
CONVERSE THEOREM AND THE GLOBAL LANGLANDS CORRESPONDENCE FOR

FUNCTION FIELDS

SHILIN LAI

This is the notes for the last talk of the Drinfeld–Lafforgue–Lafforgue seminar. Having proven the automorphic
to Galois part of the global Langlands correspondence for general reductive groups over function fields, we
will see how converse theorems can be used to prove the Galois to automorphic part for GLn. We will follow
the treatment of L. Lafforgue [Laf02].

Fix distinct primes p and `, and fix an isomorphism Q`
∼= C. The Galois representations in this article

will have `-adic coefficient fields, but we will generally use C-valued L-functions for psychological reasons.
Automorphic forms will typically also have coefficients in C, but this really does not matter. Let F be a
global field of characteristic p > 0 defined over Fq. For each place v, Fv is the completion of F at v with ring
of integers Ov, uniformizer $v, and residue field size qv. Its ring of adeles is denoted by A, with a maximal
compact subgroup O =

∏
v Ov. If S is a finite set of places, then AS =

∏
v∈S Fv and AS =

∏′
v/∈S Fv.

0. Where we stand

We are trying to prove the following theorems.

Theorem 0.1 (Cuspidal global Langlands correspondence for GLn). Consider the sets

– Φn: global Langlands parameters, i.e. continuous semisimple representations Gal(F sep/F ) → GLn(Q`)
which is unramified almost everywhere, defined over a finite extension of Q`, and has a finite-order deter-
minant character.

– Πn: automorphic representations of GLn(A), i.e. irreducible admissible subquotients of⋃
K,χ

C∞(GLn(Q)\GLn(A)/K,Q`)χ

as K ranges over open compact subgroups of GLn(A) and χ ranges over finite order characters of F×\A×.

Let ΦIrr
n be the irreducible parameters, and let Π◦n be the cuspidal representations. There exists a canonical

bijection ΦIrr
n ↔ Π◦n satisfying the property that if σ ↔ π, then

(1) σ and π have the same set of ramified places.
(2) If both are unramified at v, then the Satake parameters of σ are the Frobenius eigenvalues of π.
(3) The central character χσ matches with detπ under global class field theory.
(4) The L-functions and ε-factors match (to be defined).

Theorem 0.2 (Generalized Ramanujan Conjecture). If π ∈ Π◦n, then π is tempered.

Theorem 0.3 (Deligne’s purity conjecture). If σ ∈ ΦIrr
n , then it is pure of weight 0.

Remark 0.4. Given an element qs ∈ Q`, we can construct a character F×\A× → Q
×
` by sending x to |x|s

and a Weil representation WF → Q
×
` sending Frob to qs. By twisting, we can recover from above the slightly

more general form of the conjecture giving a bijection between irreducible WF -representations and cuspidal
automorphic forms of arbitrary central character.

The main theorem we have proven is the construction of the map Π◦n → Φn. More precisely.

Theorem 0.5 (V. Lafforgue [Laf18]). Let χ be a character of F×\A× of finite order. There exists a canonical
decomposition as GLn(A)-modules

Ccusp
c (GLn(F )\GLn(A),Q`)χ =

⊕
σ

hσ

where the direct sum ranges over all global Langlands parameters. Moreover, the correspondence sending a
subrepresentation to its parameter σ satisfies the compatibility properties (1)–(3).
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The goal of this talk is to go the other way. This will be done in the following three steps

(1) Given σ ∈ ΦIrr
n , construct a candidate π using the unramified correspondence.

(2) If π′ ∈ Π◦n′ where n′ < n, use Lafforgue’s map to attach σ′ ∈ Φn′ to it. Study the behaviour of
L(s, σ ⊗ σ′) using geometry, in particular getting a functional equation.

(3) The converse theorem roughly says that if we have functional equations for L(s, π×π′) for all π′ ∈ Π◦n′
for all n′ < n, then π is automorphic.

We will begin by recalling the various definitions of the L-function, then state a version of the converse
theorem, and finally come back to complete the proof of the global Langlands correspondence.

1. L-functions and ε-factors: Galois side

1.1. Review of geometric L-functions. Most members of the seminar should be very familiar with this,
so we will be very brief. Let X be the smooth projective curve whose function field is F .

Let σ ∈ Φn. We view it as a Galois representation on an `-adic vector space. Geometrically, it also defines
a constructible `-adic sheaf on X which is lisse on a dense open subset U ⊆ X. The vector space and the
sheaf will also be denoted by σ. Let σv be the restriction of σ to the decomposition group Gal(F sep

v /Fv).
This corresponds to pulling back the sheaf σ under SpecOv ↪→ X.

Definition 1.1. Let σ ∈ Φn. For each place v, define the local L-factor to be

L(Z, σv) = det(1− Zdeg vFrobv|σIvv )−1

where Iv is the inertial group at v. The global L-function of σ is

L(Z, σ) =
∏
v

L(Z, σv)

This is viewed as a formal power series in Z with coefficient in Q`.

Remark 1.2. Since Iv is a normal subgroup of Gv = Gal(F sep
v /Fv), the invariants σIvv is also Gv-stable.

Therefore, if σv is Gv-irreducible and non-trivial, then V Iv = 0, so L(Z, σv) = 1. On the automorphic side,
σv corresponds to a supercuspidal representation, and the same equation holds.

Theorem 1.3 (Grothendieck). Let σ be a Galois representation as above.

(1) The global L-function is a rational function. More precisely,

L(Z, σ) =

2∏
i=0

det(1− ZFrob|Hi
c(U/F̄q , σ))(−1)i+1

(2) It satisfies a functional equation

L(Z, σ) = ε(Z, σ)L((qZ)−1, σ∨)

where σ∨ is the dual representation, and the global ε-factor is defined by

ε(Z, σ) =

2∏
i=0

det(−ZFrob−1|Hi
c(U/F̄q , σ))(−1)i+1

Using these expressions, Deligne’s purity theorem gives us very precise information on the zeros and poles
of the global L-function, for example the Riemann hypothesis. They will be compared with analogous results
coming from the automorphic side in our main induction argument.

1.2. Local ε-factors. It will be necessary in the comparison with the automorphic side to factor ε(Z, σ) into
a product of local ε-factors. They are functions ε(Z, σv, ψv), which depend on a finite dimensional `-adic

representation σv of Gal(F sep
v /Fv) and a local additive character ψv : Fv → Q

×
` . They need to satisfy the

following properties:

(1) ε(Z,−, ψv) is multiplicative in short exact sequences.
(2) If Ev/Fv is a finite extension, and σv is a virtual representation of Gal(F sep

v /Ev) of dimension 0, then

ε(Z, σv, ψv ◦ TrEv/Fv ) = ε(Z, IndFvEv σv, ψv).
(3) If σv is a character, then the ε-factor agrees with the automorphic ε-factor defined by Tate.
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For the last item and more properties, see Section 3.4 of [Tat79]. Tate required a measure on Fv as an
additional piece of data, but we follow Langlands and fix it to be the self-dual measure with respect to ψv.
Given existence, these axioms uniquely determine ε using Brauer’s theorem. The product formula for Artin
representations (no geometric monodromy) follow easily.

Proving existence comes down to verifying certain identities among Gauss sums coming from decomposi-
tions of induction of characters. They were shown in a long incomplete paper of Langlands. In the function
field case with `-adic coefficients, Laumon [Lau87] gave a purely local construction of the ε-factors and proved
the product formula. The work is based on the `-adic Fourier transform and his principle of stationary phase.

Theorem 1.4 (Deligne, Laumon). There exists a unique function ε(Z, σv, ψv) of the form cZf which depends
only on the local information and satisfies conditions (1)–(3) above. Moreover, we have the product formula

ε(Z, σ) =
∏
v

ε(Z, σv, ψv)

Remark 1.5. The exponent f is equal to a(σv) + n · cond(ψv), where a(σv) is the Artin conductor of σv. It
is already a non-trivial fact that a(σv) is an integer. The coefficient c contains more subtle information.

Before Laumon’s work, Deligne [Del73] gave a short proof of existence using global methods, but he could
only prove the product formula if the representation has finite monodromy. The idea of his proof is to start
with global ε-factor and somehow only keep information from one local place. A key lemma is the following
stability property.

Lemma 1.6 (Deligne). Let σv be an n-dimensional `-adic representations of Gal(F sep
v /Fv). Suppose χv is

sufficiently ramified at v, then

ε(Z, χvσv, ψv) = ε(Z, χv, ψv)
n−1ε(Z, χv det(σv), ψv), L(Z, χvσv) = 1

Proof. The assertion about the L-factor comes from Remark 1.2. The assertion about the ε-factor follows from
the proof of Lemma 4.16 of [Del73] together with his definition of an “(α,ψ)-system of local constants”. �

This process of deducing local information from global information by twisting away places with unknown
behaviour will be used several times, in conjunction with the corresponding property for the automorphic
ε-factor (Theorem 2.12).

2. L-functions and ε-factors: automorphic side

For this and the next section, we transfer coefficients to C both for psychological reasons and so that the
treatment holds for number fields as well. It does not matter that our identification is not continuous,
since all L-functions will be formal Laurent series in a formal variable Z. The only difference in the case of
C-coefficients is that we can write Z = q−s and treat s as the variable.

2.1. Introduction: Hecke’s L-function. For this historical motivation, we let f be a classical cusp form
of level 1 and weight k. Hecke considered the integral

Φ(f, s) =

∫ ∞
0

f(iy)ys
dy

y

It is a version of the Fourier transform known as the Mellin transform. Because f is rapidly decreasing at the
cusps 0 and i∞, this integral converges absolutely for all s ∈ C. Suppose f(z) =

∑
n≥1 anq

n is its Fourier
expansion, then

Φ(f, s) =

∞∑
n=1

an

∫ ∞
0

e−2πnyys
dy

y
= (2π)−sΓ(s)

∞∑
n=1

an
ns

= (2π)−sΓ(s)L(f, s)

Finally, we can perform a change of variable y 7→ y−1 and apply modularity z 7→ − 1
z to get

Φ(f, s) =

∫ ∞
0

f
( i
y

)
y−s

dy

y
=

∫ ∞
0

f(iy)(iy)ky−s
dy

y
= ikΦ(f, k − s)

This gives the functional equation for L(f, s).
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Under the dictionary between classical modular form and automorphic forms, for some normalization of
the central character, Hecke’s integral can be rewritten as

Φ(ϕf , s) =

∫
Q×\A×Q

ϕf
(
a 0
0 1

)
|a|s−

1
2 da

The analogue of the Fourier expansion is the Whittaker expansion

ϕf (g) =
∑
γ∈Q×

Wf

((
γ 0
0 1

)
g
)

where Wf is a special function on GL2(A). Plugging this into the integral gives

Φ(ϕf , s) =

∫
Q×\A×Q

∑
γ∈Q×

Wf

(
γa 0
0 1

)
|a|s−

1
2 da =

∫
A×Q

Wf

(
a 0
0 1

)
|a|s−

1
2 da (if Re(s)� 1)

This gives the factorization of the L-function into local factors, in exactly the same way the archimedean
Fourier expansion separated out the archimedean L-factor (2π)−sΓ(s).

Finally, we note that if we had worked over a function field, then ϕf is compactly supported by Harder’s
theorem, so the integral becomes a finite sum. Therefore, L(s, π) is a polynomial in q−s.

2.2. General principle. For the purpose of converse theorem, we need to define the L-function of a pair of
automorphic representations following works of Jacquet, Piatetski-Shapiro, and Shalika. On the Galois side,
this is the operation of taking tensor products. The method will be outlined here, and the details can be
found in Cogdell’s lectures [Cog04]. This subsection will be used to fix notations and give a broad overview
of what will happen.

Fix an additive character ψ =
⊗′

v ψv : F\A→ C×. Let π ∈ Πn with factorization π =
⊗′

v πv where πv is
an irreducible admissible representation of GLn(Fv). The global representation π is realized in the space of
cusp forms, and given a vector ϕ ∈ π, we can define ϕ̃(g) = ϕ(g−t) ∈ π̃. Finally, fix n′ < n and let π′ ∈ Πn′ ,
with a similar set of notations. Note that at this point, we are not requiring them to be cuspidal. In fact,
for applications to the converse theorem, we need to consider the case when one of them is not.

The theory of Eulerian integral representations starts with an adelic integral

Φ(s, ϕ, ϕ′), s ∈ C, ϕ⊗ ϕ′ ∈ π � π′

It is usually called a zeta integral. It is supposed to be chosen so that when ϕ and ϕ′ are pure tensors,
it factors into a product of local zeta integrals. We then use local representation theory to study them, in
particular defining local L-factors from them. The global zeta integral is then related to the L-function we
are interested in, and we can transfer analytic properties of the integral to get analytic properties of the
L-function. There will be a global functional equation for Φ, which in our case will just be a change of
variable. Combined with the local functional equations, we will get the functional equation for L-functions.

Remark 2.1. There is a parallel theory if n′ = n, where in the global integral, we need the additional data
of a Bruhat–Schwartz function which is used to form an Eisenstein series. This is closer in spirit to Tate’s
thesis and Godement–Jacquet’s integral representation of the standard L-function for GLn. All results in
this section carry through. In fact, once we have sketched the theory for n′ < n, we will drop that hypothesis.

In the next three sections, we will (1) define Whittaker models, which will give us the factorization of the
global zeta integral (2) define the global zeta integral and state its properties, and (3) state the properties of
the local zeta integral. The local part is where non-trivial inputs from representation theory shows up.

2.3. Whittaker model. Let Nn be the group of n × n upper triangular matrices with diagonal entries 1.
The additive character ψ gives rise to a character ψ : Nn(F )\Nn(A)→ C×

ψ(g) = ψ(g12 + g23 + · · ·+ gn−1,n)

If ϕ is an automorphic form on GLn(A), then its Whittaker function is the ψ-Fourier coefficient of ϕ, i.e.

Wϕ(g) =

∫
Nn(F )\Nn(A)

ϕ(ng)ψ(n)−1dn

If n = 2, then N2 ' Ga is abelian, so we have a classical Fourier expansion, with the character space identified
with F×. In general, we can inductively establish the following.
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Proposition 2.2. Let P be the subgroup {
( γ v

0 1

)
}, where γ ∈ GLn−1, then

ϕ(g) =
∑

p∈Nn(F )\P (F )

Wϕ(pg) =
∑

γ∈Nn−1(F )\GLn−1(F )

Wϕ

((
γ 0
0 1

)
g
)

By definition, the Whittaker function satisfies the condition

Wϕ(ng) = ψ(n)Wϕ(g), n ∈ Nn(A), g ∈ GLn(A)

Let π be an irreducible automorphic representation, then it follows from the Whittaker expansion that there
is an injection

π ↪→W(ψ) := {W ∈ C∞(GLn(A)) |W (ng) = ψ(n)W (g)} = Ind
GLn(A)
Nn(A) ψ

We denote its image by W(ψ, π) and call it the (global) Whittaker model of π.
Note that W(ψ) factors as a restricted tensor product of local inductions, so we have an injection

πv ↪→Wv(ψv) := Ind
GLn(Fv)
Nn(Fv) ψv

for each place v. The first serious result we encounter is the fact that Wv(ψv) is multiplicity-free.

Theorem 2.3 (Local uniqueness). For any irreducible admissible representation πv of GLn(Fv),

(1) dim HomGLn(Fv)(πv,Wv(ψv)) ≤ 1. We say πv is generic if the dimension is non-zero. This notion
is independent of the chosen ψ.

(2) If πv is generic, then so is π̃v, and moreover if W is a ψv-Whittaker function in πv, then W̃ (g) :=
W (wg−t) is a ψ−1

v -Whittaker function for π̃v, where w is the matrix with 1s on the anti-diagonal and
0s elsewhere.

Proof. The proof in the non-archimedean case is originally due to Gelfand and Kazhdan [GK75] using the
now standard method of showing that an anti-involution fixes certain invariant distributions. The involution
in this case is g 7→ wgtw. Though we do not need it, the archimedean case was done in [Sha74]. �

Corollary 2.4 (Global uniqueness). If π is an irreducible admissible representation of GLn(A), then

dim HomGLn(A)(π,W(ψ)) ≤ 1

We say π is generic if the dimension is 1.

Corollary 2.5 (Multiplicity one). (1) Cusp forms on GLn(A) are generic.
(2) Representations appear with multiplicity one in the cuspidal spectrum.

Remark 2.6. We will need Piatetski-Shapiro’s strong multiplicity one result, which says if π1 and π2 are
cuspidal automorphic representations which agree locally almost everywhere, then they are equal in the
cuspidal spectrum. This shows that the Galois to automorphic correspondence is uniquely specified by the
unramified correspondence. In Theorem 2.14, we will prove this using L-functions, following Jacuqet–Shalika.

Not all admissible representations are generic. For example, finite dimensional representations are never
generic. In the case of GL2, they are the only non-examples, though for n > 2, there are many more. The
following theorem [Kud94, Theorem 2.3.1] gives a satisfactory answer in general.

Theorem 2.7 (Rodier [Rod73], Zelevinsky [Zel80]). If σ1, · · · , σr are supercuspidal representations of GLn1
(Fv),

· · · ,GLnr (Fv) respectively, then for n = n1 + · · ·+nr and P ⊆ GLn the parabolic subgroup associated to this
partition, the induced representation

Ind
GLn(Fv)
P (Fv) (σ1 � · · ·� σr)

has a unique generic constituent, which can be specified using the Berstein–Zelevinsky classification.
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2.4. Global picture I. The global integral in our case has the form

Φ(s, ϕ, ϕ′) =

∫
GLn′ (F )\GLn′ (A)

Pn′,ψϕ
(
h 0
0 1

)
ϕ′(h) |deth|s−

1
2 dh

where Pn′,ψ is a certain projection of ϕ onto GLn′ . If h ∈ GLn′(A), then

Pn′,ψϕ
(
h 0
0 1

)
:= |deth|−

n−n′+1
2

∫
Y (F )\Y (A)

ϕ
(
y
(
h 0
0 1

))
ψ(y)−1dy =

∑
γ∈Nn′ (F )\GLn′ (F )

Wϕ

(
γh 0
0 1

)
In the integral, Y is the unipotent radical of the parabolic subgroup of GLn associated with the partition
(n′ + 1, 1, · · · , 1). The detail is not important, but we note that

– The domain of integration is compact.
– If ϕ is cuspidal, then we only need to assume ϕ′ is of moderate growth to get absolute convergence.
– If n = n′ + 1, then the projection does nothing. In particular, the formula simplifies to the one in the

introduction if n = 2.

We will summarize some properties of the integral, with a view towards properties of L-functions. The
ones we list are mainly intricate manipulations, and the details can be found in the two papers [JS81b, JS81a]
where the bulk of the theory was first developed.

Proposition 2.8. Suppose π is cuspidal and π′ is generic, then

– Φ(s, ϕ, ϕ′) converges absolutely for all s ∈ C and defines polynomial in q−s (in the number field case,
replace polynomial by bounded in vertical strips).

– After a change of variable h 7→ h−t, we find a closely related integral Φ̃ such that

Φ(s, ϕ, ϕ′) = Φ̃(1− s, ϕ̃, ϕ̃′)
– Suppose ϕ has ψ-Whittaker function W =

∏
vWv, and ϕ′ has ψ−1-Whittaker function W ′ =

∏
vW

′
v, then

there are factorizations

Φ(s, ϕ, ϕ′) =
∏
v

Φ(s,Wv,W
′
v), Φ̃(s, ϕ̃, ϕ̃′) =

∏
v

Φ̃(s, ιW̃v, W̃
′
v)

where ι is right translation by
( In′

wn−n′

)
, and the terms on the right hand side are explicit integrals over

local groups. The infinite products and the local integrals converge absolutely for Re(s)� 0.

We now give the formulae for the local zeta integrals in the above theorem, only to illustrate that the
factorization is entirely formal. For 1 ≤ j ≤ n− n′ − 1, define

Φj(s,Wv,W
′
v) =

∫
Nn′ (Fv)\GLn′ (Fv)

∫
Mj,n′ (Fv)

Wv

hx Ij
In−n′−j

W ′v(h) |deth|s−
n−m

2 dxdh

then Φ = Φ0 and Φ̃ = Φn−n′−1. The calculation is a very unpleasant version of the introductory case, which
corresponds to GL2 ×GL1.

The task at hand is now reduced to studying the local integrals. The main tool there is the explicit
description of smooth representations of GLn(Fv) in various models.

2.5. Local picture. To the local zeta integrals, one attaches in a systematic way local L-factors, γ-factors,
and ε-factors. For applications to the converse theorem, we allow reducible πv satisfying the property that

dim HomGLn(Fv)(πv,W(ψv)) = 1

which we call a representation of Whittaker type. Another statement of Theorem 2.7 is that a parabolic
induction IndGP σ is of Whittaker type if and only if σ is as well. The main reason is that we want to
study how various things behave with respect to the Berstein–Zelevinsky classification, which requires as an
intermediary studying reducible induced representations. From now on, fix two representations πv and π′v of
Whittaker type on GLn(Fv) and GLn′(Fv) respectively.

We now summarize these constructions, which can be found in the two papers [JS81b, JS81a] by Jacquet
and Shalika. There are two key ingredients in the proof of the following theorem: (1) a uniform control of
functions in the Whittaker model to establish convergence and bounded denominator, and (2) a multiplicity
one result giving the local functional equation.
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Theorem 2.9.

– For Re(s) � 0, the local integrals Φj converge absolutely to a rational function in q−sv . If both πv and π′v
are unitary, then Re(s) ≥ 1 is enough.

– The collections of functions

Ij(πv × π′v) = {Φj(s,Wv,W
′
v) |Wv ∈ W(ψv, πv),W

′
v ∈ W(ψ−1

v , π′v)} ⊆ C(q−sv )

is a C[q±sv ]-ideal independent of j.
– There exists a unique generator of this ideal of the form P (q−sv )−1, where P (Z) ∈ C[Z], P (0) = 1. This is

the local L-factor L(s, πv × π′v).
– The two maps (Wv,W

′
v) 7→ Φ0(s,Wv,W

′
v) and (Wv,W

′
v) 7→ Φn−n′−1(1− s, ιW̃v, W̃

′
v) both lie in

HomGLn′ (Fv)×Y (Fv)

(
W(ψv, πv)×W(ψ−1

v , π′v),C(q−sv )
((
− s+

n− n′

2

)
� ψv

))
where Y is the unipotent subgroup introduced in the global section. This space is 1-dimensional.

– There exists a meromorphic function γ such that the local functional equation holds

Φ̃(1− s, ιW̃v, W̃
′
v) = ωπ′v (−1)n−1γ(s, πv × π′v, ψ)Φ(s,Wv,W

′
v)

– The local ε-factor is defined by

ε(s, πv × π′v, ψv) = γ(s, πv × π′v, ψv)
L(s, πv × π′v)

L(1− s, π̃v × π̃′v)
It follows from the functional equation that the ε-factor can be written as the form

ε(s, πv × π′v, ψv) = εvq
−f(s− 1

2 )
v

where |εv| = 1, and f is an integer.
– If n′ = 1 and π′v is the trivial character, then the above definitions for πv × π′v agrees with the Godement–

Jacquet theory for πv.

From now on, we suppose the parallel theory for n′ = n has been developed and drop the
hypothesis that n′ < n. Suppose πv is any irreducible admissible representation of GLn(Fv), then by
the Langlands classification, it is the irreducible quotient of a representation ξv induced from tempered
representations, and ξv is uniquely determined. Similarly, suppose π′v is a quotient of ξ′v. Both ξv and ξ′v
are of Whittaker type (by Theorem 2.7). We will define the local factors of πv × π′v to be the corresponding
factors of ξv × ξ′v, defined using the previous theorem. If πv is already generic, then πv = ξv, so the notation
does not conflict.

Under the local Langlands correspondence, the local factors should match. More precisely, if πv ↔ rv and
π′v ↔ r′v, where rv, r

′
v are `-adic representations of Gal(F sep

v /Fv), then we expect

L(s, πv × π′v) = L(s, rv ⊗ r′v), ε(s, πv × π′v, ψv) = ε(s, rv ⊗ r′v, ψv)
Proving this compatibility requires verifying the above definition is compatible with induction, which is the
main theorem of [JPSS83]. It is more subtle than just saying L(s, σ × (π1 � π2)) = L(s, σ × π1)L(s, σ × π2)
since on the Galois side, we need to take the monodromy coinvariants to get a genuine Galois representation.
We will state it in a vague way and refer to the recipe in Section 3.2 of [Kud94] for details.

Theorem 2.10. In the local Langlands correspondence, suppose the local L-factors and ε-factors for pairs
match for supercuspidal representations, then they match for all representations.

Corollary 2.11.

– If πv is parabolically induced from π1 � · · ·� πr and π′v is parabolically induced from π′1 � · · ·� π′s, where
each individual factor is generic, then

γ(s, π × π′, ψv) =
∏
i,j

γ(s, πi × π′j , ψv)

– If πv and π′v are unramified with Satake parameters z1, · · · , zn and z′1, · · · , z′n′ respectively, then

L(s, πv × π′v) =
∏
i,i′

1

1− ziz′i′q
−s
v
, ε(s, πv × π′v, ψv) = ε(s, ωn

′

π ω
n
π′ , ψv)

Moreover, if ψv is also unramified, then the local ε-factor is 1.
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– If πv and π′v are supercuspidal, then

L(s, πv × π′v) =

{
L(s, χv) if π̃vχv = π′v
1 otherwise

The ε-factor is hard to compute in general, but there is a stabilization phenomenon.

Theorem 2.12 (Jacquet–Shalika [JS85]). Let π1, π2 be two irreducible admissible representations of GLn(Fv)
with the same central character, and let π′v be an irreducible admissible representation of GLn′(Fv). If ηv is
a highly ramified character of F×v , depending on π1, π2, π

′
v, then

γ(s, π1ηv × π′v, ψv) = γ(s, π2ηv × π′v, ψv), L(s, π1ηv × π′v) = L(s, π1ηv × π′v) = 1

The stable form can be computed in terms of abelian ε-factors.

This is the analogue of Lemma 1.6. In global applications, this theorem can be used to hide away
complications at a finite set of places, usually the ramified places. We will see this principle applied when we
prove the global Langlands correspondence, where we do not want to use the local Langlands correspondence
for ramified places.

2.6. Global picture II. The local calculations can now be assembled to produce global theorems.

Theorem 2.13. Let π, π′ be (unitary) cuspidal automorphic representations of GLn(A) and GLn′(A) re-
spectively (n, n′ arbitrary). Define their L-function by

L(s, π × π′) :=
∏
v

L(s, πv × π′v)

Then we have the following properties

– The infinite product converges absolutely if Re(s) > 1. It follows that L(s, π × π′) has no zero or pole in
the region Re(s) > 1.

– L(s, π×π′) is a rational function in q−s (only in the function field case), and hence admits a meromorphic
continuation in s.

– We have a functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′)

where ε(s, π × π′) =
∏
v ε(s, πv × π′v, ψv). It is independent of ψ.

– If n′ 6= n, then L(s, π × π′) is entire. If n′ = n, then L(s, π × π̃′) has a pole at s = 1 if and only if π′ = π,
in which case the pole is simple and the residue is the adjoint L-value of π.

Given what we have stated, the hard part of this theorem is the absolute convergence in the region
Re(s) > 1 (as opposed to an unspecified half-plane), which is done in [JS81a]. Beyond that, everything
follows from the following relation between the global zeta integral and the global L-function

Φ(s, ϕ, ϕ′) = L(s, π × π′)
∏
v∈S

Φ(s,Wv,W
′
v)

L(s, πv × π′v)

where S is a finite set of places such that away from S, all data is unramified. The finite product is a
polynomial in q±s, so the analytic properties of L(s, π× π′) is entirely controlled by the global zeta integral.
The pole in the last item comes from the Eisenstein series in the n′ = n case, which we did not cover. This
can also be explained by the Langlands–Shahidi method.

As usual, if S is a finite set of places, we will let LS(s,−) :=
∏
v/∈S L(s,−v). The difference between

LS(s,−) and L(s,−) is a finite product of local factors. Moreover, if S contains all bad places, then LS(s,−)
has the following functional equation

LS(s, π × π′) =
∏
v∈S

γ(s, πv × π′v, ψv)× LS(1− s, π̃ × π̃′)

which is sometimes more convenient in applications.

Theorem 2.14 (Strong multiplicity one). Suppose π1, π2 are two irreducible subrepresentations of the space
of cusp forms such that π1,v ' π2,v for almost all v, then π1 = π2.
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Proof. If S is sufficiently large, then LS(s, π1 × π̃2) = LS(s, π1 × π̃1) by hypothesis. By Theorem 2.9, the
local factors converge absolutely in the region Re(s) ≥ 1, so they do not contribute poles in that region. By
the main theorem, the L(s, π1 × π̃1) has a pole at s = 1, so L(s, π1 × π̃2) also has a pole at s = 1, which
implies π1 ' π2. The claim now follows from the multiplicity one theorem we have already proven. �

3. Converse theorems

The converse theorem in the form we are stating was first proven by Piatetski-Shapiro in the function field
case due to analytic difficulties at the archimedean places. The number field case was later completed by
Cogdell–Piatetski-Shapiro [CPS94], who also further weakened the hypothesis. The proof is quite involved.
To motivate it, we start with Hecke’s converse theorem, which motivated the modern treatment. After that,
we will highlight some aspects of the proof. The details can be found in the references above.

3.1. Introduction: Hecke’s converse theorem.

Theorem 3.1 (Hecke). Let (an)n≥1 be a sequence of complex numbers and k ≥ 2 be an integer. Define

Λ(s) = (2π)−sΓ(s)

∞∑
n=1

an
ns

Suppose we have the following properties

(1) There exists a γ > 0 such that an = O(nγ).
(2) The function Λ(s) has an analytic continuation with the functional equation

Λ(s) = ikΛ(k − s)
(3) The function Λ(s) is bounded in vertical strips of finite width.

then
∑
n≥1 anq

n is a modular form of level 1 and weight k.

Proof. Let f(z) =
∑
n≥1 anq

n, which already satisfies f(z + 1) = f(z). It remains to verify f(− 1
z ) = zkf(z).

Let g(z) = zkf(− 1
z ). The same manipulation as before shows that∫ ∞

0

f(iy)ys
dy

y
= Λ(s),

∫ ∞
0

g(iy)ys
dy

y
= ikΛ(k − s) = Λ(s)

The inverse Mellin transform formally gives

f(iy) =
1

2πi

∫ α+i∞

α−i∞
Λ(s)y−sds = g(iy)

The subtlety here is that the first integral requires α � 0, and the second integral requires α � 0, since we
a priori only know that f is rapidly decreasing at the cusp i∞. Therefore, we need to shift the contour of
integration from the line Re(s) = α � 0 to the line Re(s) = α′ � 0. This is where the third hypothesis on
boundedness in vertical strip comes into play. The Phragmen–Lindelöf principle is also required to get decay
in the critical strip from decay in the region of absolute convergence. �

3.2. Statement and outline of proof. Another way of phrasing Hecke’s proof is to say that by construc-
tion, f is invariant under

(
1 ∗

1

)
, and g is invariant under

(
1
∗ 1

)
, so once we have f = g, we have something

invariant under the full modular group. To show they are equal, we paired them with the characters ys and
showed the results are equal using the functional equation. In an ideal world, this is enough because the
characters span a dense subspace of certain function spaces.

To get higher level modular forms, Weil’s converse theorem needed twisting by characters as well. In
general, the unspecified function space will be the space of automorphic forms on GLn(F )\GLn(A), Using
the theory of Eisenstein series, the representations are essentially inductions of cuspidal representations on
GLn′(A) for n′ < n, so we should need to understand L-functions of pairs.

Another difficulty with higher level modular forms is that the functional equation relates f with its Atkin–
Lehner involution, so in Weil’s converse theorem, we are actually given two sequences of Fourier coefficients.
In the adelic treatment, they are packaged together in the local Whittaker model.

Theorem 3.2 (Piatestki-Shapiro). Let π =
⊗′

v πv be an irreducible admissible representation of GLn(A)
such that each πv is generic. Let S be a finite set of places. Suppose the following two conditions hold
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(1) Its central character χ is automorphic (i.e. invariant by F×).
(2) For each n′ < n and π′ ∈ Π◦n′ unramified at the places in S, the L-functions L(s, π × π′) and

L(s, π̃ × π̃′) are polynomials in q−s satisfying a functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′)

Then up to changing its local component at the places in S, π is automorphic.

Remark 3.3.

(1) In the number field case, the hypothesis that the L-functions are polynomials are replaced by bounded
in vertical strips of finite widths.

(2) There are many further improvements such as decreasing the number of π′ required or allowing poles.
Cogdell has a good survey of those results [Cog14].

Outline of proof. We first assume S = ∅. By assumption, we can view π using its Whittaker model W(ψ, π).
Using the Fourier expansion, define an intertwining operator

U :W(ψ, π) ↪→ C∞c (GLn(A),C)χ, UW (g) =
∑

p∈Nn(F )\P (F )

W (pg)

By construction, this is P (F )-invariant. We can construct another intertwining operator V

VW (g) =
∑

p∈α−1N(F )α\Q(F )

W (αqg)

where α =
(

0 1
In−1 0

)
and Q is the subgroup {

(
γ 0
v 1

)
}. The functions VW are Q(F )-invariant. The groups P (F )

and Q(F ) generate GLn(F ), so it is enough to show that UW = VW . Equivalently, since GLn(A) acts by
right multiplication, we just need to prove that UW (1) = VW (1) for all W .

First, we need to think about convergence. There is an identity relating VW to U
W̃

, so we only need to
look at UW . This comes down to estimating the growth of the local and global Whittaker functions along
the diagonal torus. The local estimates were also used earlier in showing the convergence of the local zeta
integral. Viewing UW and VW as functions on GLn−1(A) via the embedding h 7→

(
h 0
0 1

)
, the result is that

both UW and VW on GLn−1(F )\GLn−1(A) are rapidly decreasing modulo centre. Moreover, UW
(
h 0
0 1

)
is

rapidly decreasing as |deth| → ∞, so if ϕ′ ∈ C∞(GLn−1(F )\GLn−1(A),C)χ−1 is of moderate growth, then
the global zeta integral

Φ(s, UW , ϕ
′) =

∫
GLn−1(F )\GLn−1(A)

UW
(
h 0
0 1

)
ϕ′(h) |deth|s−

1
2 dh

converges for Re(s)� 0. The corresponding integral for VW converges for Re(s)� 0, essentially since VW is
looking at the opposite cusp for GLn(A) (in Hecke’s converse theorem, f is rapidly decreasing at ∞, so g is
rapidly decreasing at 0, but we don’t know a priori that f is rapidly decreasing at 0).

The test functions we will use are Eisenstein series, which we briefly review. Let n− 1 = n1 + · · ·+ nr be
a partition of n− 1. This corresponds to a standard Levi subgroup M ' GLn1

×· · ·×GLnr . Let ϕ be a cusp
form on M , and let s = (s1, · · · , sr) ∈ Cr correspond to a character on M(A). To these data, we attach an
Eisenstein series E(s, ϕ). It satisfies the following properties

– If Re(si)−Re(si+1)� 0 for all i, then the series defining E(s, σ) is absolutely convergent. The result is a
function of moderate growth on GLn−1(F )\GLn−1(A).

– Let σ be the cuspidal automorphic representation of M(A) generated by ϕ, then for almost all s in the
region of absolute convergence, E(s,−) is an intertwining operator

Ind
GLn−1(A)
M(A) σ(s) ↪→ C∞(GLn−1(F )\GLn−1(A),C)

and the induced representation is irreducible.

It is a consequence of the spectral decomposition of L2(GLn−1(F )\GLn−1(A))χ that if a rapidly decreasing
function f pairs trivially with each E(s, ϕ) for almost all s, then f = 0. Therefore, from now on, we will take
ϕ′ to be an Eisenstein series such that the automoprhic representation π′ generated by ϕ′ is an irreducible
induced representation.
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The unfolding procedure before still works and gives factorizations

Φ(s, UW , ϕ
′) =

∏
v

Φ(s,Wv,W
′
v), Φ(s, VW , ϕ

′) =
∏
v

Φ̃(1− s, ιW̃v, W̃
′
v)

where W ′ =
∏
vW

′
v are the Whittaker functions of ϕ′ defined using the same integral expression, and the

local zeta integrals are the same ones from before. At a place where everything is unramified, the local zeta
integrals are local L-factors, so we have an equation of the form

Φ(s, UW , ϕ
′) = L(s, π × π′) ·

∏
v∈S

Φ(s,Wv,W
′
v)

L(s, πv × π′v)

Similarly, we also have

Φ(s, VW , ϕ
′) = L(s, π̃ × π̃′) ·

∏
v∈S

Φ̃(1− s, ιW̃v, W̃
′
v)

L(s, π̃v × π̃′v)

We are now ready to use our hypothesis. By the choice of ϕ′, π′ is an induced representation. Compatibility
under induction shows that L(s, π × π′) factors into a product

∏r
i=1 L(s, π × τr), where τr is a cusp form on

some GLn′(A) for n′ < n. For each of them, we have a global functional equation by assumption. Combined
with the local functional equation, we get

Φ(s, UW , ϕ
′) = Φ(s, VW , ϕ

′)

By our discussion on Eisenstein series, this should imply UW (1) = VW (1). This deduction is not strictly
correct since they have different regions of convergence, so the above equality only holds in the sense of
analytic continuation. We need to first perform an inverse Mellin transformation to reduce the situation
to automorphic forms on SLn−1(A). Exactly as in Hecke’s converse theorem, this requires certain analytic
properties. In the function field case, both sides are formal Laurent series in q−s or qs, so our hypothesis
that the global L-functions are polynomials replaces the inverse Mellin transform.

Finally, in the case S 6= ∅, we restrict the choice of W ∈ W(ψ, π) to those which are unramified at S. If π′

is unramified at all places in S, then we can follow through the proof as above. Otherwise, π′ is ramified at a
place in S, but the test vector is unramified, so the local zeta integral is 0, so the necessary equality follows
trivially. This gives UW = VW on a certain congruence subgroup of GLn(A), and therefore automorphy on
that group. Weak approximation shows that the automorphic forms can be extended, but this comes at the
cost of possibly replacing the components of π at places in S. �

4. The global Langlands correspondence

We are now ready to prove the main theorems 0.1 (GLC), 0.2 (GRC), and 0.3 (Purity) from Theorem 0.5
(Automorphic to Galois). This is an induction on n, with the base case n = 1 being class field theory. The
induction statement we use is the following.

(Pn)

There exists a bijection between
⊔
n′≤n ΦIrr

n′ and
⊔
n′≤n Π◦n′ satisfying (1)–(3) of Theorem 0.1 plus

condition (4’): for any π, π′ corresponding to σ, σ′, we have

L(s, πv × π′v) = L(s, σv ⊗ σ′v), ε(s, πv × π′v, ψv) = ε(s, σv ⊗ σ′v, ψv)
Moreover, we assume the generalized Ramanujan conjecture (GRC) holds up to rank n, i.e. every
π ∈

⊔
n′≤n Π◦n′ is tempered.

Notably, we are not deducing the GRC analytically from symmetric power functoriality. It will still come
from Deligne’s purity theorem. In the proof, the GRC is required to be able to identify local L-factors at
bad places, which is in turn needed in the converse theorem to go to the next rank.

The purity conjecture (Theorem 0.3) will be deduced from the GRC and the global Langlands correspon-
dence. However, a key input to the induction is that it holds for all Langlands parameter appearing in the
automorphic to Galois correspondence. This is the next lemma, which is the only place in this talk we need
to look at the actual constructions of V. Lafforgue beyond Theorem 0.5.

Lemma 4.1. The global Langlands parameter appearing in the decomposition are irreducible of weight 0.
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Proof. Suppose a cuspidal automorphic representation π has a reducible parameter σ. By induction hy-
pothesis, to each of its irreducible component τ we can attach a cuspidal automorphic representation πτ on
GLnτ (A), so the global L-function factors

L(s, π × π̃) =
∏
τ

L(s, πτ × π̃)

But the left hand side has a pole at s = 1 and the right hand side is entire. This is a contradiction. We remark
that this also follows from the harder result proven in [JS81a] showing the existence of cuspidal support.

The purity part is now Lemma 16.2 of [Laf18]. Essentially by construction, there is an intertwining
operator from certain cohomology groups to σ�σ∨, so it is pure. The weight is then necessarily 0 since detσ
has finite order by hypothesis. �

Now suppose σ ∈ ΦIrr
n is unramified away from the finite set of places S. For each v /∈ S, the unramified

local Langlands correspondence attaches an unramified representation πv of GLn(Fv) to σ|Gal(F sep
v /Fv). For

the finitely many places v ∈ S, choose πv to be an arbitrary generic irreducible admissible representation
with matching central character. Let π =

⊗′
v πv. Let χ be an adelic character which is highly ramified

(depending on σ and π) at all places in S. This will be used to twist away informations of π at S.
Let n′ < n and π′ be a cuspidal automorphic representation of GLn′(A) unramified at the places in S.

Let σ′ ∈ ΦIrr
n′ be its global Langlands parameter. If v /∈ S, then πv is unramified, so it is a constituent of an

induction of characters. By compatibility with induction and the induction hypothesis,

L(s, χvσv ⊗ σ′v) = L(s, χvπv ⊗ π′v), ε(s, χvσv ⊗ σ′v, ψv) = ε(s, χvπv × π′v, ψv)

If v ∈ S, then π′v and σ′v are unramified by hypothesis. Using compatibility with induction on either side,
we need to study the local L- and ε-factors of unramified character twists of χπ. It follows from the stability
properties (Theorem 2.12 and Theorem 1.6) that we still have the above equalities. Therefore,

L(s, χσ ⊗ σ′) = L(s, χπ × π′), ε(s, χπ × π′) =
∏
v

ε(s, χvσv ⊗ σ′v, ψv) = ε(s, χσ ⊗ σ′)

where we have also applied the Laumon product formula. The cohomological interpretation of L-functions
gives a functional equation on the Galois side.

L(s, χσ ⊗ σ′) = ε(s, χσ ⊗ σ′)L(1− s, χ−1σ∨ ⊗ (σ′)∨)

Therefore, the expected functional equation holds for π × π′. Moreover, σ and σ′ are irreducible of different
ranks, so the L-functions on both sides are polynomials in q−s. This verifies all hypothesis of the converse
theorem, so up to changing the components at the places in S, π is automorphic. By construction, properties
(1)–(3) of Theorem 0.1 are satisfied.

To conclude the induction step, we need to show (a) π is cuspidal, (b) π is tempered, and (c) matching L-
and ε-factors for pairs at bad places. The proof of the first property is like the converse of Lemma 4.1. Indeed,
suppose π is not cuspidal, then it is a constituent of a parabolic induction of a cusp form π1 � · · ·� πr. At
almost all places, the Satake parameters of π agrees with the union of the Satake parameters of π1, · · · , πr.
Suppose πi matches with σi, then the Satake parameters of π agree with the Frobenius eigenvalues of

⊗r
i=1 σi

almost everywhere. But the irreducible representation σ also satisfies this property. This is a contradiction
by the Chebotarev density theorem.

We will prove properties (b) and (c) together. Both are related to the poles of the local L-factors: for
property (b), this follows from Tadić’s work on the unitary dual of GLn(Fv); for property (c), since the local
L-factors on either side are of the form P (q−s)−1, where P is a polynomial, the matching of local L-factors
is equivalent to showing that they have the same poles.

Lemma 4.2. If π ↔ σ and π′ ↔ σ′ in the sense of matching Frobenius eigenvalues with Satake parameters
at almost all places, then for all place v,

γ(s, πv × π′v, ψv) = γ(s, σv ⊗ σ′v, ψv)

where the γ-factor on the Galois side is defined using its ε-factor.
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Proof. Let χ be an arbitrary character of F×\A×. For S sufficiently large, the global functional equations
on both sides can be written as

LS(s, χπ × π′) = LS(s, χ−1π̃ × π̃′)
∏
v∈S

γ(s, χvπv × π′v, ψv)

LS(s, χσ ⊗ σ′) = LS(s, χ−1σ∨ ⊗ (σ′)∨)
∏
v∈S

γ(s, χvσv ⊗ σ′v, ψv)

By hypothesis, the incomplete L-functions match, so the product of the γ-factors match. Now, fix a place
v∗ ∈ S. Choose χ such that χv∗ is trivial and χv is very ramified if v ∈ S\{v∗}. By stability (Lemma 1.6
and Theorem 2.12), the lemma follows. �

Symbolically, γ = εL̃
L . Here, ε is an entire function, and L and L̃ have no zeros. Suppose we can show

that the poles L̃ and L do not cancel on either side. Given this, we know that L and L̃ match, so the local
ε-factors also match by the lemma. This proves (c).

We get non-cancellation by showing that L has no pole in the region Re(s) > 1
2 . Since L̃ is evaluated at

1 − s, it has no pole in the region Re(s) < 1
2 , and we are done. On the Galois side, by Lemma 4.1, σ ⊗ σ′

and σ∨ ⊗ (σ′)∨ are both pure of weight 0, and the claim follows from the next lemma from Weil II.

Lemma 4.3 (Deligne). If σ is a lisse `-adic sheaf on a non-empty open subscheme U ⊆ X, pure of weight
0, then for all places v of X, the local L-factor L(s, σv) has no pole in the region Re(s) > 0.

Proof. In the factorization of L-functions,

L(s, σ) = LS(s, σ)
∏
v∈S

L(s, σv)

the Euler product defining the incomplete L-function converges absolutely for Re(s) > 1 since σ is pure of
weight 0. It follows that it has no zeros in that region. By Theorem 1.3, the poles of the global L-functions are
controlled by H0

c (σ) and H2
c (σ), and it’s easy to see that there are none in the region Re(s) > 1. Therefore,

L(s, σv) has no pole in the region Re(s) > 1.
We now use the tensor power trick. The previous paragraph shows that the zeros of det(1−q−sFrob|(σ⊗k)Iv )

have modulus at most q. If α is a root of det(1− q−sFrob|σIv ), then αk is one of those zeros, so |α|k ≤ q. As
k →∞, we see that |α| ≤ 1, which translates to L(s, σv) having no pole if Re(s) > 0. �

The automorphic side is more subtle. By hypothesis, πv and π′v are unitary, so the Jacquet–Shalika estimate
from Theorem 2.9 gives a pole-free region of Re(s) ≥ 1. This is not enough to get non-cancellation, so we
need additional information, which in this case is that they should be tempered. The Berstein–Zelevinsky
parameters of unitary (better, unitarizable) representations of GLn(Fv) have been classified by Tadić [Tad86].
This and the recipe referred to in Theorem 2.10 gives us the following theorem.

Theorem 4.4. Let πv and π′v be unitary generic representations of GLn(Fv) and GLn′(Fv) respectively.

(1) If one of them is tempered, then L(s, πv × π′v) has no pole in the region Re(s) ≥ 1
2 .

(2) If both are tempered, then this can be improved to Re(s) > 0.
(3) Suppose for each supercuspidal representation ρv occurring in the Berstein–Zelevinsky decomposition

of πv, L(s, πv × ρ̃v) has no pole in the region Re(s) > 0, then πv is tempered.

Example 4.5. We illustrate the classification when n = 2, in which case the complete list is

(1) Supercuspidal representations.
(2) Twisted Steinberg representations: irreducible quotient of Ind(χ(− 1

2 )⊗ χ( 1
2 )), χ unitary.

(3) Unitary principal series: Ind(χ1 ⊗ χ2), χ1, χ2 unitary, χ1 6= χ2(±1).
(4) Complementary series: Ind(χ(α)⊗ χ(−α)), χ unitary, α ∈ (0, 1

2 ).

(5) Characters: irreducible quotient of Ind(χ( 1
2 )⊗ χ(− 1

2 )), χ unitary.

Items (1)–(2) form the discrete series. Adding (3) gives the tempered representations. Adding (4) gives the
generic unitary representations. The fact that complementary series exists shows that the weaker estimate
in (1) of the theorem is sharp.

To complete the proof, we proceed as follows:
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(1) If one of π and π′ is tempered at v, then Theorem 4.4 is enough for non-cancellation. By the argument
above, (c) is proven for this pair, and we get the stronger estimate using Lemma 4.3.

(2) Let π ∈ Π◦n be arbitrary. For each ρv a supercuspidal component of πv, choose a global cuspidal
π′ whose local component is ρ̃v (a simple application of the trace formula, see Lemma VI.12 of
[Laf02]). The stronger estimate coming from the previous step for each of those pairs shows that πv
is tempered. This completes the proof of the GRC for all π ∈

⊔
n′≤n Π◦n′ .

(3) Since the GRC is now known up to rank n, the first step can be done if both π and π′ have rank at
most n, which completes the inductive step. �
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