▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Lenstra's Elliptic Curve Factorization Method

## Leo Lai

University of Cambridge

## Churchill College Compsci Talk Series, 2016

Introduction •••••• Basic Theory of Elliptic Curves

The Factorization Method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Integer factorization

#### Problem

Given an integer N, compute its prime factorization.

Introduction •••••• Basic Theory of Elliptic Curves

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Integer factorization

#### Problem

Given an integer N, find a non-trivial proper factor of N.

The Factorization Method

## Integer factorization

#### Problem

Given an integer N, find a non-trivial proper factor of N.

## Current fastest algorithm: the general number field sieve

Run time:

$$O\bigg(\exp\left((64/9)^{1/3}(\log N)^{1/3}(\log\log N)^{2/3}\right)\bigg)$$

Introduction

Basic Theory of Elliptic Curves

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Special purpose factorization algorithms

The Factorization Method

# Special purpose factorization algorithms

Special purpose algorithms: run time depends on structure of N.

• Trial division: favours small prime factors of N.

The Factorization Method

# Special purpose factorization algorithms

- Trial division: favours small prime factors of N.
- Fermat factorization: suitable for factors close to  $\sqrt{N}$ .

# Special purpose factorization algorithms

- Trial division: favours small prime factors of N.
- Fermat factorization: suitable for factors close to  $\sqrt{N}$ .
- Special number field sieve: applies to  $r^e \pm s$  for small r, s.

# Special purpose factorization algorithms

- Trial division: favours small prime factors of *N*.
- Fermat factorization: suitable for factors close to  $\sqrt{N}$ .
- Special number field sieve: applies to  $r^e \pm s$  for small r, s.
- Lenstra's elliptic curve method: see later.

Introduction

Basic Theory of Elliptic Curves

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Motivational consideration

## Theorem

Let p be a prime. If a is coprime to p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

Introduction

Basic Theory of Elliptic Curves

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Motivational consideration

## Theorem

Let p be a prime. If a is coprime to p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

$$p|N \text{ and } p-1|M \implies p|\gcd(a^M-1,N)|N$$
  
 $\implies$  get non-trivial divisor of  $N$ .

The Factorization Method

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## Motivational consideration

#### Theorem

Let p be a prime. If a is coprime to p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

$$p|N \text{ and } p-1|M \implies p|\gcd(a^M-1,N)|N$$
  
 $\implies$  get non-trivial divisor of  $N$ .

How do we find M so this is better than trival division?

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# The p-1 algorithm

Try  $M = \text{lcm}(1, 2, \dots, B)$ , for some search limit B.

The Factorization Method

# The p-1 algorithm

Try  $M = \text{lcm}(1, 2, \dots, B)$ , for some search limit B.

#### Definition

A number x is *B*-smooth if  $q|x \implies q \leq B$ .

It is *B*-powersmooth if  $q^r | x \implies q^r \leq B$ , or equivalently x | M.

The Factorization Method

# The p-1 algorithm

Try  $M = \text{lcm}(1, 2, \dots, B)$ , for some search limit B.

#### Definition

A number x is *B*-smooth if  $q|x \implies q \leq B$ .

It is *B*-powersmooth if  $q^r | x \implies q^r \leq B$ , or equivalently x | M.

p-1 is B-powersmooth  $\implies \gcd(a^M-1, N)$  non-trivial factor.

The Factorization Method 00000000

# The p-1 algorithm

Try  $M = \text{lcm}(1, 2, \dots, B)$ , for some search limit B.

#### Definition

A number x is *B*-smooth if  $q|x \implies q \leq B$ .

It is *B*-powersmooth if  $q^r | x \implies q^r \leq B$ , or equivalently x | M.

p-1 is B-powersmooth  $\implies \gcd(a^M-1, N)$  non-trivial factor.

#### Example

Take  $N = 3^{136} + 1$  (with 64 digits), then it has a factor p = 2670091735108484737  $= 2^7 \cdot 3^2 \cdot 7^2 \cdot 17^2 \cdot 19 \cdot 569 \cdot 631 \cdot 23993 + 1$ which can be easily found using this algorithm.

## Observations

- $\mathbb{F}_{p}^{\times} = \{1, \cdots, p-1\}$  is a *group* under multiplication.
- Operation mod *N* compatible with operation mod *p*.
- Reaching identity mod p gives non-trivial divisor of N.

• 
$$a^{\operatorname{lcm}(1,2,\cdots,B)} = 1$$
 in  $\mathbb{F}_p^{\times}$  for all  $a$ , if  $p-1$  is powersmooth.

Extension

## Theorem (Lagrange)

If G is a group with n elements and  $x \in G$ , then  $x^n = 1$ .



Extension

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Theorem (Lagrange)

If G is a group with n elements and  $x \in G$ , then  $x^n = 1$ .

#### Corollary

$$|G|$$
 is *B*-powersmooth  $\implies x^{\operatorname{lcm}(1,2,\cdots,B)} = 1$  for all *x*.

## Extension

## Theorem (Lagrange)

If G is a group with n elements and  $x \in G$ , then  $x^n = 1$ .

#### Corollary

$$|G|$$
 is *B*-powersmooth  $\implies x^{\operatorname{lcm}(1,2,\cdots,B)} = 1$  for all *x*.

## Seek groups G such that

- Reaching identity gives non-trivial divisor
- |G| is smooth.

## Extension

## Theorem (Lagrange)

If G is a group with n elements and  $x \in G$ , then  $x^n = 1$ .

#### Corollary

$$|G|$$
 is *B*-powersmooth  $\implies x^{\operatorname{lcm}(1,2,\cdots,B)} = 1$  for all *x*.

Seek family of groups G such that

- Reaching identity gives non-trivial divisor
- One |G| in the family is smooth.

# Elliptic curves

## Definition

Given two integers *a* and *b* such that  $4a^3 + 27b^2 \neq 0$ , an *elliptic curve* is the set of all solutions to the equation

$$y^2 = x^3 + ax + b$$

plus an additional point  $\mathcal{O}$ , thought of as the point at infinity.

Basic Theory of Elliptic Curves  $0 \bullet 00000$ 

The Factorization Method

## Example

## The elliptic curve $y^2 = x^3 + 17$ over $\mathbb R$



Introduction 000000 Basic Theory of Elliptic Curves 000000

The Factorization Method

## Group law

$$P = (4,9), \ Q = (2,5).$$

Line PQ intersects curve at R = (-2, -3).

$$P + Q = -R = (-2, 3).$$



## Definition

Given  $P = (x_1, y_1)$  and  $Q = (x_2, y_2)$  on  $E : y^2 = x^3 + ax + b$ , let

$$\lambda = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{if } P \neq Q\\ \frac{3x_1^2 + a}{2y_1} & \text{if } P = Q \end{cases}$$

then define their sum to be P + Q = (x, y), where

$$x = \lambda^2 - x_1 - x_2, \quad y = -y_1 + \lambda(x_1 - x)$$

If  $\lambda = \infty$ , which occurs when  $x_1 = x_2$  and  $y_1 = -y_2$ , then P + Q = O. Further define P + O = O + P = P for all P.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Theorem

For all P, Q, R on E, the following equations hold:

$$P + \mathcal{O} = \mathcal{O} + P = P$$

$$P + Q = Q + P$$

**3** 
$$P + (-P) = O$$
, where  $-(x, y) = (x, -y)$ .

#### Theorem

For all P, Q, R on E, the following equations hold:

$$P + \mathcal{O} = \mathcal{O} + P = P$$

$$P + Q = Q + P$$

3 
$$P + (-P) = O$$
, where  $-(x, y) = (x, -y)$ .

#### Proof.

The first three are easy consequences of the definition.

## Theorem

For all P, Q, R on E, the following equations hold:

$$P + \mathcal{O} = \mathcal{O} + P = P$$

$$P + Q = Q + P$$

3 
$$P + (-P) = O$$
, where  $-(x, y) = (x, -y)$ .

• 
$$P + (Q + R) = (P + Q) + R$$

## Proof.

The first three are easy consequences of the definition.

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

#### Theorem

For all P, Q, R on E, the following equations hold:

$$P + \mathcal{O} = \mathcal{O} + P = P$$

$$P + Q = Q + P$$

3 
$$P + (-P) = O$$
, where  $-(x, y) = (x, -y)$ .

• 
$$P + (Q + R) = (P + Q) + R$$

#### Proof.

The first three are easy consequences of the definition.

The fourth equation follows after a while from the formula for addition defined above.

Basic Theory of Elliptic Curves  $\circ \circ \circ \circ \circ \bullet \circ$ 

The Factorization Method

## Reduction mod p

Everything still works if we work mod p.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Reduction mod p

Everything still works if we work mod p.

Now have group

$$\mathsf{E}(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# Reduction mod p

Everything still works if we work mod p.

Now have group

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

### Question

How many points are there?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Reduction mod p

Everything still works if we work mod p.

Now have group

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

#### Question

How many points are there?

Heuristically, we expect p + 1 points.

Basic Theory of Elliptic Curves  $\circ \circ \circ \circ \circ \circ \bullet$ 

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Point count

Theorem (Hasse)

Let 
$$|E(\mathbb{F}_p)| = p + 1 - a_p$$
, then  $|a_p| < 2\sqrt{p}$ .

## Point count

#### Theorem (Hasse)

Let 
$$|E(\mathbb{F}_p)| = p + 1 - a_p$$
, then  $|a_p| < 2\sqrt{p}$ .

#### Theorem (Lenstra)

Let S be a set of s integers in the range  $(-\sqrt{p}, \sqrt{p})$ . Let P be the probability that the elliptic curve E defined by a pair  $(a, b) \in \mathbb{F}_p^2 \setminus \{4a^3 + 27b^2 = 0\}$  selected uniformly satisfies  $p + 1 - |E(\mathbb{F}_p)| \in S$ , then

$$c \frac{s-2}{\sqrt{p}\log p} \le P \le c' \frac{s}{\sqrt{p}}\log p \log \log p$$

for some absolute constants c and c'.

Basic Theory of Elliptic Curves  $\circ \circ \circ \circ \circ \circ \bullet$ 

The Factorization Method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Point count

Theorem (Hasse)

Let 
$$|E(\mathbb{F}_p)| = p + 1 - a_p$$
, then  $|a_p| < 2\sqrt{p}$ .

#### Heuristics

For a random elliptic curve,  $|E(\mathbb{F}_p)|$  is nearly uniformly distributed in the Hasse range.

(ロ)、(型)、(E)、(E)、 E) の(の)



### Want to replace multiplication by elliptic curve addition

•  $|E(\mathbb{F}_p)|$  is smooth for some *E*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・



Want to replace multiplication by elliptic curve addition

- $|E(\mathbb{F}_p)|$  is smooth for some E.
- P + Q = O yields non-trivial divisor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



Want to replace multiplication by elliptic curve addition

- $|E(\mathbb{F}_p)|$  is smooth for some E.
- $P + Q = \mathcal{O} \implies$  trying to divide by 0 in  $\mathbb{F}_p$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・



Want to replace multiplication by elliptic curve addition

• 
$$|E(\mathbb{F}_p)|$$
 is smooth for some  $E$ .

•  $P + Q = \mathcal{O} \implies$  trying to divide by 0 in  $\mathbb{F}_p$ .

 $\implies$  found a non-invertible element mod N.



Want to replace multiplication by elliptic curve addition

- $|E(\mathbb{F}_p)|$  is smooth for some E.
- $P + Q = \mathcal{O} \implies$  trying to divide by 0 in  $\mathbb{F}_p$ .
  - $\implies$  found a non-invertible element mod N.
  - $\implies$  take GCD with N gives non-trivial divisor.

Basic Theory of Elliptic Curves

The Factorization Method

### Basic algorithm

• Select a search limit *B*.



- Select a search limit B.
- Choose random elliptic curve  $E : y^2 = x^3 + ax + b$  and  $P = (x, y) \in E(\mathbb{Z}/N\mathbb{Z}).$

- Select a search limit B.
- Choose random elliptic curve  $E : y^2 = x^3 + ax + b$  and  $P = (x, y) \in E(\mathbb{Z}/N\mathbb{Z}).$
- **2** Try to compute  $lcm(1, 2, \dots, B)P \pmod{N}$

- Select a search limit B.
- Choose random elliptic curve  $E : y^2 = x^3 + ax + b$  and  $P = (x, y) \in E(\mathbb{Z}/N\mathbb{Z}).$
- **2** Try to compute  $lcm(1, 2, \dots, B)P \pmod{N}$ 
  - If successful, go back to step 1.

- Select a search limit B.
- Solution Choose random elliptic curve  $E: y^2 = x^3 + ax + b$  and  $P = (x, y) \in E(\mathbb{Z}/N\mathbb{Z}).$
- **2** Try to compute  $lcm(1, 2, \dots, B)P \pmod{N}$ 
  - If successful, go back to step 1.
  - If failed, then we have a non-trivial divisor.

- Select a search limit B.
- Choose random elliptic curve  $E : y^2 = x^3 + ax + b$  and  $P = (x, y) \in E(\mathbb{Z}/N\mathbb{Z}).$
- **2** Try to compute  $lcm(1, 2, \dots, B)P \pmod{N}$ 
  - If successful, go back to step 1.
  - If failed, then we have a non-trivial divisor.
    - If not N, done!

- Select a search limit B.
- Choose random elliptic curve  $E : y^2 = x^3 + ax + b$  and  $P = (x, y) \in E(\mathbb{Z}/N\mathbb{Z}).$
- **2** Try to compute  $lcm(1, 2, \dots, B)P \pmod{N}$ 
  - If successful, go back to step 1.
  - If failed, then we have a non-trivial divisor.
    - If not N, done!
    - If we get N, go back to step 1.

Basic Theory of Elliptic Curves

The Factorization Method

## Complexity analysis

Let  $r_B = \mathbb{P}[|E(\mathbb{F}_p)| \text{ is } B\text{-smooth}]$ 



Basic Theory of Elliptic Curves

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Complexity analysis

Let  $r_B = \mathbb{P}[|E(\mathbb{F}_p)| \text{ is } B\text{-smooth}]$ 

• Expect  $1/r_B$  curves for factorization.

## Complexity analysis

Let  $r_B = \mathbb{P}[|E(\mathbb{F}_p)| \text{ is } B\text{-smooth}]$ 

- Expect  $1/r_B$  curves for factorization.
- Each curve takes  $O(B \log \log B(\log N)^2)$  operations to check

## Complexity analysis

Let  $r_B = \mathbb{P}[|E(\mathbb{F}_p)| \text{ is } B\text{-smooth}]$ 

- Expect  $1/r_B$  curves for factorization.
- Each curve takes  $O(B \log \log B(\log N)^2)$  operations to check

Now need to minimize

$$\frac{\mathbf{B}}{\mathbf{r}_{\mathbf{B}}}(\log N)^{O(1)}$$

with respect to B.

# Estimation of $r_B$

### Theorem (Canfield, Erdös, Pomerance)

Let  $\alpha$  be a non-negative real number, then the probability that a random number less than x is  $L(x)^{\alpha}$ -smooth is  $L(x)^{-1/(2\alpha)+o(1)}$ , where we define

$$L(x) = \exp(\sqrt{\log x \log \log x})$$

# Estimation of $r_B$

### Theorem (Canfield, Erdös, Pomerance)

Let  $\alpha$  be a non-negative real number, then the probability that a random number less than x is  $L(x)^{\alpha}$ -smooth is  $L(x)^{-1/(2\alpha)+o(1)}$ , where we define

$$L(x) = \exp(\sqrt{\log x \log \log x})$$

#### Assumption

If  $B = L(p)^{\alpha}$ , then  $r_B = \mathbb{P}[|E(\mathbb{F}_p)| \text{ is } B\text{-smooth}] = L(p)^{-1/(2\alpha) + o(1)}$ 

Basic Theory of Elliptic Curves 0000000

The Factorization Method

## Choice of B

Take  $B = L(p)^{\alpha}$ , then

$$\frac{B}{r_B} = L(p)^{\alpha + \frac{1}{2\alpha} + o(1)}$$

Basic Theory of Elliptic Curves

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Choice of B

Take  $B = L(p)^{\alpha}$ , then

$$\frac{B}{r_B} = L(p)^{\alpha + \frac{1}{2\alpha} + o(1)}$$

This is optimized at  $\alpha = \frac{1}{\sqrt{2}}$ .

Basic Theory of Elliptic Curves

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Choice of B

Take  $B = L(p)^{\alpha}$ , then

$$\frac{B}{r_B} = L(p)^{\alpha + \frac{1}{2\alpha} + o(1)}$$

This is optimized at  $\alpha = \frac{1}{\sqrt{2}}$ .

Final complexity:

$$O\left(\exp\left(\sqrt{(2+o(1))\log p\log\log p}\right)(\log N)^2\right)$$

The Factorization Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Choice of elliptic curves:
  - Faster group operations
  - Increases probability of success

- Choice of elliptic curves:
  - Faster group operations
  - Increases probability of success
- *p* is not known beforehand: typically specify *B* first and increase if necessary.

- Choice of elliptic curves:
  - Faster group operations
  - Increases probability of success
- *p* is not known beforehand: typically specify *B* first and increase if necessary.
- Phase two extensions

- Choice of elliptic curves:
  - Faster group operations
  - Increases probability of success
- *p* is not known beforehand: typically specify *B* first and increase if necessary.
- Phase two extensions
- Work over multiple elliptic curves.

### Example

The 10th Fermat number  $F_{10}$  is

$$2^{2^{10}} + 1 = 45592577 \cdot 6487031809 \cdot c_{291}$$

where  $c_{291}$  is a 291 digit composite number.

### Example

The 10th Fermat number  $F_{10}$  is

 $2^{2^{10}} + 1 = 45592577 \cdot 6487031809 \cdot c_{291}$ 

where  $c_{291}$  is a 291 digit composite number.

Brent (1999) found a 40 digit prime factor  $p_{40}$  of  $c_{291}$ .

#### Example

The 10th Fermat number  $F_{10}$  is  $2^{2^{10}} + 1 = 45592577 \cdot 6487031809 \cdot c_{291}$ where  $c_{291}$  is a 291 digit composite number. Brent (1999) found a 40 digit prime factor  $p_{40}$  of  $c_{291}$ . Curve used:  $5y^2 = x^3 + ax^2 + x$ , where

a = 1597447308290318352284957343172858403618

#### Example

The 10th Fermat number  $F_{10}$  is  $2^{2^{10}} + 1 = 45592577 \cdot 6487031809 \cdot c_{291}$ where  $c_{291}$  is a 291 digit composite number. Brent (1999) found a 40 digit prime factor  $p_{40}$  of  $c_{291}$ . Over  $\mathbb{F}_{p_{40}}$ , the curve has order  $2^2 \cdot 3^2 \cdot 5 \cdot 149 \cdot 163 \cdot 197 \cdot 7187 \cdot 18311 \cdot 123677 \cdot 226133 \cdot 314263 \cdot 4677853$ 

#### Example

The 10th Fermat number  $F_{10}$  is  $2^{2^{10}} + 1 = 45592577 \cdot 6487031809 \cdot c_{291}$ where  $c_{291}$  is a 291 digit composite number. Brent (1999) found a 40 digit prime factor  $p_{40}$  of  $c_{291}$ . Over  $\mathbb{F}_{p_{40}}$ , the curve has order  $2^2 \cdot 3^2 \cdot 5 \cdot 149 \cdot 163 \cdot 197 \cdot 7187 \cdot 18311 \cdot 123677 \cdot 226133 \cdot 314263 \cdot 4677853$  $p_{40} - 1$  has a 23 digit prime factor

Basic Theory of Elliptic Curves

The Factorization Method ○○○○○○●

## Factorization record

