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Integer factorization

Problem

Given an integer N, compute its prime factorization.

Current fastest algorithm: the general number field sieve

Run time:

O

(
exp

(
(64/9)1/3(logN)1/3(log logN)2/3

))
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Special purpose factorization algorithms

Special purpose algorithms: run time depends on structure of N.

Trial division: favours small prime factors of N.

Fermat factorization: suitable for factors close to
√
N.

Special number field sieve: applies to r e ± s for small r , s.

Lenstra’s elliptic curve method: see later.
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Motivational consideration

Theorem

Let p be a prime. If a is coprime to p, then

ap−1 ≡ 1 (mod p)

p|N and p − 1|M =⇒ p| gcd(aM − 1,N)|N
=⇒ get non-trivial divisor of N.

How do we find M so this is better than trival division?



Introduction Basic Theory of Elliptic Curves The Factorization Method

Motivational consideration

Theorem

Let p be a prime. If a is coprime to p, then

ap−1 ≡ 1 (mod p)

p|N and p − 1|M =⇒ p| gcd(aM − 1,N)|N
=⇒ get non-trivial divisor of N.

How do we find M so this is better than trival division?



Introduction Basic Theory of Elliptic Curves The Factorization Method

Motivational consideration

Theorem

Let p be a prime. If a is coprime to p, then

ap−1 ≡ 1 (mod p)

p|N and p − 1|M =⇒ p| gcd(aM − 1,N)|N
=⇒ get non-trivial divisor of N.

How do we find M so this is better than trival division?



Introduction Basic Theory of Elliptic Curves The Factorization Method

The p − 1 algorithm

Try M = lcm(1, 2, · · · ,B), for some search limit B.

Definition

A number x is B-smooth if q|x =⇒ q ≤ B.

It is B-powersmooth if qr |x =⇒ qr ≤ B, or equivalently x |M.

p − 1 is B-powersmooth =⇒ gcd(aM − 1,N) non-trivial factor.

Example

Take N = 3136 + 1 (with 64 digits), then it has a factor

p = 2670091735108484737

= 27 · 32 · 72 · 172 · 19 · 569 · 631 · 23993 + 1

which can be easily found using this algorithm.
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Observations

F×p = {1, · · · , p − 1} is a group under multiplication.

Operation mod N compatible with operation mod p.

Reaching identity mod p gives non-trivial divisor of N.

alcm(1,2,··· ,B) = 1 in F×p for all a, if p − 1 is powersmooth.
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Extension

Theorem (Lagrange)

If G is a group with n elements and x ∈ G , then xn = 1.

Corollary

|G | is B-powersmooth =⇒ x lcm(1,2,··· ,B) = 1 for all x .

Seek G such that

Reaching identity gives non-trivial divisor

is smooth.
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Extension

Theorem (Lagrange)

If G is a group with n elements and x ∈ G , then xn = 1.

Corollary

|G | is B-powersmooth =⇒ x lcm(1,2,··· ,B) = 1 for all x .

Seek family of groups G such that

Reaching identity gives non-trivial divisor

One |G | in the family is smooth.
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Elliptic curves

Definition

Given two integers a and b such that 4a3 + 27b2 6= 0, an elliptic

curve is the set of all solutions to the equation

y2 = x3 + ax + b

plus an additional point O, thought of as the point at infinity.
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Example

The elliptic curve y2 = x3 + 17 over R
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Group law

P = (4, 9), Q = (2, 5).

Line PQ intersects curve

at R = (−2,−3).

P + Q = −R = (−2, 3).

P

Q

R

P+Q
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Group law

Definition

Given P = (x1, y1) and Q = (x2, y2) on E : y2 = x3 + ax + b, let

λ =


y1−y2
x1−x2 if P 6= Q

3x21+a
2y1

if P = Q

then define their sum to be P + Q = (x , y), where

x = λ2 − x1 − x2, y = −y1 + λ(x1 − x)

If λ =∞, which occurs when x1 = x2 and y1 = −y2, then

P + Q = O. Further define P +O = O + P = P for all P.
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Group law

Theorem

For all P, Q, R on E , the following equations hold:

1 P +O = O + P = P

2 P + Q = Q + P

3 P + (−P) = O, where −(x , y) = (x ,−y).

4 P + (Q + R) = (P + Q) + R

Proof.

The first three are easy consequences of the definition.

The fourth equation follows after a while from the formula for

addition defined above.
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Reduction mod p

Everything still works if we work mod p.

Now have group

E (Fp) = {(x , y) ∈ F2
p : y2 = x3 + ax + b} ∪ {O}

Question

How many points are there?

Heuristically, we expect p + 1 points.
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Point count
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Let |E (Fp)| = p + 1− ap, then |ap| < 2
√
p.
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Point count

Theorem (Hasse)

Let |E (Fp)| = p + 1− ap, then |ap| < 2
√
p.

Theorem (Lenstra)

Let S be a set of s integers in the range (−√p,√p). Let P be the

probability that the elliptic curve E defined by a pair

(a, b) ∈ F2
p\{4a3 + 27b2 = 0} selected uniformly satisfies

p + 1− |E (Fp)| ∈ S , then

c
s − 2
√
p log p

≤ P ≤ c ′
s
√
p

log p log log p

for some absolute constants c and c ′.
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Point count

Theorem (Hasse)

Let |E (Fp)| = p + 1− ap, then |ap| < 2
√
p.

Heuristics

For a random elliptic curve, |E (Fp)| is nearly uniformly distributed

in the Hasse range.
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Idea

Want to replace multiplication by elliptic curve addition

|E (Fp)| is smooth for some E .

P + Q = O

=⇒ trying to divide by 0 in Fp.

=⇒ found a non-invertible element mod N.

=⇒ take GCD with N gives non-trivial divisor.
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Basic algorithm

0 Select a search limit B.

1 Choose random elliptic curve E : y2 = x3 + ax + b and

P = (x , y) ∈ E (Z/NZ).

2 Try to compute lcm(1, 2, · · · ,B)P (mod N)

If successful, go back to step 1.

If failed, then we have a non-trivial divisor.

If not N, done!

If we get N, go back to step 1.
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Complexity analysis

Let rB = P[|E (Fp)| is B-smooth]

Expect 1/rB curves for factorization.

Each curve takes O(B log logB(logN)2) operations to check

Now need to minimize

B

rB
(logN)O(1)

with respect to B.
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Estimation of rB

Theorem (Canfield, Erdös, Pomerance)

Let α be a non-negative real number, then the probability that a

random number less than x is L(x)α-smooth is L(x)−1/(2α)+o(1),

where we define

L(x) = exp(
√

log x log log x)

Assumption

If B = L(p)α, then

rB = P[|E (Fp)| is B-smooth] = L(p)−1/(2α)+o(1)
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Choice of B

Take B = L(p)α, then

B

rB
= L(p)α+

1
2α

+o(1)

This is optimized at α = 1√
2

.

Final complexity:

O
(

exp
(√

(2 + o(1)) log p log log p
)
(logN)2

)
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Practical considerations

Choice of elliptic curves:

Faster group operations

Increases probability of success

p is not known beforehand: typically specify B first and

increase if necessary.

Phase two extensions

Work over multiple elliptic curves.
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Example

The 10th Fermat number F10 is

22
10

+ 1 = 45592577 · 6487031809 · c291

where c291 is a 291 digit composite number.

Brent (1999) found a 40 digit prime factor p40 of c291.

p40 − 1 has a 23 digit prime factor
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The 10th Fermat number F10 is

22
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+ 1 = 45592577 · 6487031809 · c291

where c291 is a 291 digit composite number.
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p40 − 1 has a 23 digit prime factor



Introduction Basic Theory of Elliptic Curves The Factorization Method

Example

The 10th Fermat number F10 is

22
10

+ 1 = 45592577 · 6487031809 · c291

where c291 is a 291 digit composite number.

Brent (1999) found a 40 digit prime factor p40 of c291.

Over Fp40 , the curve has order

22 ·32 ·5·149·163·197·7187·18311·123677·226133·314263·4677853

p40 − 1 has a 23 digit prime factor



Introduction Basic Theory of Elliptic Curves The Factorization Method

Example

The 10th Fermat number F10 is

22
10

+ 1 = 45592577 · 6487031809 · c291

where c291 is a 291 digit composite number.

Brent (1999) found a 40 digit prime factor p40 of c291.

Over Fp40 , the curve has order

22 ·32 ·5·149·163·197·7187·18311·123677·226133·314263·4677853

p40 − 1 has a 23 digit prime factor



Introduction Basic Theory of Elliptic Curves The Factorization Method

Factorization record

“The purpose of computing is

insight, not numbers.”

— R. W. Hamming
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