QR Decomposition: Computation and Applications

Shilin Lai
Princeton University

06 February 2020

Motivation

Problem

Given a system $A \vec{x}=\vec{b}$ which is inconsistent, how to find the optimal choice of \vec{x} to minimize some objectives.

Motivation

Problem

Given a system $A \vec{x}=\vec{b}$ which is inconsistent, how to find the optimal choice of \vec{x} to minimize some objectives.

One way of formalizing this is the following notion.

Definition

A vector \vec{x}^{*} is a least square solution if for all \vec{x}, we have

$$
\left\|A \vec{x}^{*}-\vec{b}\right\| \leq\|A \vec{x}-\vec{b}\|
$$

The value of $A \vec{x}^{*}$ is the least square approximation to \vec{b}.

The projection method

The least squared approximation is the projection of \vec{b} to $\operatorname{Im}(A)$, so we can also solve the problem in three steps:

The projection method

The least squared approximation is the projection of \vec{b} to $\operatorname{Im}(A)$, so we can also solve the problem in three steps:
(i) Compute the $Q R$ factorization of A to find an orthonormal basis for $\operatorname{Im}(A)$ (columns of Q).

The projection method

The least squared approximation is the projection of \vec{b} to $\operatorname{Im}(A)$, so we can also solve the problem in three steps:
(i) Compute the $Q R$ factorization of A to find an orthonormal basis for $\operatorname{Im}(A)$ (columns of Q).
(ii) The least squared approximation is $Q Q^{T} \vec{b}$ by the projection formula.

The projection method

The least squared approximation is the projection of \vec{b} to $\operatorname{Im}(A)$, so we can also solve the problem in three steps:
(i) Compute the $Q R$ factorization of A to find an orthonormal basis for $\operatorname{Im}(A)$ (columns of Q).
(ii) The least squared approximation is $Q Q^{T} \vec{b}$ by the projection formula.
(iii) The least squared solution satisfies $A \vec{x}^{*}=Q Q^{T} \vec{b}$, which implies that

$$
R \vec{x}^{*}=Q^{T} \vec{b}
$$

Solve this by back-substitution.

The normal equation

There is also a direct approach.

Theorem

(1) The least squared solutions to $A \vec{x}=\vec{b}$ are exactly the solutions to the normal equation

$$
A^{T} A \vec{x}=A^{T} \vec{b}
$$

(2) $\operatorname{ker}\left(A^{T} A\right)=\operatorname{ker}(A)$.
(3) If $\operatorname{ker}(A)=\{\overrightarrow{0}\}$, then the least squared solution is unique, and the least squared approximation is

$$
A\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Why use QR?

The normal equation typically behaves much worse numerically compared to the original equation.

Why use QR?

A is the first m columns of a ill-conditioned 80×80 matrix. \vec{b} is a randomly chosen vector in \mathbb{R}^{80}.

Why use QR?

The computation of $A^{T} A$ may already lead to round-off error.

Why use QR?

The computation of $A^{T} A$ may already lead to round-off error.

$$
A=\left[\begin{array}{cc}
10^{8} & -10^{8} \\
1 & 1
\end{array}\right], \quad A^{T} A=10^{16}\left(\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]+10^{-16}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)
$$

The 10^{-16} term is below standard machine precision, so $A^{T} A$ looks singular to the computer.

Gram-Schmidt algorithm

Idea

Project \vec{v}_{i} to the orthogonal complement of the subspace spanned by the vectors which come before it.

Problem: only have projection formula if we have an orthonormal basis.
Solution: compute the orthonormal basis inductively!

Extended Gram-Schmidt

Input: $n \times m$ matrix A with linearly independent columns $\vec{v}_{1}, \cdots, \vec{v}_{m}$. Output: The $Q R$ decomposition of A.

Pseudocode

$Q:=[] ;$
For $(i=1 ; i \leq m ; i++)\{$
For $(j=1 ; j<i ; j++): r_{j i}=\vec{u}_{j}^{T} \vec{v}_{i} ; / /$ Projection coefficients
$\vec{v}_{i}^{\perp}:=\vec{v}_{i}-\left(r_{1 i} \vec{u}_{1}+\cdots+r_{i-1, i} \vec{u}_{i-1}\right) ; / /$ Compute projection
$r_{i i}:=\left\|\vec{v}_{i}^{\perp}\right\| ; / /$ Normalizing constant
$\vec{u}:=\frac{1}{r_{i i}} \vec{v}_{i}^{\perp} ; / /$ Normalize
Append \vec{u} to Q;
\}

Why not Gram-Schmidt

Key issue: in high dimension space, two randomly chosen vectors are nearly orthogonal.

Why not Gram-Schmidt

Key issue: in high dimension space, two randomly chosen vectors are nearly orthogonal.
$\Longrightarrow \vec{v}_{i}^{\perp}$ is near $\overrightarrow{0}$, and its computation involves subtracting two numbers which are close.
\Longrightarrow Deterioration of accuracy.

Why not Gram-Schmidt

$A=Q R$ is 80×80 with rapidly decaying diagonal entries in R.
This graph shows the diagonal entries computed using the Gram-Schmidt.

Better algorithms

Abstract

Idea Do a fancy row reduction using orthogonal matrices.

Better algorithms

Idea

Do a fancy row reduction using orthogonal matrices.

More precisely, repeatedly left-multiplying by orthogonal matrices to create zeroes in A :

$$
Q_{1} A=\left(\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)
$$

Better algorithms

Idea

Do a fancy row reduction using orthogonal matrices.

More precisely, repeatedly left-multiplying by orthogonal matrices to create zeroes in A :

$$
\begin{gathered}
Q_{2} Q_{1} A=\left(\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right) \\
A=Q_{1}^{T} Q_{2}^{T} R
\end{gathered}
$$

Householder reflection

Problem

Given \vec{x} and \vec{y} in \mathbb{R}^{n} of the same length, find an orthogonal matrix Q such that $Q \vec{x}=\vec{y}$.

Householder reflection

Problem

Given \vec{x} and \vec{y} in \mathbb{R}^{n} of the same length, find an orthogonal matrix Q such that $Q \vec{x}=\vec{y}$.

Observation

Let \vec{u} be a non-zero vector, then the reflection across the hyperplane \vec{u}^{\perp} is

$$
H_{\vec{u}}=I_{n}-2 \frac{\vec{u} \vec{u}^{T}}{\|\vec{u}\|^{2}}
$$

Householder reflection

Given $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ of equal length, let $\vec{u}=\vec{x}-\vec{y}$,

Householder reflection

Given $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ of equal length, let $\vec{u}=\vec{x}-\vec{y}$, then

$$
\begin{aligned}
H_{\vec{u}}(\vec{x}) & =\vec{x}-2 \frac{\vec{u}^{T} \vec{x}}{\vec{u}^{\top} \vec{u}} \vec{u} \\
& =\vec{x}-2 \frac{\|\vec{x}\|^{2}-\vec{y}^{T} \vec{x}}{2\left(\|\vec{x}\|^{2}-\vec{y}^{\top} \vec{x}\right)} \vec{u} \\
& =\vec{x}-\vec{u} \\
& =\vec{y}
\end{aligned}
$$

We have shown that orthogonal matrices act transitively on vectors of the same length.

Householder reflection

Input: $n \times n$ matrix A
Output: The $Q R$ decomposition of A

Pseudocode

$$
\begin{aligned}
& \text { For }(i=1 ; i \leq m ; i++)\{ \\
& \quad \vec{u}:=A[i: n, i]-\vec{e}_{1} ; \\
& Q_{i}:=\left(\begin{array}{cc}
l_{i} & 0 \\
0 & H_{\vec{u}}
\end{array}\right) ; \\
& \quad A:=Q_{i} A ; \\
& \} \\
& R:=A ; \\
& Q:=Q_{1}^{T} Q_{2}^{T} \cdots Q_{n}^{T} ;
\end{aligned}
$$

Complexity

Reflection of a vector in \mathbb{R}^{n} :

- n for dot product.
- n for scalar multiplication.
- n for subtraction.

Computing vector norm takes n operations.
Total complexity:

$$
\sum_{i=0}^{n-1} 4(n-i)^{2} \simeq \frac{4}{3} n^{3}
$$

Complexity

Reflection of a vector in \mathbb{R}^{n} :

- n for dot product.
- n for scalar multiplication.
- n for subtraction.

Computing vector norm takes n operations.
Total complexity:

$$
\sum_{i=0}^{n-1} 4(n-i)^{2} \simeq \frac{4}{3} n^{3}
$$

This is comparable to Gram-Schmidt, but the algorithm is stable (with some tweaks).

Givens rotation

Can also kill off entries one by one using plane rotations

$$
\left[\begin{array}{ccccc}
I_{i} & & & & \\
& c & \cdots & s & \\
& \vdots & l_{j-i-1} & \vdots & \\
& -s & \cdots & c & \\
& & & & I_{n-j-1}
\end{array}\right]
$$

Givens rotation

Can also kill off entries one by one using plane rotations

$$
\left[\begin{array}{ccccc}
I_{i} & & & & \\
& c & \cdots & s & \\
& \vdots & l_{j-i-1} & \vdots & \\
& -s & \cdots & c & \\
& & & & I_{n-j-1}
\end{array}\right]
$$

Each rotation takes $O(n)$ operations to perform, so if A is sparse, this can be much faster (with good application order).

