
Spectral theorems, SVD, and Quadratic forms

This set of notes covers materials from Chapter 8. The non-examinable sections are marked with an asterisk.

Contents

1 Spectral theorem: symmetric matrices 1

2 Spectral theorem: extensions* 5

3 Spectral theorem: proofs* 5

4 Singular Value Decomposition 6

5 Matrix norm and condition number 10

6 Quadratic forms 11

7 Abstract definition* 12

8 Sylvester’s law of inertia 12

1 Spectral theorem: symmetric matrices

The following theorem is absolutely the main theorem of the course.

Theorem (Spectral theorem, version I). Let A be an n×n symmetric matrix, then there exists an orthogonal
matrix Q and a diagonal matrix D such that A = QDQT .

This section will be devoted to studying some consequences of this theorem. The first observation to
make is that QT = Q−1, so A is in fact diagonalized by Q, so we have

Corollary. Symmetric matrices are diagonalizable over R.

This re-interpretation using diagonalization yields an equivalent formulation of the spectral theorem.

Theorem (Spectral theorem, version II). Let A be an n × n symmetric matrix, then all eigenvalues of
A are real, their algebraic multiplicities and geometric multiplicities agree, and eigenspaces for distinct
eigenvalues are orthogonal.

Proof. The first two properties is equivalent to A being diagonalizable over R. It follows that A = SDS−1,
where the columns of S are eigenvectors of A. But S is orthogonal if and only if its columns form an
orthonormal basis, which is equivalent to the statement about orthogonality of distinct eigenspaces.

Theorem (Spectral theorem, version III). Let A be an n×n symmetric matrix, then there exists orthogonal
projections P1, · · · , Pr and real numbers λ1, · · · , λr such that

– PiPj = 0 if i 6= j.

– In = P1 + · · ·+ Pr.

– APi = λiPi.

This is the decomposition of the identity into eigenspace projections. In these notations, we have

A = λ1P1 + · · ·+ λrPr



Proof. Let λ1, · · · , λr be the distinct eigenvalues of A, which are all real by the spectral theorem. Let Pi
be the orthogonal projection onto the eigenspace ker(A − λiIn), then we have APi = λiPi. Moreover, by
version II, the different eigenspaces are orthogonal to each other, so PiPj = 0. Finally, the statement that
In = P1 + · · ·+ Pn is equivalent to saying there is a basis of eigenvectors.

Example. Consider the matrix

A =

1 1 0
1 1 1
0 1 1


Its characteristic polynomial is det(A − λI3) = −(λ − 1)(λ2 − 2λ − 1), which has roots λ1 = 1 +

√
2, λ2 =

1, λ3 = 1−
√

2. They are all real, as expected.
The three eigenspaces are respectively

E1 = span

 1√
2

1

 , E2 = span

−1
0
1

 , E3 = span

 1

−
√

2
1


The three vectors are mutually orthogonal, which is expected from version II of the spectral theorem. We
can normalize them to form an orthogonal matrix

Q = [~u1 ~u2 ~u3] =
1

2

 1 −
√

2 1√
2 0 −

√
2

1
√

2 1


The statement of the spectral theorem, version I, in this case becomes

A = QDQT , D =

1 +
√

2 0 0
0 1 0

0 0 1−
√

2


Finally, the three eigenspace projectors are

P1 = ~u1~u
T
1 =

1

4

 1
√

2 1√
2 2

√
2

1
√

2 1


P2 = ~u2~u

T
2 =

1

2

 1 0 −1
0 0 0
−1 0 1


P1 = ~u3~u

T
3 =

1

4

 1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1



We indeed have P1 + P2 + P3 = I3. Moreover, it is good to check that the trace of each matrix is equal to
1, the dimension of the eigenspace.

Example. We now do an example with some multiplicities. Let

A =

 8 −2 2
−2 5 4
2 4 5





The eigenvalues of A are λ1 = 9 with algebraic multiplicity 2 and λ2 = 0 with algebraic multiplicity 1. The
two eigenspaces are

E1 = ker

−1 −2 2
−2 −4 4
2 4 −4

 = span

2
0
1

 ,
0

1
1


E2 = kerA = span

−1
−2
2


Observe that E1 is orthogonal to E2.

We want to find an orthogonal basis {~u1, ~u2} for E1. This can be done by applying Gram–Schmit on the
vectors we found, which gives

~u1 =
1√
5

2
0
1

 , ~u2 =
1

3
√

5

−2
5
4


The required diagaonalization of A using an orthogonal matrix is therefore A = QDQT , where

Q =
1

3
√

5

6 −2 −
√

5

0 5 −2
√

5

3 4 2
√

5

 , D =

9
9

0


There are many choices for the first two columns of Q. For example, the following is also a possibility for Q

Q =
1

3

 2 2 −1
−2 1 −2
−1 2 2


However, D is unique if we require the diagonal entries to be in decreasing order.

Now to verify version III, we need to compute the two projectors. We have

P2 = ~u3~u
T
3 =

1

9

 1 2 −2
2 4 −4
−2 −4 4


To compute P1, we can use the orthogonal basis we have computed, but instead, we apply the general
projection formula as an example. Let

C =

2 0
0 1
1 1


then

P1 = C(CTC)−1CT =

2 0
0 1
1 1

[5 1
1 2

]−1 [
2 0 1
0 1 1

]
=

1

9

 8 −2 2
−2 5 4
2 4 5


Observe that I3 = P1 +P2, as predicted. Moreover, even though the matrix Q is not unique, the projections
P1 and P2 are uniquely determined.

We now give some theoretic applications of the spectral theorem.

Definition. The spectrum of a square matrix A is the set of its eigenvalues.

Theorem (Borel functional calculus). Let A be an n×n symmetric matrix. Let f be a real-valued function
defined on the spectrum of A, then we can define f(A). Moreover, the usual algebraic operations on functions
correspond to the algebraic operations on matrices.



Proof. We use the projection version of the spectral theorem and define

f(A) =

r∑
i=1

f(λi)Pi

In the diagonalization language, this corresponds to

f(A) = Qf(D)QT , f(D) =

f(λ1)
. . .

f(λn)


This is in parallel with the matrix function we defined in the last chapter using power series. It applies to

an arbitrary function, as opposed to those that can be represented by power series, but it applies to a smaller
class of matrices. We will expand the applicable class of matrices in the next section to include orthogonal
matrices, but one should not expect to be able to apply an arbitrary function to an arbitrary matrix.

Definition. A symmetric matrix is positive definite/positive semidefinite/negative definite/negative
semidefinite if respectively, its spectrum lies in R>0/R≥0/R<0/R≤0. It is indefinite if it is none of the
above, i.e. it has both positive and negative eigenvalues.

Corollary. If A is positive semidefinite, then there exists a symmetric matrix B such that A = B2. If we
require B to also be positive semidefinite, then B is unique, which we denote by

√
A.

Proof. Apply the above theorem to the function f : [0,∞)→ R, f(x) =
√
x.

If A is an arbitrary matrix, then ATA is positive semidefinite. Indeed, it is symmetric, so it only has real
eigenvalues. Let λ be one eigenvalue, so ATA~v = λ~v for a non-zero ~v. Multiply by ~vT gives

λ =
~vTATA~v

~vT~v
=
‖A~v‖2

‖~v‖2
≥ 0

We can therefore define |A| =
√
ATA. This commutes with A.

Theorem (Polar decomposition). Let A be a square matrix, then there exists a decomposition A = U |A|,
where U is orthogonal and |A| is positive definite.

Proof. Define a linear transformation T by setting T (|A|~v) = A~v and T (~w) = 0 if ~w ⊥ Im(|A|). We need to
check that if |A|~v = |A|~w, then A~v = A~w. But observe that

‖|A|~v‖2 = ~vT |A|T |A|~v = ~vTATA~v = ‖A~v‖2

If |A|~v = |A|~w, then |A|(~v− ~w) = 0, so A(~v− ~w) = 0 by this computation. It follows that T is a well-defined
function. Linearity follows easily form this. Moreover, T preserves the length of the vectors in Im(|A|), so
we can re-define T on Im(|A|)⊥ to make T orthogonal. The matrix associated to T is the U we want.

We remark that the proof is very easy if A is invertible: simply take U = A|A|−1 and check that U is
orthogonal. This makes sense in general if we use the Moore–Penrose pseudo-inverse, recalled later. It is
also easy if A is symmetric using the Borel functional calculus by considering the identity

x = sign(x)|x|, sign(x) =

{
−1 x < 0

1 x ≥ 0

We will give an alternative proof later using the singular value decomposition.



2 Spectral theorem: extensions*

The most general class of matrices for which the spectral theorem holds is the following

Definition. A square matrix A is normal if AĀT = ĀTA.

In particular, orthogonal matrices and real symmetric matrices are normal.

Theorem (Spectral theorem for normal matrices). Let A be a normal matrix, then there exists complex

matrices U and D such that A = UDU
T

, with U unitary and D diagonal.

Recall that a square matrix U is unitary if UU
T

= I. This is the appropriate generalization of orthogonal
matrices to the complex numbers. The other two versions carry over, except that, for complex vectors, the

dot product is defined by ~v · ~w := ~v
T
~w. Similarly, Borel functional calculus carries over, and we can prove

the existence of a polar decomposition.
Since this is a non-examinable section, we will talk briefly about infinite dimensional operators from the

perspective of quantum mechanics. Vectors are now called states, and they are written as |ψ〉. The conjugate
transpose of |ψ〉 is denoted by 〈ψ|, so the dot product of two vectors can be written as 〈ψ|ϕ〉. If |ψ〉 is a unit
vector, then the projection onto its span is |ψ〉〈ψ|.

Let |ψ1〉, · · · , |ψn〉 be an orthonormal basis, so 〈ψi|ψj〉 = δij . The fact that they span the whole space
can be written suggestively as

1 =

n∑
i=1

|ψi〉〈ψi|

which is equivalent to

|ϕ〉 =

n∑
i=1

|ψi〉〈ψi|ϕ〉

So far, all we did was change the notations. Now we will be really vague and only convey a flavour of
how things go for infinite dimensional spaces. Let H be a normal operator, and let σ(H) ⊆ C denote its
spectrum, then the spectral decomposition theorem is formally

1 =

∫
σ(H)

dz|z〉〈z|, H =

∫
σ(H)

zdz|z〉〈z|

Now suppose the vector space is the space of functions on R and the operator is Hf(x) = xf(x), then there
is in some sense a continuous basis of eigenspaces, one for each real number. The projection of f onto an
eigenspace |x〉 is 〈x|f〉 = f(x), so the spectral theorem formally says

|f〉 =

∫ ∞
−∞

dx|x〉〈x|f〉 =

∫ ∞
−∞

f(x)|x〉dx

We are therefore decomposing a function on R into a sum of functions each defined over a single point.
If H is something more sophisticated, say H = 1

2mp
2 + V (x), where p = −i~ d

dx and V (x) describes some
potential energy, then the resulting spectral decomposition is the decomposition of a general state into energy
levels. The famous harmonic oscillator has states indexed by non-negative integers n, with the corresponding
eigenvalue (i.e. energy) growing linearly in n. This is an instance of a discrete spectrum.

At this point, it should be emphasized that none of the above manipulations make sense, which is the
reason we decided to use the physics notations. While infinite dimensional spaces retain some of the flavours
of linear algebra in finite dimension spaces, the additional issue of convergence makes the whole picture a
lot more intricate. With a serious amount of work, the above discussion can be made precise.

3 Spectral theorem: proofs*

We now give a proof of the spectral theorems stated. First consider the case of symmetric matrices.



Theorem. If A is a real symmetric matrix, then its eigenvalues are real, and eigenvectors with different
eigenvalues are orthogonal.

Proof. Suppose λ is a complex eigenvalue, so A~v = λ~v for some ~v 6= 0, then

~v
T
A~v = λ~̄vT~v = λ‖~v‖2

Taking conjugate transpose of both sides gives

~v
T
ĀT~v = λ̄‖~v‖2

Since A is real and symmetric, ĀT = A, so λ̄ = λ, which proves that λ is real.
Suppose A~v = λ~v and A~w = µ~w, where λ 6= µ, then

λ~vT ~w = ~vTAT ~w = ~vTA~w = µ~vT ~w

Since λ 6= µ, we must have ~vT ~w = 0.

We now prove the spectral theorem in version III. This is an induction on the size of A. Given an
n× n symmetric matrix A, by the previous theorem and the fundamental theorem of algebra, A has a real
eigenvalue λ. Let E1 be its eigenspace, and let E2 = E⊥1 . Let P1, P2 be the orthogonal projections onto E1,
E2 respectively, then we have

P1 6= 0, P1P2 = 0, P1 + P2 = In, AP1 = λP1

We now show that AP2 = P2A, or equivalently, AE⊥1 ⊆ E⊥1 . This is the same argument used in the proof of
the previous theorem. Indeed, suppose ~w ∈ E⊥1 , then for all ~v ∈ E1, we have

~vTA~w = ~vTAT ~w = (A~v)T ~w = λ~vT ~w = 0

It follows that A~w ∈ E⊥1 .
In other words, we have decomposed Rn into two orthogonal subspaces, both of which are fixed by A.

On the first one, A acts by multiplication by λ. Since the dimension of the second space is strictly less than
n, the induction hypothesis shows that it has a spectral decomposition with respect to A. Adding P1 to this
list of projectors gives the required list for the original space.

Everything works for normal operators in the same way provided we can prove the claim that AE⊥1 ⊆ E⊥1 .
The same proof reduces this to showing that ATE1 ⊆ E1. Let ~v ∈ E1, then

A(AT~v) = ATA~v = λAT~v

so AT~v ∈ E1, as required.

4 Singular Value Decomposition

In this course, we have seen or referred to several matrix decompositions:

LU decomposition : A = LU , where L is lower triangular and U is upper triangular.

QR decomposition : A = QR, where Q has orthonormal columns and R is upper triangular.

Polar decomposition : A = U |A|, where U is orthogonal and |A| is positive semidefinite.

We will introduce one more decomposition in this section: the singular value decomposition. It has many
uses both theoretically and in applications. The following video illustration

http://youtu.be/R9UoFyqJca8

was produced by the Los Alamos laboratory in 1976. Parts of the animation were used in the 1979 Star Trek
movie at around 1:17:40, on the screen behind Spock.



Theorem. Let A be an m× n matrix, then there exists a decomposition

A = UΣV T

where U is an m×m orthogonal matrix, V is an n×n orthogonal matrix, and Σ is a diagonal m×n matrix,
in the sense that Σij = 0 if i 6= j. Let σi = Σii, then we require the sequence σ1, σ2, · · · to be non-negative
and non-increasing.

Let r be the rank of A, then σ1, · · · , σr are exactly the non-zero entries of Σ, and they are called the
singular varies of A, and the decomposition is the singular value decomposition.

Proof. We have seen before that ATA is positive semidefinite. Let λ1 > · · · > λn ≥ 0 be its eigenvalues. Let
σi =

√
λi, and let D be the n×n diagonal matrix with diagonal entries σ1, ·, σn. The spectral theorem gives

a factorization
ATA = V D2V T

where V is an orthogonal n × n matrix. Recall that ker(ATA) = ker(A). Since ATA is diagonalizable, the
algebraic multiplicity of 0 is equal to dim ker(A), so there are exactly r = rank(A) non-zero eigenvalues,
namely λ1, · · · , λr.

Let ~v1, · · · , ~vn be the columns of V , then ~vi · ~vj = δij and ATA~vi = λi~vi, so

(A~vi)
T (A~vj) = ~vTi λj~vj = λiδij = σ2

i δij

For i = 1, · · · , r, let ~ui = 1
σi
A~vi. The above computation shows that ~u1, · · · , ~ur are orthonormal, so we can

extend them to an orthonormal basis of Rm. Let U be the orthogonal matrix formed with them as columns,
then by construction

AV = UΣ

where Σ is the m×n matrix such that Σii = σi for i = 1, · · · , r and all other entries are 0. Multiplying both
sides by V T gives the singular value decomposition.

The proof gives the following process for finding the SVD of a matrix:

(Step 1) Find the non-zero eigenvalues λ1 > · · · > λr of ATA. The singular values of A are their square
roots σi =

√
λi. The rank of A is r.

(Step 2) Find an orthonormal basis ~v1, · · · , ~vn of eigenvectors for ATA. They form the columns of V .

(Step 3) Compute 1
σi
A~vi for i = 1, · · · , r. They form the first r columns of U .

(Step 4) Extend the r vectors to an orthonormal basis of Rm.

Example. Consider the 3× 2 matrix

A =

3 2
2 3
2 −2


We want to compute its singular value decomposition, following the above algorithm.

(Step 1) We can compute that

ATA =

[
3 2 2
2 3 −2

]3 2
2 3
2 −2

 =

[
17 8
8 17

]
This will always be a symmetric matrix, so you only need to compute three entries. It is however
accidental that the two diagonal entries are equal.

The characteristic equation is λ2− 34λ+ 225 = 0, which has roots λ1 = 25, λ2 = 9, so the singular
values of A are σ1 = 5, σ2 = 3. From this, we see that A has rank 2, which one can see directly
from A.



(Step 2) A unit eigenvector for λ1 = 25 is ~v1 = 1√
2

[
1
1

]
. A unit eigenvector for λ2 = 9 is ~v2 = 1√

2

[
1
−1

]
, so

V =
1√
2

[
1 1
1 −1

]
The two eigenvectors correspond to different eigenvalues, so they must be orthogonal, which we
can easily verify here.

(Step 3) We now compute

~u1 =
1

σ1
A~v1 =

1

5
√

2

3 2
2 3
2 −2

[1
1

]
=

1√
2

1
1
0


~u2 =

1

σ2
A~v2 =

1

3
√

2

3 2
2 3
2 −2

[ 1
−1

]
=

1

3
√

2

 1
−1
4


By general theory, they should both have unit lengths and they should be orthogonal.

(Step 4) We need a vector ~u3 so that {~u1, ~u2, ~u3} is orthonormal. There are exactly two choices: ± 1
3

[ 2
−2
−1

]
.

Choosing the positive sign gives

U =
1

3
√

2

3 1 2
√

2

3 −1 −2
√

2

0 4 −
√

2


Therefore, the final result is A = UΣV T , where

U =
1

3
√

2

3 1 2
√

2

3 −1 −2
√

2

0 4 −
√

2

 , Σ =

5 0
0 3
0 0

 , V =
1√
2

[
1 1
1 −1

]

Example. We can start with the transpose of the matrix used last time

B = AT =

[
3 2 2
2 3 −2

]
By the computation above, we already know a singular value decomposition is B = V ΣTUT . Instead, we
quickly outline the steps in the algorithm applied to B and comment on the differences.

(Step 1) We compute that

BTB =

13 12 2
12 13 −2
2 −2 8


This has eigenvalues 25, 9, 0, in agreement with our expectations.

(Step 2) A choice of eigenvectors are

~v1 =

 1
−1
0

 , ~v2 =

 1
−1
4

 , ~v3 =

 2
−2
−1


Normalizing them recovers the columns of U we found earlier.

(Step 3) We only have to do two computations now because λ3 = 0. Doing them recovers the columns of V
we found before, as expected.



(Step 4) This step is unnecessary since we already have enough vectors.

One obvious application of the SVD is to solve systems of linear equations. Indeed, if we want to solve
A~x = ~b, and A = UΣV T , then

ΣV T~x = UT~b

Since Σ is diagonal, it is easy to solve for V T~x or see that no solution exists. Given V T~x, ~x can be recovered
by left multiplication by V .

We now take a closer look at the case where a solution does not exist. Given a Σ an m × n diagonal
matrix as in the theorem, let Σ+ denote the n×m diagonal matrix whose (i, i)-entry is σ−1

i if σi 6= 0 and is
0 otherwise, so Σ+ would be the inverse of Σ if Σ is invertible matrix. Define A+ = V Σ+UT . This is called
the Moore–Penrose pseudoinverse, which we introduced before in the context of least-squared problems.

Theorem. The vector ~x∗ = A+~b satisfies the following two optimality properties

1. ‖A~x∗ −~b‖ ≤ ‖A~x−~b‖ for all ~x ∈ Rn.

2. ‖~x∗‖ ≤ ‖~x‖ if A~x∗ = A~x.

so A+~b is the least-squared solution to A~x = ~b of minimal length.

Proof. The essential point of this proof is that U and V both preserve lengths, so the theorem is reduced to
the case when A = Σ, a diagonal matrix, where the claims can be checked explicitly.

We will first look at the second property. Let ~y∗ = V T~x∗ = Σ+UT~b and ~y∗ = V T~y, then the property
reduces to showing that Σ~y∗ = Σ~y implies ‖~y∗‖ ≤ ‖~y‖. Observe that

Σ



y1

...
yr
yr+1

...
yn


=



σ1y1

...
σryr

0
...
0


So the first r entries of ~y∗ and ~y agree. But ~y∗ is in the image of Σ+, so its last n − r entries are 0, so the
required inequality follows.

Now for the least square property, we have

‖A~x−~b‖ = ‖ΣV T~x− UT~b‖

We want to minimize this over all ~x ∈ Rn. Let ~y = V T~x, then ~y also ranges over Rn, so as before, we need
to minimize ‖Σ~y − UT~b‖. The image of Σ consists of vectors whose final n− r entries are 0, so the error is

minimized if the first r entries of Σ~y and UT~b agree, which is the case if ~y = Σ+UT~b, or correspondingly,
when ~x = A+~b.

Example. We want to find a least squared solution to A~x = ~b, where

A =

3 2
2 3
2 −2

 , ~b =

1
2
3


This is the matrix we used in the previous example, so we already have A = UΣV T . A solution is therefore

~x∗ = V Σ+UT~b =
1√
2

[
1 1
1 −1

] [
1
5 0 0
0 1

3 0

]
1

3
√

2

 3 3 0
1 −1 4

2
√

2 −2
√

2 −
√

2

1
2
3

 =
1

45

[
41
−14

]



We could have done this using the QR-factorization or even the normal equation, but the singular value
decomposition reveals a lot more structure to the matrix A. In fact, after truncating the matrix Σ by setting
all but the largest p singular values to 0, we get the optimal approximation of the matrix by a rank p matrix.
This idea is used in practice for data compression.

In practice, the SVD is obtained using an iterative scheme similar to the eigenvalue algorithms discussed
in the last chapter. The video above shows a two-step process: deflation to tridiagonal form followed by an
implicit QR-iteration with shifts. Both are achieved using Givens rotations.

5 Matrix norm and condition number

The goal of this section is to study ways of measuring the size of a matrix. Let A be an n× n matrix. If we
want to say A is small, then there are at least two possible criteria

– The entries of A are all small.

– ‖A~x‖ is small compared to ‖~x‖.

The following two definitions of sizes are therefore sensible.

Definition. Let A be an n× n matrix. Its maximum norm is

‖A‖∞ := max
1≤i,j≤n

|aij |

Its 2-norm is

‖A‖2 := max
~x6=0

‖A~x‖
‖~x‖

We can give a definition of ‖A‖∞ analogous to the one given for ‖A‖2 by defining the maximum norm of
a vector to be ‖~x‖∞ = max1≤i≤n |xi|. Other definitions of norms of a vector gives different matrix norms,
but we will focus on these two in this set of notes.

Theorem. We have the following estimates:

‖A‖∞ ≤ ‖A‖2 ≤
√
n‖A‖∞

so the two definitions of norms are equivalent.

Proof. For each i, j,

|aij |2 ≤
n∑
k=1

|akj |2 = ‖A~ej‖22 ≤ ‖A‖22

which implies the first inequality. Let M = ‖A‖∞, then by the Cauchy–Schwarz inequality

‖A~x‖22 =

n∑
i=1

( n∑
j=1

aijxj

)2

≤
n∑
i=1

( n∑
j=1

a2
ij

)( n∑
j=1

x2
j

)
≤ nM2‖~x‖22

which implies the bound ‖A‖2 ≤
√
n‖A‖∞.

Notice that the control of ‖A‖2 by ‖A‖∞ gets weaker as n→∞, which strongly suggests that for infinite
dimensional space, we could have a matrix with bounded entry but which is unbounded on lengths. This is
indeed correct, once we make everything precise.

Now observe that ‖A~x‖2 = (A~x)T (A~x) = ~xTATA~x, so ‖A‖22 = max~x6=0R(ATA, ~x), where

R(ATA, ~x) =
~xTATA~x

~xT~x

This is the Rayleigh quotient of ATA. It’s worth studying it in detail. Let H be a general symmetric
matrix, then the spectral theorem says that H = QTDQ, where Q is orthogonal and D is diagonal, so

R(H,~x) =
~xTQTDQ~x

~xT~x
=

(Q~x)TD(Q~x)

(Q~x)T (Q~x)
= R(D,Q~x)



The possible values of R(D, ~y) is easy to study. In particular, if H is positive definite with eigenvalues
λ1 > · · · > λn > 0, then this analysis gives λn ≤ R(H,~x) ≤ λ1. In summary, we have the following theorem.

Theorem. Let A be an n× n matrix, then ‖A‖2 = σ1, its largest singular value.

In practice, people often use the Rayleigh quotient to obtain good estimates for the maximal or minimal
eigenvalue for a symmetric matrix, which gives a good input to the eigenvalue algorithms discussed in the
last chapter. In quantum mechanics, they can be used to estimate the possible energies of a system.

Finally, we introduce a measure of numerical stability of a matrix. This is also important in numerical
problems because there are many sources of round-off errors, and it is useful to know if they accumulate. If
the matrix is not stable, then the algorithms we used for this course (Gauss–Jordan, Gram–Schmidt, normal
equation) will fail terribly, as we have seen in the slides for stable QR-algorithms.

Definition. The condition number of an invertible matrix A is cond(A) := σ1/σn = ‖A‖2‖A−1‖2.

For large n, the expected value of the condition number of a random matrix is linear in n, which is not
too bad by itself. There are two pieces of bad news: 1. the distribution is very spread out, so the tails are
quite probable; 2. large matrices showing up in real life are not Gaussian random matrices. In fact, for
applications to dimension reduction and data compression, we expect a few large singular values, which tell
us the features of the system. They should significantly dominate the rest, which are interpreted as noises.
They will therefore have large condition numbers.

6 Quadratic forms

In the final sections, we give a different geometric interpretation of symmetric matrices. Instead of viewing
it as a function Rn → Rn, we will view it as a function Rn × Rn → R, or equivalently via currying, as a
function Rn → [Rn → R]. This is responsible for the different transformation rules required for the change
of basis formula.

Definition. Let A be an n× n symmetric matrix. The (symmetric) bilinear form associated to A is the
function fA : Rn × Rn → R, fA(~v, ~w) = ~vTA~w. We will typically use the notation 〈~v, ~w〉A for fA(~v, ~w).

The quadratic form associated to A is the function qA : Rn → R defined by

q(~v) = ~vTA~v = 〈~v,~v〉A

Definition. A quadratic form q is positive semidefinite if q(~v) ≥ 0 for all ~v ∈ Rn. It is positive definite
if it is positive semidefinite and q(~v) = 0 implies ~v = 0.

A quadratic form q is negative (semi)definite if −q is positive (semi)definite. It is indefinite if it is
neither positive semidefinite nor negative semidefinite.

A symmetric matrix A is positive definite if its associated quadratic form is positive definite. Similarly
for the other 4 terms.

Example.

1. The matrix A = In is positive definite: its bilinear form is

〈~v, ~w〉In = v1w1 + · · ·+ vnwn

and its quadratic form is
qIn(~v) = v2

1 + · · ·+ v2
n

We have recovered the usual dot product and square of the norm. The theory of quadratic form is in
some aspects a study of generalized ways of defining lengths and angles.

2. Let η be the 4 × 4 diagonal matrix with diagonal entries −c2, 1, 1, 1 for some positive constant c. Its
associated quadratic form is

qη(t, x1, x2, x3) = −c2t2 + (x2
1 + x2

2 + x2
3)

This is an indefinite form since qη(1, 0, 0, 0) < 0 but qη(0, 1, 0, 0) > 0. In special relativity, length is
measured using this form.



3. The form q(x1, x2) = x2
1 + 2x1x2 + x2

2 = (x1 + x2)2 is positive semidefinite. It is not positive definite
since q(1,−1) = 0. It is associated to the matrix A =

[
1 1
1 1

]
.

Quadratic forms and (symmetric) bilinear forms satisfy the following properties

1. Bilinearity: 〈λ~u+ µ~v, ~w〉 = λ〈~u, ~w〉+ µ〈~v, ~w〉.

2. Symmetry: 〈~v, ~w〉 = 〈~w,~v〉.

3. Homogeneity: q(λ~v) = λ2q(~v).

4. Polarization: q(~v + ~w)− q(~v)− q(~w) = 2〈~v, ~w〉.

It’s worth drawing attention to polarization: in other words, the quadratic form determines the bilinear
form. We saw this in Chapter 5 when we showed that length-preserving transformations also preserve angles.

Finally, we want to define an appropriate notion of equivalence of quadratic forms, so for example we
want to q1(x, y) = x2 − y2 and q2(x, y) = xy to be equivalent, since they are related by a linear change of
variables: q2(x+ y, x− y) = q1(x, y).

Definition. Two symmetric matrices A and B are equivalent if there exists an invertible matrix Q such
that B = QTAQ.

For us, the key problem is to classify quadratic forms up to equivalence. This turns out to be much
easier than what we did last chapter for the similarity relation. Indeed, by the spectral theorem, we can
already reduce A to a diagonal matrix using only orthogonal transformations. By multiplying a row of the
transformation matrix by a scalar, we can change each diagonal entry by a square, so the end result is that
A is equivalent to a diagonal matrix with only 0, 1,−1 on the diagonal. We will see that this representation
is almost unique.

7 Abstract definition*

When we first introduced linear transformations, we gave a definition using matrices and another one using
the abstract properties of linearity. We will do a similar thing here.

Definition. A symmetric bilinear form in n variables is a function f : Rn × Rn → R satisfying (Bilin-
earity) and (Symmetry) in the above list of properties.

Definition. A quadratic form in n variables is a function q : Rn → R satisfying (Homogeneity) and
(Polarization), where (Polarization) means the function f(~v, ~w) = q(~v + ~w) − q(~v) − q(~w) is a symmetric
bilinear form.

Choose a basis {~v1, · · · , ~vn} for Rn. Let f be a symmetric bilinear form, then it is easy to see that

f(
∑
i

ai~vi,
∑
j

bj~vj) =
∑
i,j

aibjf(~vi, ~vj) = [a1 · · · an]Af

b1...
bn


where Af = [f(~vi, ~vj)] is sometimes called the Gram matrix of f . It follows that with a choice of basis, the
abstract definition and the definition in terms of matrices agree. The definition of equivalence using matrices
is exactly the correct change of basis transformation for quadratic form.

8 Sylvester’s law of inertia

Theorem (Sylvester’s law of inertia). Let A be an n× n symmetric matrix, then there exists a unique pair
of non-negative integers (p, q) such that A is equivalent to the matrixIp −Iq

0





In particular, if A is positive definite, then A = LLT for some invertible matrix L (since necessarily (p, q) =
(n, 0)). This is the Cholesky decomposition.

Proof. It follows easily from the spectral theorem that A is equivalent to a diagonal matrix. Multiplying
each row of the transformation matrix by an appropriate constant gives the required form. The hard part is
uniqueness, namely to show that two matrices with distinct choices of (p, q) are not equivalent.

Suppose A is similar to B, then they have the same rank, since B is obtained from A by multiplying by
invertible matrices. It follows that p+ q is an invariant. Therefore, we only need to determine p. We show
that this is the maximum dimension of a subspace of Rn on which the quadratic form

f(x1, · · · , xn) = x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

p+q

is positive definite. This is a geometric property of a quadratic form, so it does not depend on the equivalence
class of the matrix. Therefore, this would prove the theorem.

First, observe that on the subspace V+ spanned by ~e1, · · · , ~ep, the form is indeed positive definite, so
the maximum is at least p. Similarly, on the subspace V− = span(~ep+1, · · · , ~en), the form is negative
semidefinite. Therefore, if f is positive-definite on a subspace V ⊆ Rn, then V ∩ V− = {0}, which implies
dimV ≤ n− dimV− = p.

Definition. The signature of a quadratic form is the pair (p, q). The form is non-degenerate if p+q = n.

So for example, the form −x2
0 +(x2

1 +x2
2 +x2

3) has signature (3, 1), and the form x0x1 has signature (1, 1).
They are both non-degenerate. From the proof, it’s clear that p is the number of positive eigenvalues, and
q is the number of negative eigenvalues.

We end with a connection to physics. Given a rigid body Ω ⊆ R3, we can consider its rotational moment
of inertia around any axis. This is a function q assigning a (positive) number to each direction in R3. It can
be packaged into a 3×3 matrix IΩ called the moment of inertia tensor by physicists. With the terminologies
we have, this is a symmetric bilinear form on R3, which is moreover positive definite.

By the spectral theorem, IΩ is diagonal in an orthonormal basis. The three vectors in this basis are called
principal axes of rotations, and the associated eigenvalues are the principal moments of inertia. If they are
all distinct, then the axes are unique, and rotations around them are equilibrium states. It is stable if and
only if the corresponding eigenvalue is not the middle one.

Example. Consider a rectangular box with side lengths a < b < c.

c

b

a

x

y

z

The moment of inertia tensor in this reference frame is the matrix

IΩ =
1

12
m

b2 + c2

a2 + c2

a2 + b2


So the three axes of symmetries of the box are the three principal axes of rotations, which is expected.
Moreover, the rotations around the x and z-axes are stable, and the rotation around the y-axis is unstable.
One can experimentally verify this by throwing a box-shaped object (such as your textbook, bound together
by a rubber band) up in the air and observe how much it wobbles.


