Local Harmonic Analysis and Euler Systems (joint work with Li Cai and Yangyu Fan)

Shilin Lai

University of Texas, Austin

Automorphic Forms Workshop, April 2025

.

E/F CM extension

 $W \subseteq V$ Hermitian spaces of dimensions n and n + 1.

 \leadsto Unitary groups $\mathbf{H}=\mathrm{U}(W)$, $\mathbf{G}=\mathrm{U}(W) imes\mathrm{U}(V)$

 $\textbf{H} \hookrightarrow \textbf{G}$

Diagonal cycle

E/F CM extension

 $W \subseteq V$ Hermitian spaces of dimensions n and n + 1.

ightsquigar Unitary groups $\mathbf{H}=\mathrm{U}(W)$, $\mathbf{G}=\mathrm{U}(W) imes\mathrm{U}(V)$

$$\mathbf{H} \hookrightarrow \mathbf{G}$$

→ Embedding of Shimura varieties

$$\operatorname{Sh}_{\mathbf{H}}(K_{\mathbf{H}}) \hookrightarrow \operatorname{Sh}_{\mathbf{G}}(K_{\mathbf{G}})$$

→ Diagonal cycle

$$\triangle = [\operatorname{Sh}_{\mathbf{H}}] \in \operatorname{CH}^*(\operatorname{Sh}_{\mathbf{G}}(K_{\mathbf{G}}))$$

Suppose W and V are "nearly definite", so their signatures are

- (1, n-1), (1, n) at one fixed archimedean place.
- (0, n), (0, n + 1) at other archimedean places.

Then $\dim \operatorname{Sh}_{\mathbf{H}} = n - 1$, $\dim \operatorname{Sh}_{\mathbf{G}} = 2n - 1$, so obtain

$$\triangle \in \mathrm{CH}^n(\mathrm{Sh}_G(\mathcal{K}_G))$$

GGP setting

Suppose W and V are "nearly definite", so their signatures are

- (1, n-1), (1, n) at one fixed archimedean place.
- (0, n), (0, n + 1) at other archimedean places.

Then dim $Sh_{\mathbf{H}} = n - 1$, dim $Sh_{\mathbf{G}} = 2n - 1$, so obtain

$$\triangle \in \mathrm{CH}^n(\mathrm{Sh}_{\mathbf{G}}(K_{\mathbf{G}}))$$

Let p be a prime, then can take the p-adic étale realization

$$\triangle_p \in \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}(K_{\mathbf{G}}), \mathbb{Z}_p(n))$$

Can also replace coefficient \mathbb{Z}_p by a \mathbb{Z}_p -local system \mathbb{L} , subject to branching law conditions.

Main theorem

Theorem (L.-Skinner)

The class \triangle_p extends to an Euler system.

Main theorem

Theorem (L.–Skinner)

The class \triangle_p extends to an Euler system.

Using usual techniques of sign projector and Abel–Jacobi map, this produces Euler systems for certain Rankin–Selberg motives.

+Jetchev–Nekovář–Skinner \implies progress towards rank 1 cases of Bloch–Kato conjecture.

New feature

We work integrally already at the motivic level, so our Bloch–Kato result applies to *all primes p* in many cases.

Tame part

Key step: for all but finitely many F-places ℓ which splits in E, we construct classes

$$\triangle_p^{(\ell)} \in \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}(K_{\mathbf{G}})_{/E[\ell]}, \mathbb{L}(n))$$

such that

$$\operatorname{Tr}_{E}^{E[\ell]} \triangle_{p}^{(\ell)} = \mathscr{L} \cdot \triangle_{p}$$

where $\mathscr L$ is the Hecke operator on $\mathbf G(F_\ell)$ whose Satake transform is

$$\hat{\mathscr{L}} = \prod_{1 \le i \le n} \prod_{1 \le j \le n+1} \left(1 - \mathbf{N} \ell^{-\frac{1}{2}} Z_i W_j \right)$$

i.e. inverse of the local L-factor.

Proof in L.-Skinner

Use twisting element

$$\delta_1' = \sum_{\eta \in \mathscr{N}_n'} \mu_H(\mathsf{K}_H^{\varphi})^{-1} (-1)^{s(\eta)} (\ell-1)^n \mathbf{1}[(1,\eta) \mathsf{K}_{\mathsf{G}} \times J_1]$$

Prove "local Birch lemma" by explicit matrix computations.

Goal of the talk

Construct Euler systems by pure thought.

Goal of the talk

Construct Euler systems by pure thought.

• For $\mathbf{X} = \mathbf{H} \backslash \mathbf{G}$, construct $\mathbf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$\Theta^{p\infty}: C_c^{\infty}(\mathbf{X}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L}(n))$$

- ② Describe the image of a certain trace map on $C_c^{\infty}(\mathbf{X}(F_{\ell}), \mathbb{Z}_p)$
- **3** Show that the function $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O}_{\ell})]$ lands in the image using relative Satake transform.

All steps should be part of a broader picture.

Twisting formalism

Theorem (Loeffler–Skinner–Zerbes)

There is a $\mathbf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$C_c^{\infty}(\mathbf{G}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L} \otimes \mathbb{Q}_p(n))$$

which is right $\mathbf{H}(\mathbb{A}^{p\infty})$ -invariant.

Twisting formalism

Theorem (Loeffler–Skinner–Zerbes)

There is a $\mathbf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$C_c^{\infty}(\mathbf{G}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L} \otimes \mathbb{Q}_p(n))$$

which is right $\mathbf{H}(\mathbb{A}^{p\infty})$ -invariant.

Idea of proof: $\mathbf{1}[gU]$ should be sent to the translate by g of the special cycle $[\operatorname{Sh}_{\mathbf{H}}(\mathbf{H} \cap U)]$

Twisting formalism

Theorem (Loeffler–Skinner–Zerbes)

There is a $\mathbf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$C_c^{\infty}(\mathbf{G}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L} \otimes \mathbb{Q}_p(n))$$

which is right $\mathbf{H}(\mathbb{A}^{p\infty})$ -invariant.

Idea of proof: $\mathbf{1}[gU]$ should be sent to the translate by g of the special cycle $[\operatorname{Sh}_{\mathbf{H}}(\mathbf{H} \cap U)]$

Integrality issue

For this to be well-defined, need to multiply by volume terms, destroying integrality.

Miracle?

We have the following commutative diagram

$$C_c^{\infty}(\mathbf{G}(\mathbb{A}^{p\infty}), \mathbb{Z}_p)$$
 $coinvariant \downarrow$
 $C_c^{\infty}(\mathbf{X}(\mathbb{A}^{p\infty}), \mathbb{Q}_p) \longrightarrow \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L} \otimes \mathbb{Q}_p(n))$

The coinvariant map and the LSZ-map both destroy integrality, but in the *same way*.

Proposition (Cai-Fan-L., used in L.-Skinner)

There is a $\mathbf{G}(\mathbb{A}^{p\infty})$ -equivariant map

$$\Theta^{p\infty}: C_c^{\infty}(\mathbf{X}(\mathbb{A}^{p\infty}), \mathbb{Z}_p) \to \mathrm{H}^{2n}_{\mathrm{cont}}(\mathrm{Sh}_{\mathbf{G}}, \mathbb{L}(n))$$

Field extension

Recall that ℓ is a place in F which splits in E. Introduce level structures

$$\begin{split} & \mathcal{K} = \textbf{G}(\mathcal{O}_{\ell}) = \operatorname{GL}_n(\mathcal{O}_{\ell}) \times \operatorname{GL}_{n+1}(\mathcal{O}_{\ell}) \\ & \mathcal{K}^1 = \{(g_n, g_{n+1}) \in \mathcal{K} \mid \det g_n \equiv 1 \pmod{\varpi}\} \end{split}$$

Field extension

Recall that ℓ is a place in F which splits in E. Introduce level structures

$$egin{aligned} \mathcal{K} &= \mathbf{G}(\mathcal{O}_\ell) = \mathrm{GL}_n(\mathcal{O}_\ell) imes \mathrm{GL}_{n+1}(\mathcal{O}_\ell) \ \mathcal{K}^1 &= \{(g_n,g_{n+1}) \in \mathcal{K} \mid \det g_n \equiv 1 \pmod \varpi) \} \end{aligned}$$

Easy fact:

$$\operatorname{Sh}_{\mathbf{G}}(K^{1}) = \operatorname{Sh}_{\mathbf{G}}(K) \times_{E} E[\ell]$$

$$\operatorname{Tr}_{K}^{K^{1}} \longleftrightarrow \operatorname{Tr}_{E}^{E[\ell]}$$

Tame norm relation

We are reduced to a purely local question.

Goal

For almost all split ℓ , construct

$$\phi^1 \in \mathit{C}^\infty_c(\mathsf{X}(\mathit{F}_\ell),\mathbb{Z}_p)^{\mathit{K}^1}$$

such that

$$\operatorname{Tr}_{K}^{K^{1}} \phi^{1} = \mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$$

By applying $\Theta^{p\infty}$, this implies the main theorem.

Generalized Cartan decomposition

F now local field, ℓ now size of residue field.

Theorem (Gaitsgory–Nadler, Sakellaridis)

Let Λ^+ be the positive coweights of **G**. Concretely,

$$\check{\lambda} \in \Lambda^+ \leftrightarrow (a_1 \geq \cdots \geq a_n), (b_1 \geq \cdots \geq b_{n+1}) \in \mathbb{Z}^n \times \mathbb{Z}^{n+1}$$

Then there is a decomposition

$$\mathbf{X}(F) = \bigsqcup_{\check{\lambda} \in \Lambda^+} x_{\check{\lambda}} \mathbf{G}(\mathcal{O})$$

for some explicit $x_{\check{\chi}}$.

Image of trace

Proposition

The image of $C_c^{\infty}(X(F), \mathbb{Z}_p)^{K^1}$ under $\operatorname{Tr}_K^{K^1}$ is given by the divisibility conditions

$$\phi(x_{\check\lambda}) \in egin{cases} \mathbb{Z}_p & ext{if all a_i and all b_j are distinct} \ (\ell-1)\mathbb{Z}_p & ext{otherwise} \end{cases}$$

Image of trace

Proposition

The image of $C_c^{\infty}(X(F), \mathbb{Z}_p)^{K^1}$ under $\operatorname{Tr}_K^{K^1}$ is given by the divisibility conditions

$$\phi(x_{\check{\lambda}}) \in egin{cases} \mathbb{Z}_p & ext{if all } a_i ext{ and all } b_j ext{ are distinct} \\ (\ell-1)\mathbb{Z}_p & ext{otherwise} \end{cases}$$

Abstract statement

The image is the set of K-invariant functions ϕ such that

$$\ell-1|\phi(x_{\check\lambda})$$

whenever $\check{\lambda}$ lies on a wall (of type T).

Unramified question

New question: Does $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ satisfy the divisibility conditions?

Unramified question

New question: Does $\mathcal{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ satisfy the divisibility conditions?

 \mathscr{L} is explicitly described by its Satake transform $\hat{\mathscr{L}}$, so hard to compute $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ directly.

Unramified question

New question: Does $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ satisfy the divisibility conditions?

 \mathscr{L} is explicitly described by its Satake transform $\hat{\mathscr{L}}$, so hard to compute $\mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ directly.

New input

Compute $\mathcal{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$ using the inverse *relative* Satake transform.

Relative Satake transform

Theorem (Sakellaridis)

There is an isomorphism

$$C_c^{\infty}(\mathbf{X}(F), \mathbb{C})^K \xrightarrow{\sim} \mathbb{C}[A^*]^W$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow$$

$$\mathcal{H}(\mathbf{G}, \mathbb{C}) \xrightarrow{\sim} \mathbb{C}[A^*]^W$$

where the bottom arrow is the usual Satake isomorphism, and the right action is multiplication.

Relative Satake transform

Theorem (Sakellaridis)

There is an isomorphism

$$C_c^{\infty}(\mathbf{X}(F), \mathbb{C})^K \xrightarrow{\sim} \mathbb{C}[A^*]^W$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

where the bottom arrow is the usual Satake isomorphism, and the right action is multiplication.

Let $\phi = \mathscr{L} \cdot \mathbf{1}[\mathbf{X}(\mathcal{O})]$, then

$$\hat{\phi} = \hat{\mathscr{L}} = \prod_{i,j} \left(1 - \ell^{-\frac{1}{2}} Z_i W_j \right)$$

Inverse relative Satake

Theorem (Sakellaridis)

Define the function

$$\tilde{\phi}(-) = \hat{\phi}(-^{-1}) \cdot \frac{\prod_{i_1 < i_2} \left(1 - \frac{Z_{i_1}}{Z_{i_2}}\right) \prod_{j_1 < j_2} \left(1 - \frac{W_{i_1}}{W_{i_2}}\right)}{\prod_{i,j} \left(1 - \ell^{-\frac{1}{2}} (Z_i W_j)^{\varepsilon_{ij}}\right)}$$

where

$$\varepsilon_{ij} = \begin{cases} +1 & \text{if } i+j \leq n+1\\ -1 & \text{if } i+j > n+1 \end{cases}$$

Then for $\check{\lambda} \leftrightarrow (\underline{a},\underline{b}) \in \Lambda^+$, the value $\phi(x_{\check{\lambda}})$ is the coefficient of $Z^{\underline{a}}W^{\underline{b}}$ in the power series expansion of

$$\tilde{\phi}(\ell^{-\frac{n+1-2i}{2}}Z_i,\ell^{-\frac{n+2-2j}{2}}W_j)$$

Apply the theorem to

$$\hat{\phi} = \prod_{i,j} \left(1 - \ell^{-\frac{1}{2}} Z_i W_j \right)$$

The following is immediate.

Proposition

$$\phi(x_{\check{\lambda}}) \in \mathbb{Z}[\ell^{\pm 1}]$$

This implies integrality $(\ell \neq p)$, but what about divisibility by $\ell-1$ on walls?

Apply the theorem to

$$\hat{\phi} = \prod_{i,j} \left(1 - \ell^{-\frac{1}{2}} Z_i W_j \right)$$

The following is immediate.

Proposition

$$\phi(\mathsf{x}_{\check{\lambda}}) \in \mathbb{Z}[\ell^{\pm 1}]$$

This implies integrality $(\ell \neq p)$, but what about divisibility by $\ell-1$ on walls?

Idea

"Specialize" at $\ell=1$, i.e. show that

$$\phi(x_{\check{\lambda}})|_{\ell=1}=0$$

if $\check{\lambda}$ is on a wall.

Simplify when $\ell=1$

The Euler system relation specifices the Hecke operator

$$\hat{\phi}|_{\ell=1}=\prod_{i,j}(1-Z_iW_j).$$

Simplify when $\ell=1$

The Euler system relation specifices the Hecke operator

$$\hat{\phi}|_{\ell=1}=\prod_{i,j}(1-Z_iW_j).$$

This is *almost* the denominator of the kernel.

$$\begin{split} \tilde{\phi}|_{\ell=1} &= \hat{\phi}(-1) \cdot \frac{\prod_{i_1 < i_2} \left(1 - \frac{Z_{i_1}}{Z_{i_2}}\right) \prod_{j_1 < j_2} \left(1 - \frac{W_{i_1}}{W_{i_2}}\right)}{\prod_{i,j} \left(1 - (Z_i W_j)^{\varepsilon_{ij}}\right)} \\ &= \prod_{i_1 < i_2} \left(1 - \frac{Z_{i_1}}{Z_{i_2}}\right) \prod_{j_1 < j_2} \left(1 - \frac{W_{i_1}}{W_{i_2}}\right) \cdot \prod_{i+j \le n+1} \frac{1 - (Z_i W_j)^{-1}}{1 - Z_i W_j} \\ &= \prod_{i_1 < i_2} \left(1 - \frac{Z_{i_1}}{Z_{i_2}}\right) \prod_{j_1 < j_2} \left(1 - \frac{W_{i_1}}{W_{i_2}}\right) \cdot \prod_{i+j \le n+1} \left(-(Z_i W_j)^{-1}\right) \end{split}$$

The result is a polynomial in $\mathbb{C}[\underline{Z}^{\pm 1}, \underline{W}^{\pm 1}]$.

Exceptional divisibility

What happens when we exchange $Z_i \leftrightarrow Z_{i+1}$?

- First term multiplied by $-\frac{Z_i}{Z_{i+1}}$.
- Second term multiplied by $+\frac{Z_i}{Z_{i+1}}$.

$$\implies \tilde{\phi}|_{\ell=1} \leadsto -\tilde{\phi}|_{\ell=1}.$$

Exceptional divisibility

What happens when we exchange $Z_i \leftrightarrow Z_{i+1}$?

- First term multiplied by $-\frac{Z_i}{Z_{i+1}}$.
- Second term multiplied by $+\frac{Z_i}{Z_{i+1}}$.

$$\implies \tilde{\phi}|_{\ell=1} \leadsto -\tilde{\phi}|_{\ell=1}.$$

If $a_i = a_{i+1}$ in $\check{\lambda}$, then this implies automatically

$$\phi(x_{\check{\lambda}})|_{\ell=1}=0$$

Similarly for the operation $W_j \leftrightarrow W_{j+1}$.

Speculation

Let **X** be a spherical variety for any reductive group **G**. There should be a "motivic theta element"

 $\Theta \in \mathsf{Hom}_{\mathbf{G}}(\mathrm{Fun}(\mathbf{X}(\mathbb{A}),\mathbb{Z}),$ "integral motivic classes")

- Examples/realizations should include diagonal cycles,
 Eisenstein classes, arithmetic theta lifts,...
- Hamiltonian induction should correspond to pushforward constructions.
- Archimedean place in our setting corresponds to choice of fixed vector in local systems.
- Arithmetic analogue of theta elements of relative Langlands program.

Given such a motivic theta element (*p*-adic realization is enough), the rest of our construction holds in great generality.

Given such a motivic theta element (*p*-adic realization is enough), the rest of our construction holds in great generality.

• Correct set-up for subgroup K^1 is a "combinatorially trivial" \mathbf{G} -equivariant \mathbf{G}_m -bundle $\widetilde{\mathbf{X}} \to \mathbf{X}$.

Given such a motivic theta element (*p*-adic realization is enough), the rest of our construction holds in great generality.

- Correct set-up for subgroup K^1 is a "combinatorially trivial" \mathbf{G} -equivariant \mathbf{G}_m -bundle $\widetilde{\mathbf{X}} \to \mathbf{X}$.
- Image of $\operatorname{Tr}_{K}^{K^1}$ requires divisibility by $\ell-1$ on certain walls of type T carries over. Prove this by refining Gaitsgory–Nadler's proof of generalized Cartan decomposition.

Given such a motivic theta element (*p*-adic realization is enough), the rest of our construction holds in great generality.

- Correct set-up for subgroup K^1 is a "combinatorially trivial" \mathbf{G} -equivariant \mathbf{G}_m -bundle $\widetilde{\mathbf{X}} \to \mathbf{X}$.
- Image of $\operatorname{Tr}_K^{K^1}$ requires divisibility by $\ell-1$ on certain walls of type T carries over. Prove this by refining Gaitsgory–Nadler's proof of generalized Cartan decomposition.
- In cases covered by BZSV local unramified conjecture, above $\ell \to 1$ argument proves automatic divisibility along walls of type T for the specific Hecke operator needed in the application.

Given such a motivic theta element (*p*-adic realization is enough), the rest of our construction holds in great generality.

- Correct set-up for subgroup K^1 is a "combinatorially trivial" \mathbf{G} -equivariant \mathbf{G}_m -bundle $\widetilde{\mathbf{X}} \to \mathbf{X}$.
- Image of $\operatorname{Tr}_{\mathcal K}^{\mathcal K^1}$ requires divisibility by $\ell-1$ on certain walls of type T carries over. Prove this by refining Gaitsgory–Nadler's proof of generalized Cartan decomposition.
- In cases covered by BZSV local unramified conjecture, above $\ell \to 1$ argument proves automatic divisibility along walls of type T for the specific Hecke operator needed in the application.

This uniformly recovers most known examples of Euler systems.