Problem 1. Amitesh Q2: basis for image, kernel. Left vs. right inverse. Problem 2.
(a) Let $J=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Find all matrices C such that $C J=J C$. Explain your answer geometrically.
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T\left(\left[\begin{array}{c}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}-y \\ x\end{array}\right]$. Find the matrix of T in the basis

$$
\mathfrak{B}=\left\{\left[\begin{array}{c}
-2 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}
$$

(c) Let A be the matrix you computed in part (b). Using the result of (a) or otherwise, find all invertible matrices B such that $B A B^{-1}=A$.

Problem 3. The 3×3 Vandermonde matrix has the following form

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right]
$$

You are given that if a, b, c are mutually distinct, then A is invertible.
(a) Find all values of k such that the equation

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
5 & 12 & \sqrt{2} \\
25 & 144 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 3 \\
0 & 1 & k
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & 6 \\
4 & 16 & 36
\end{array}\right] \vec{x}=\left[\begin{array}{c}
1 \\
10 \\
\sqrt{3}
\end{array}\right]
$$

has a unique solution.
(b) Explain why A is not invertible if $a=b$.
(c) Let $a=b=1, c=2$. Find a basis for $\operatorname{Im}(A)$.
(d) Find a basis of \mathbb{R}^{3} which contains the vectors you wrote down in the previous part of the question.

Problem 4.

(a) Rotation CCW $2 \pi / 3$ and CW $2 \pi / 3$ similar?
(b) $A B$ invertible $\Longrightarrow \operatorname{ker}(A)=0$.
(c) $A x=b$ question: rank-nullity.

Problem 5. Let A be the 3×3 matrix with only ones

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(a) Find a basis for $\operatorname{ker}(A)$.
(b) Find an invertible matrix S such that

$$
S^{-1} A S=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

[Hint: you already found the first two columns of S]
(c) In closed form, evaluate A^{2020}.
(d) Let B be the matrix

$$
B=\left[\begin{array}{lll}
1 & 1 & \lambda \\
1 & \lambda & 1 \\
\lambda & 1 & 1
\end{array}\right]
$$

Find all values of λ such that B is not invertible. For each λ you found, find the rank of B.

