Problem 1. Amitesh Q2: basis for image, kernel. Left vs. right inverse. **Problem 2.**

- (a) Let $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Find all matrices C such that CJ = JC. Explain your answer geometrically.
- (b) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} -y \\ x \end{bmatrix}$. Find the matrix of T in the basis

$$\mathfrak{B} = \left\{ \begin{bmatrix} -2\\ 3 \end{bmatrix}, \begin{bmatrix} 1\\ -1 \end{bmatrix} \right\}$$

(c) Let A be the matrix you computed in part (b). Using the result of (a) or otherwise, find all invertible matrices B such that $BAB^{-1} = A$.

Problem 3. The 3×3 Vandermonde matrix has the following form

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$$

You are given that if a, b, c are mutually distinct, then A is invertible.

(a) Find all values of k such that the equation

[1	1	1]	[1	1	0	[1	1	1		[1]	
5	12	$\sqrt{2}$	0	1	3	2	4	6	$\vec{x} =$	10	
25	144	2	0	1	k	4	16	36		$\sqrt{3}$	

has a unique solution.

- (b) Explain why A is not invertible if a = b.
- (c) Let a = b = 1, c = 2. Find a basis for Im(A).
- (d) Find a basis of \mathbb{R}^3 which contains the vectors you wrote down in the previous part of the question.

Problem 4.

- (a) Rotation CCW $2\pi/3$ and CW $2\pi/3$ similar?
- (b) AB invertible $\implies \ker(A) = 0.$
- (c) Ax = b question: rank-nullity.

Problem 5. Let A be the 3×3 matrix with only ones

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- (a) Find a basis for $\ker(A)$.
- (b) Find an invertible matrix S such that

$$S^{-1}AS = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

[Hint: you already found the first two columns of S]

- (c) In closed form, evaluate A^{2020} .
- (d) Let B be the matrix

$$B = \begin{bmatrix} 1 & 1 & \lambda \\ 1 & \lambda & 1 \\ \lambda & 1 & 1 \end{bmatrix}$$

Find all values of λ such that B is not invertible. For each λ you found, find the rank of B.