathbb{N}$. But f cannot have a right inverse. We give three proofs of this:

- If h is a right inverse, then $f(h(n))=n$ for all natural numbers n, but f only takes value in the even numbers, so this cannot hold if n is odd.
- If f has a right inverse, then it must be g by the lemma, but $f(g(1))=2 \neq 1$.
- Observe that f has multiple left inverses: just modify the behaviour of g on the odd numbers. This gives a third proof that f has no right inverse using the lemma.

More is true: a function has a left inverse if and only if it is injective (no two numbers get mapped to the same number). It has a right inverse if and only if it is surjective (every element of \mathbb{N} is the value of the function at some point).

But we have the following theorem.
Theorem. If S is a monoid in which every element has a left inverse, then every element has a unique two-sided inverse in S (so S is a group).

Proof. Let $a \in S$, and let $b \in S$ be a left inverse of a. We have $b a=e$, so a is a right inverse of b. Since b has a left inverse, it follows from the lemma that a is a two-sided inverse of b, so $a b=b a=e$. Therefore, b is a two-sided inverse of a.

This theorem does not apply to the first example, since there are non-invertible matrices. It also does not apply to the sub-monoid of elements with left inverses, since it is not guaranteed that the left inverse of an element also has a left inverse.

There is a more general version of inverse called the Moore-Penrose pseudoinverse. Given an $n \times m$ matrix, it is an $m \times n$ matrix A^{+}satisfying

- $A A^{+} A=A, A^{+} A A^{+}=A^{+}$.
- $A A^{+}$and $A^{+} A$ are Hermitian.

This pseudoinverse always exists and is unique. The properties are symmetric in A and A^{+}, so $\left(A^{+}\right)^{+}=A$. Using the singular value decomposition, we can write down a formula for the pseudoinverse. Recall that the motivation for introducing inverse was to solve $A \vec{x}=\vec{b}$. In general, this may be inconsistent or it may have infinitely many solutions. The next theorem says that $A^{+} \vec{b}$ is a good choice of a "solution".

Theorem. Consider the system of equations $A \vec{x}=\vec{b}$ in \vec{x}. Let $\vec{z}=A^{+} \vec{b}$, then

- If the system is consistent, then \vec{z} is the solution with the minimal norm.
- If the system is inconsistent, then \vec{z} is a least-square solution, i.e. the value of $\|A \vec{x}-\vec{b}\|$ is minimized if $\vec{x}=\vec{z}$. Moreover, \vec{z} has the minimal norm among all least square solutions.

