
Trace

This document is a more in-depth discussion of trace, which I hinted at in class. Some of it requires material
from later in the course, so you can refer back to this when they are introduced. The second example
computes the matrix of a reflection in 3D, which I did not have time to do in lecture.

Definition. Let A = [aij ]i,j be an n × n matrix, then the trace of A is the sum of its diagonal elements
a11 + a22 + · · ·+ an,n. It is denoted by Tr(A).

Example. 1. The trace of the identity matrix In is n.
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I have said that matrices are avatars of linear transformations used for computation. The matrix of
a linear transformation depends on the coordinate system chosen: a good choice sometimes drastically
simplifies the problem. However, there are some “geometric properties” of a linear transformation which
should not depend on the coordinate. One such example is the determinant, which measures how much
a linear transformation scales the volume. There is a purely algebraic definition of the determinant of a
matrix, and the statement that it is a geometric property is that

det(A) = det(PAP−1) for all invertible matrices P

The trace is also one such geometric property, or equivalently,

Tr(A) = Tr(PAP−1) for all invertible matrices P

In fact, more is true: for all n× n matrices A and B.

Tr(AB) = Tr(BA)

The geometric interpretation is a lot more subtle, and not really clear. One explanation I like is

Theorem. Trace is the derivative of the determinant: if ε is small, and A is an n× n matrix, then

det(In + εA) = 1 + εTr(A) + (small error term)

Now let’s consider orthogonal projection and reflection. Given a line L in Rn, we can choose coordinates
so that L is the x1-axis, then L⊥ is the (hyper)plane containing the other coordinates (this is a change of
basis). In these coordinates, the matrices are easy to write down:

[projL] =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , [projL⊥ ] =


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , [refL⊥ ] =


−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Essentially, projL only keeps the first coordinate, projL⊥ keeps everything except for the first coordinate,
and refL⊥ changes the sign of the first coordinate. We can compute that

Tr(projL) = 1, Tr(projL⊥) = n− 1, Tr(refL⊥) = n− 2

This must hold for the matrices of the operators in every coordinate system. More generally, the trace of an
orthogonal projection operator is equal to the dimension of its image.



Example. We will compute the reflection across the plane P : 2x− y + z = 0 in R3.

The first step is to find a vector ~w perpendicular to P . We can take ~w =
[ 2
−1
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]
(recall that ~v1 · ~v2 = 0 is

equivalent to ~v1 and ~v2 are perpendicular). Let L be the line parallel to ~w, then P = L⊥.
Now, we can use the reflection formula

refP (~v) = ~v − 2projL(~v)

In particular,
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Similarly, we can compute
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So finally,

[refP ] =
1
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Its trace is 1

3 (−1 + 2 + 2) = 1, which is equal to n− 2. Moreover, you can check that [refP ]~w = −~w, so the
answer passes a few checks.

We end with a connection with quantum mechanics.

Theorem. There does not exist n× n matrices A and B and non-zero scalar λ such that

AB −BA = λIn

Proof. The traces of the two sides are not equal.

Tr(AB −BA) = Tr(AB)− Tr(BA) = 0, Tr(λIn) = nλ 6= 0

In classical quantum mechanics, a particle is described by a state vector, which is just a function on
R (satisfying certain decay conditions at infinity). Its position x̂ and momentum p̂ are operators (linear
transformation from a space to itself) on functions: if ψ(x) is the state of a particle, then

(x̂(ψ))(x) = xψ(x), (p̂(ψ))(x) = −i~ψ′(x)

The more usual notation in physics is x̂|ψ〉 and p̂|ψ〉. It is linear in the sense of the second definition of a
linear transformation:

x̂(ψ + ϕ) = x̂(ψ) + x̂(ϕ), etc.

Observe that
((x̂p̂− p̂x̂)ψ)(x) = x(−i~ψ′(x)) + i~(xψ(x))′ = i~ψ(x)

This is the relation underlying the Heisenberg uncertainty principle. This contradicts the theorem, so the
trace cannot be well-defined for the two operators. On general infinite dimensional spaces, the operators for
which trace can be defined are very important. Fredholm theory features prominently in their study.

The above definitions of x̂ and p̂ are essentially due to Schrödinger. Heisenberg formulated quantum
mechanics in terms of infinite matrices A and B such that AB − BA = i~. It is a theorem in functional
analysis that any space carrying two operators satisfying this relation must be the same as Schrödinger’s
space, “up to relabelling the coordinates”, so both points of view are equivalent.


