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ON THE FROBENIUS FIELDS OF ABELIAN VARIETIES OVER NUMBER FIELDS

ASHAY A. BURUNGALE, HARUZO HIDA, AND SHILIN LAI

Abstract. Let A be a non-CM simple abelian variety over a number field K. For a place v of K such that

A has good reduction at v, let F (A, v) denote the Frobenius field generated by the corresponding Frobenius

eigenvalues. If A has connected monodromy groups, we show that the set of places v such that F (A, v) is

isomorphic to a fixed number field has upper Dirichlet density zero. Moreover, assuming the GRH, we give a

power saving upper bound for the number of such places.
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1. Introduction

For an abelian variety over a number field and a place of good reduction, a basic invariant is the Frobenius
field generated by the corresponding Frobenius eigenvalues. In this paper we study its connection with the
arithmetic of the abelian variety.

For a CM abelian variety, in view of the CM theory of Shimura–Taniyama–Weil, the Frobenius fields are
contained in a fixed number field and equal to it for a set of places of Dirichlet density one. A natural
question: to explore the upper Dirichlet density of the set of places at which the Frobenius field of a non-CM
abelian variety coincides with a given number field up to an isomorphism. The question has been studied in
the literature in various low-dimensional cases, and the primary goal of this paper is to consider the general
case via a uniform approach.

We show that the density is zero under a mild connected-ness hypothesis (see Theorem 1.1). Moreover,
assuming the GRH, we provide a power saving upper bound on the size of the set of places with bounded
norm at which the Frobenius field of a non-CM abelian variety coincides with a given number field.

Main results. Let K be a number field and ΣK the set of its finite places. For K an algebraic closure, let
GK = Gal(K/K) be the corresponding absolute Galois group. For a place v ∈ ΣK , let Frobv be an associated
geometric Frobenius.

Let A be an abelian variety defined over K of dimension d and conductor N. For a prime p, let TpA be the
p-adic Tate module of A and

ρA,p : GK → AutZp
TpA

the associated p-adic Galois representation. For v ∤ pN, it is unramified at v. Let F (A, v) be the splitting field
of the characteristic polynomial of ρA,p(Frobv). As (ρA,p)p is a compatible system of Galois representations,
F (A, v) is a number field independent of p, referred to as the Frobenius field associated to the pair (A, v).
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Let M be a number field and SA,M a subset of finite places ΣK of K given by

SA,M = {v ∈ ΣK |v ∤ N, F (A, v) ∼= M}.

When A is a CM abelian variety, the Frobenius fields are a subfield1 of the corresponding CM field (cf. [32]).
Moreover, for a Dirichlet density one subset, the Frobenius fields equal a fixed subfield of the CM field.

In this paper, for non-CM abelian varieties A, we consider dependence of the Frobenius fields F (A, v) on the
place v. To state the results, we recall the following notion. For S ⊂ ΣK , the upper Dirichlet density ud(S)
is given by

ud(S) = lim sup
X→∞

#{v ∈ ΣK : NK/Qv ≤ X,X ∈ S}

#{v ∈ ΣK : NK/Qv ≤ X}
,

where NK/Q denotes the norm of the extension K/Q.

Our first main result is the following.

Theorem 1.1. Let A be an absolutely simple non-CM abelian variety defined over a number field K. Suppose
that the monodromy groups associated to A over K are connected (cf. Hypothesis 2.2). Then for any number
field M , we have

ud(SA,M ) = 0.

The connectivity Hypothesis 2.2 is satisfied by any abelian variety A over a finite extension of its field of
definition (cf. Remark 2.3). Moreover, it is satisfied by a class of abelian varieties over their field of definition,
for instance: most abelian varieties in a typical family (e.g. hyperelliptic Jacobians).

Remark 1.2. Theorem 1.1 gives a criterion for characterisation of CM/non-CM abelian varieties. For different
criteria in the case of GL2-type abelian varieties over Q, the reader may refer to [13, §3.1.1].

In view of Theorem 1.1 it is natural to seek to estimate the size of subsets of SA,M with bounded norm. To
state the result, we introduce some notation. Let G be the Mumford–Tate group associated to A. Let Gss be
its semisimple quotient with dimension d, and let r = rankGss denote its absolute rank, namely the dimension
of a maximal torus of Gss. The quantitative result:

Theorem 1.3. Let A be an absolutely simple non-CM abelian variety defined over a number field K. Suppose
that the monodromy groups associated to A over K are connected (cf. Hypothesis 2.2), and that the generalized
Riemann hypothesis (GRH) holds. Then for any ε > 0, there exists a constant c depending on (A,K, ε) such
that for any number field M and X ∈ R>0, we have

|{v ∈ SA,M |NK/Qv ≤ X}| ≤ cX1− 1
3d−r+2+ε.

Corollary 1.4. Suppose further that A is generic2. Then for any ε > 0, there exists a constant c depending
on (A,K, ε) such that for any number field M and X ∈ R>0, we have

|{v ∈ ΣK |NK/Qv ≤ X, v has Frobenius field M}| ≤ cX
1− 1

6g2+2g+2
+ε

.

1More precisely, the Frobenius fields are a subfield of the CM endomorphism field K given by αΦ′

∈ K for some α ∈ K ′ for

the reflex CM type (K ′,Φ′).
2That is, the associated adelic Galois representation has open image in GSp2g(Ẑ).
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About the proof. Our approach is based on the compatible system of Galois representations associated
to the abelian variety and some group theory. To begin, we recast the problem in terms of (a variant of)
Frobenius tori in the algebraic monodromy group of the abelian variety. A volume computation of conjugacy
classes arising from these tori and large Galois image results for A are keys of the proof.

We now describe the strategy in more detail. To begin, for primes p which split completely in M , we show
that if v ∈ SA,M , then the image of Frobv in the associated mod p monodromy group lies in a Fp-rational
Borel subgroup. Then we give a volume upper bound for the union of all such subgroups (cf. Corollary 3.4),
perhaps of independent interest. On the other hand, since A is non-CM, the associated Galois representations
have large image, thanks to the work of Wintenberger [33] and Hui–Larsen [14] (cf. Theorem 2.5). In light of
the image lower bound and the volume upper bound, the Chebotarev density theorem implies that ud(SA,M )
is bounded above by a constant c less than 1, which is independent of the prime p. This deduction relies on
basic properties of reductive groups, several of which require the group to be connected.

Next, we synthesise the analysis at different primes via the product Galois representation
∏

ρA,p. Ideally, we
expect

(1.1) Im
(

∏

p

ρA,p

)

=
∏

p

Im(ρA,p),

which implies: for different choices of p, the events that ρA,p(Frobv) lands in a Fp-rational Borel subgroup are
independent. Hence, Theorem 1.1 follows (recall that the density upper bound c is independent of p). Actually,
Serre showed that the independence (1.1) holds upon replacing K with a finite extension (cf. Theorem 2.4(2)).
This suffices for our argument.

As for Theorem 1.3, we quantify the above strategy with the aid of the effective Chebotarev theorem of
Lagarias–Odlyzko and the Selberg sieve. Some notable features:

• Without the Mumford–Tate conjecture, the p-adic monodromy groups can be different3 for each p. In
order to control their sizes, we introduce a soft argument based on the Weil bound and the classification
of reductive groups over algebraically closed fields (cf. the proof of Lemma 4.15).

• Since we are only sieving using primes which split completely in M , a lower bound on the number of
such primes - independently of M - is necessary. This is achieved via a simple a priori upper bound
on the discriminant of a Frobenius field F (A, v) in terms of NK/Qv (cf. Lemma 4.18).

To refine exponents naturally appearing in the analysis, we make the following improvements:

• Instead of the p-adic monodromy group, we work with its semisimple quotient, reducing the sizes of
the relevant Galois groups. This is a generalization of the PGL2-reduction method used previously.

• Well-known results of Murty–Murty–Saradha give better error terms in the effective Chebotarev the-
orem when certain subgroups of the Galois group satisfy the Artin holomorphy conjecture (AHC) (cf.
Theorem 4.8). In our case, the natural choice is a Borel subgroup of the monodromy group, and we
make an elementary group-theoretic observation that it satisfies the AHC.

The prior work and prospects. Our study is inspired by the Lang–Trotter conjecture [20] and a consid-
eration of Serre for Hecke eigenvalues of elliptic newforms [28, §7]. For elliptic curves, the result was first
stated4 by Serre [28, §8.2]. Its various explicit forms have appeared in the work of Cojocaru–Fouvry–Murty
[8], Cojocaru–David [6], Zywina [34], and Kulkarni–Patankar–Rajan [17], among others. Cojocaru–David [7]
consider the analogous question for Drinfeld modules.

For generic abelian varieties, Theorem 1.1 was first established by Bloom [1]. His method is different and does
not seem amenable to quantitative refinements as in Theorem 1.3. As for general abelian varieties, the only
known result seems to be that of Khare [16]: for a non-CM simple abelian variety, the set of places whose
Frobenius fields equal a fixed number field cannot be the complement of a finite set of places.

3Recall that the Mumford–Tate conjecture is not known in general.
4albeit without proof or explicit exponent
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Our result applies to any abelian variety up to a base change. In the generic case, no base change is needed,
and it gives a better exponent than Bloom [1], assuming only the GRH. The qualitative part of the argument
generalises to function fields, and we expect that a suitable modification yields the quantitative version.
Moreover, our method seems to apply to any compatible system of Galois representations for which Frobenius
semisimplicity holds (cf. Remark 2.6).

Compared to previous works, our approach is closer in spirit to the square sieve method, which first appeared
in [8]. However, by working with abstract reductive groups, we replace all the work in estimating conjugacy
class sizes with soft arguments, and we can identify power savings which are not apparent from the explicit
matrix-based considerations. It would be interesting to see if our approach can be combined with the mixed
Galois representation approach to obtain a further sharpening of Theorem 1.3.

Finally, to remove Hypothesis 2.2, we would need to study the structure of semisimple elements in a discon-
nected finite reductive group. We plan to return to this question in the near future.

Plan. In section 2 we describe preliminaries regarding Galois representations, monodromy groups, and large
image theorems. In section 3 we present preliminaries regarding finite redcutive groups and introduce the key
notion of a bounding set (cf. Definition 3.3). In section 4 we prove the main theorems.

Acknowledgments. We thank Brian Conrad, Chun-Yin Hui, Chandrashekhar Khare, Vijay Patankar, Will
Sawin, and Victor Wang for helpful comments and suggestions.

2. Backdrop

We describe some preliminaries regarding p-adic Galois representation associated to an abelian variety over a
number field. The reader may refer to [14, 25, 33] for some details.

Let the setting be as in section 1. In particular, A is an abelian variety over a number field K of dimension
g. Put ∆A = NK/QN, so A has good reduction away from places of K which lie above a prime dividing ∆A.

2.1. Galois representations. For a prime p, let TpA be the p-adic Tate module of A. Let

ρp : GK → AutZp
TpA

be the associated p-adic Galois representation.

Theorem 2.1. Let v be a finite place of K such that v ∤ p∆A.

(1) (Serre–Tate) The Galois representation ρp is unramified at v.

(2) (Weil) The characteristic polynomial of ρp(Frobv) has integral coefficients and is independent of p.

Moreover, all of its roots have complex absolute value (NK/Qv)
1
2 .

For a set T of primes, put

ρT =
∏

p/∈T

ρp, ρT =
∏

p∈T

ρp.

For N a positive integer, put ρN = ρT (N), ρN = ρT (N), where T (N) is the set of primes dividing N .

2.1.1. Monodromy groups. Let
Γp = ρp(GK) ⊆ AutZp

TpA,

and Gp denote its Zariski closure. This is a linear algebraic group over Zp. The generic fibre of Gp is the
usual p-adic monodromy group. Throughout this paper, we make the following assumption.

Hypothesis 2.2. The group Gp is connected for a prime p.

Remark 2.3. A result of Serre [29, Corollaire p. 15] shows that the component group Gp/G
◦
p is independent

of the prime p. So the hypothesis holds for all primes p as soon as it holds for one prime. It is also proven
in op. cit. that there exists a finite extension Kconn/K such that this hypothesis holds for the base change
A/Kconn .
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We will use the following key results on the monodromy group.

Theorem 2.4.

(1) If p is sufficiently large, then Gp is reductive.

(2) There exists a finite Galois extension L/K and an integer N such that

ρN (GL) =
∏

p∤N

ρp(GL)

Part (1) is due to Larsen–Pink (cf. the proof of [22, Theorem 3.2]). Part (2) is another result of Serre [29,
Théorème p. 56] (see also [15, 31]). The reference does not include the Galois requirement, but we can take
the Galois closure, which preserves independence away from a finite set of primes.

2.1.2. Galois image. This subsection will recall some large image results for non-CM abelian varieties due
to Hui–Larsen [14, Theorem 1.3]. An essentially equivalent result was obtained earlier by Wintenberger [33,
Théorème 2], but this formulation is more convenient for us.

For a prime p such that Gp is reductive, let Gss
p denote the quotient of Gp by its radical, and Γss

p the image
of Γp in Gss

p . Let π : Gsc
p → Gss

p be the algebraic universal cover. This is a finite morphism.

Theorem 2.5. For all sufficiently large p, we have

Im(Gsc
p (Zp)→ Gss

p (Zp)) ⊆ Γss
p .

Proof. The cited result of Hui–Larsen is that for p ≫ 0, the group Gp(Qp) is unramified, and π−1(Γss
p ) is a

hyperspecial maximal compact subgroup of Gsc
p (Qp). It is not easy to extract the integral model directly from

the proof, so we conclude in an indirect way. We have the inclusions

π−1(Γss
p ) ⊆ π−1(Gss

p (Zp)) ⊆Gsc
p (Zp)

The first is by definition. The second holds since π is finite, hence proper. The final group is also a hyperspecial
maximal compact subgroup of Gsc

p (Qp), and so all three groups above are equal. �

Remark 2.6. If we have a compatible system of semisimple Galois representations coming from geometry, then
Theorem 2.4 still holds. Larsen showed that Theorem 2.5 holds for a density one set of primes p [21, Theorem
3.17]. The exceptional set in that proof is again cut out using Chebotarev sets. Therefore, it’s likely that our
approach works in such generality, though we have not checked the details carefully.

Define the reduced residual representation

ρssp : GK → Gss
p (Fp),

Its image is also the image of Γss
p under the reduction map Gss

p (Zp) → Gss
p (Fp). Denote it by Γ

ss

p . A simple
consequence of Theorem 2.5 is the following.

Corollary 2.7. Let Ip = Im(Gsc
p (Fp)→ Gss

p (Fp)), then for all sufficiently large p, Γ
ss

p contains Ip.

2.2. A characterisation of CM abelian varieties.

Proposition 2.8. Let A be a simple abelian variety over a number field K. If the associated p-adic monodromy
group Gp/Qp

is abelian for one prime p, then it is so for all primes, and A has CM.

Proof. Suppose that Gp/Qp
is abelian. The p-adic Galois representation ρp is semisimple by Faltings, and

rational by construction. Hence, this Galois representation arises from an arithmetic Hecke character over K
by a result of Henniart [12] (cf. [27, Theorem 2 in III-13]). Considering infinity type of the Hecke character, it
follows that ρp corresponds to a CM abelian variety A′. Note that A and A′ are isogenous by Falting’s isogeny
theorem. Hence A has CM, and the assertion follows. �
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3. Results on finite reductive groups

Let G be a connected reductive group defined over Fp. In this section we will give a volume upper bound for
the union of certain conjugacy classes.

3.1. Tori and Weyl groups. We recall some basic results about maximal tori of G. A detailed exposition
can be found in [4, Section 3.3].

Let WG be the absolute Weyl group of G. It carries an action of the Galois group Gal(Fp/Fp). Let γ be the
action corresponding to the Frobenius element. The general theory of forms gives a bijection

{Conjugacy class of maximal tori defined over Fp} ←→ {γ-conjugacy classes in WG}.

Let T be a maximal torus in G. Define its Weyl group by

W (G,T) = NG(Fp)(T)/T(Fp).

It can also be described as the stabilizer of the γ-conjugacy class corresponding to T under the above bijection.
In particular, the γ-twisted class equation gives

(3.1)
∑

T

1

|W (G,T)|
= 1

where the sum is over a set of representatives for the conjugacy classes of maximal tori in G.

Lemma 3.1. If G is not abelian, then W (G,T) is non-trivial for any maximal torus T.

Proof. By the class equation (3.1), if the lemma holds for one choice of T, then it holds for all choices of T.
Let B be a Borel subgroup of G defined over Fp. Its existence is guaranteed by Lang’s theorem [19]. Let S
be a maximal Fp-split torus contained in B, and let T be its centralizer. This is a Levi subgroup of B, and
hence a maximal torus. In addition, NG(S) ⊆ NG(T), so the Weyl group W (G,T) contains the relative Weyl
group W (G,S).5

Since G is not abelian, its derived subgroup Gder is non-trivial. By Lang’s theorem, Gder has a Borel
subgroup, which implies that Gder has positive rank [3, Corollaire 4.17]. The second paragraph of the proof
of [3, Théorème 5.3] then shows that the relative Weyl group W (G,S) is non-trivial, so W (G,T) is also
non-trivial for this choice of T. �

3.2. Conjugacy classes. Given a maximal torus T, let CT denote the set of elements in G(Fp) which are
conjugate to an element of T(Fp). We will also use the superscript “reg” to denote the subset of regular
semisimple elements. The volume is the counting measure normalized so that vol(G(Fp)) = 1.

Proposition 3.2. There exists a constant C depending only on the (absolute) rank of the group G such that
the following holds for all p

(1) vol(G(Fp)
reg) > 1− Cp−1,

(2) If T is a maximal torus, then
∣

∣

∣

∣

vol(Creg
T

)−
1

|W (G,T)|

∣

∣

∣

∣

< Cp−1.

Proof. Let T be a maximal torus. The map G/T × T → G, (g, t) 7→ gtg−1 is finite of degree |W (G,T)|
above the regular elements in its image. Indeed, if gtg−1 = g′t′(g′)−1, then g−1g′ conjugates t′ to t, so it
conjugates ZG(t′) to ZG(t). If t is regular, then the centralizer is just T, so g−1g′ ∈ NG(T). On Fp-points,
the image of this map is exactly CT, so

(3.2) vol(Creg
T

) =
1

|W (G,T)|
·
|T(Fp)

reg|

|T(Fp)|
.

5We in fact have equality here, but this will not be needed.
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Summing over a set of representatives of conjugacy classes of maximal tori, we get

vol(G(Fp)
reg) =

∑

T

1

|W (G,T)|
·
|T(Fp)

reg|

|T(Fp)|
.

We now give a coarse estimate for the right hand side.

Let r = rankT. The set of non-regular elements in T(Fp) is the Fp-points of a variety Tnr of dimension r− 1.

When base changed to Fp, it can be described as the subset of Gr
m,Fp

where at least two of the entries are

equal. Let E/Z be the subscheme of Gr
m,Z defined this way, then we see that Tnr is a form of E ×Z Fp. It

follows from the Weil bound6 that there exist a constant C (depending only on r) such that

(3.3)

∣

∣

∣

∣

|T(Fp)
reg|

|T(Fp)|
− 1

∣

∣

∣

∣

≤ Cp−1

for all p (cf. the proof of Lemma 4.15).

This estimate together with equation (3.2) immediately gives part (2) of the proposition. Using equation (3.1),
we see that

vol(G(Fp)
reg) ≥

∑

T

1

|W (G,T)|
· (1− Cp−1) = 1− Cp−1.

This proves (1). �

Definition 3.3. Let G be a reductive group over Fp. Its bounding set is the set of elements in G(Fp) which
lie in a Borel subgroup defined over Fp.

A consequence of Proposition 3.2 is the following.

Corollary 3.4. Let B be the bounding set of G. There exists an integer N depending only on the rank of G
such that if G is non-abelian and p > N , then

vol(B) <
3

4
.

Proof. Let T be a maximal torus in a Borel subgroup B. Let x ∈ B be regular semisimple. We will show
that x is conjugate to an element of T. Indeed, all Borel subgroups are conjugate [3, Théorème 4.13(b)], so
we may assume x ∈ B. Any maximal torus of B containing x is a Levi component, so it is conjugate to T

[3, Proposition 4.7]. It follows that B is contained in the union of non-regular semisimple elements and CT.
Therefore,

vol(B) ≤ vol(G(Fp)−G(Fp)
reg) + vol(Creg

T
) < 2Cp−1 +

1

|W (G,T)|

by Proposition 3.2. Lemma 3.1 shows that W (G,T) is non-trivial, so its order is at least 2. By taking p
sufficiently large, the right hand side can be made smaller than any real number greater than 1

2 . �

3.3. Central isogeny. This subsection refines Proposition 3.2 and Corollary 3.4. This refinement is the key
ingredient which allows us to apply the large image results of Theorem 2.5 and Corollary 2.7.

Suppose G is semisimple, then it has an algebraic universal cover π : Gsc → G. Its kernel, denoted by Z,
is a finite group scheme over Fp and contained in the centre of Gsc. Let T be a maximal torus of G, then
Tsc := π−1(T) is a maximal torus in Gsc containing Z.

We have the following exact sequence of groups

1 Z(Fp) Tsc(Fp) T(Fp) H1(Fp, Z) 1

1 Z(Fp) Gsc(Fp) G(Fp) H1(Fp, Z) 1.δ

6One may also proceed by an elementary argument: counting T(Fp)reg using inclusion-exclusion, but the details are messy.
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The final 1 in both rows are by Lang’s theorem. Note that a priori, the connecting morphisms are between
pointed sets, but since Z is central, they are actually group homomorphisms (cf. [30, §I.5.6]).

Lemma 3.5. We have |Gsc(Fp)| = |G(Fp)|.

Proof. Since Z(Fp) is finite, its Herbrand quotient is 1. Hence the assertion follows by considering the bottom
row of the above diagram. We remark that this is also a special case of [2, Chapter V, Proposition 16.8]. �

The main result of this section is that the various conjugacy classes we have considered are approximately
equally distributed in the fibres of δ. More precisely, we have the following.

Proposition 3.6. Let G be a non-abelian semisimple group. Let I = Im(Gsc(Fp)→ G(Fp)).

(1) There exists a constant C depending only on the rank of G such that for any maximal torus T and
g ∈ G(Fp), we have

∣

∣

∣

∣

|Creg
T
∩ gI|

|I|
−

1

|W (G,T)|

∣

∣

∣

∣

< Cp−1.

(2) There exists an integer N depending only on the rank of G such that for all p > N , we have

1

2|W (G,T)|
<
|B ∩ gI|

|I|
<

3

4

where B is the bounding set for G.

Proof. Let n = [G(Fp) : I] =
∣

∣H1(Fp, Z)
∣

∣ = |Z(Fp)|. The group Z is a subgroup of the center of a semisimple

simply connected group over Fp. Since the rank is fixed, there are a finite number of such groups, so n is
bounded from above, independently of G.

From the above diagram, I = ker δ is a normal subgroup with an abelian quotient, so if two elements of G(Fp)
are conjugate, then they lie in the same coset of I. Moreover, δ is still surjective when restricted to T(Fp), so
it identifies T(Fp)/(T(Fp) ∩ I) with H1(Fp, Z). Fix g ∈ G(Fp), then we get

|T(Fp) ∩ gI| =
|T(Fp)|

|H1(Fp, Z)|
.

The conjugation action G/T × T → G, (x, t) 7→ xtx−1, as in the proof of Proposition 3.2, restricts to an
action on the coset gI, so

|Creg
T
∩ gI| =

1

|W (G,T)|
·
|G(Fp)|

|T(Fp)|
· |T(Fp)

reg ∩ gI|

=
|I|

|W (G,T)|
·
|T(Fp)

reg ∩ gI|

|T(Fp) ∩ gI|
.

Therefore, we have
∣

∣

∣

∣

|Creg
T
∩ gI|

|I|
−

1

|W (G,T)|

∣

∣

∣

∣

=
|(T(Fp)−T(Fp)

reg) ∩ gI|

|T(Fp) ∩ gI|
≤
|T(Fp)−T(Fp)

reg|

|T(Fp)| /n
≤ nCp−1

where C is the constant from the equation (3.3).

For the second part, take T to be the maximal torus in a Borel subgroup as before. Let C be the constant in
Proposition 3.2, then

|B ∩ gI|

|I|
≤
|G(Fp)−G(Fp)

reg|

|I|
+
|Creg

T
∩ gI|

|I|

< C(n+ 1)p−1 +
1

|W (G,T)|
.
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On the other hand,
|B ∩ gI|

|I|
≥
|Creg

T
∩ gI|

|I|
≥

1

|W (G,T)|
− nCp−1

The same argument as in Corollary 3.4 gives the desired bounds. �

4. Proof of Main Theorem

We now prove the main results. The first subsection sets up some notation. Then the second contains a short
proof of the qualitative version (cf. Theorem 1.1). Finally, the third subsection is dedicated to the quantitative
version (cf. Theorem 1.3).

4.1. Preliminaries.

4.1.1. Setting. Let A be a simple abelian variety of dimension g defined over a number field K such that A/K̄

does not have CM. Let ∆A be the norm of the conductor of A. Let M be a number field and

SA,M = {v ∈ ΣK |v ∤ ∆A, F (A, v) ∼= M}.

For X a positive real number, define

SA,M (X) = {v ∈ SA,M |NK/Qv ≤ X}.

Our goal is to bound SA,M (X) from above, supposing Hypothesis 2.2.

Let L be a finite Galois extension of K such that the conclusion of Theorem 2.4(2) holds, and let N be the
bound given therein. Increase N so that for all p > N , the following holds:

(1) The monodromy group Gp is reductive, cf. Theorem 2.4(1).

(2) The large image result in Corollary 2.7 holds for A/L

(3) The density estimate in Proposition 3.6(2) holds for all groups of rank at most 2g.

This N depends only on A and K. Let P be the set of all primes greater than N which split completely in M .

4.1.2. Preliminary lemmas.

Lemma 4.1. Pick p ∈ P and v ∈ SA,M which does not lie above p. Then the Frobenius ρssp (Frobv) ∈ Gss
p (Fp)

lives in a Borel subgroup defined over Fp.

Proof. Let Fv = ρssp (Frobv) ∈ Gss
p (Zp). By Faltings’ theorem, this is a semisimple element in Gss

p (Qp).
Moreover, our assumptions on p and v together imply that Fv lies in a split torus, and hence in a minimal
parabolic subgroup of Gss

p (Qp), which is necessarily a Borel subgroup since Gss
p is unramified. The scheme of

Borel subgroups over Zp is proper [11, XXII, 5.8.3(i)], so we can extend this Borel subgroup to one defined
over Zp. Its fibre over Fp is a Borel subgroup of Gss

p (Fp) containing the reduction of Fv. �

Lemma 4.2. The image of the Galois representation

ρssP : GK →
∏

p∈P

Gss
p (Fp)

is a union of cosets of
∏

p∈P Ip, where Ip is defined as in Corollary 2.7.

Proof. By the choice of L, we have

ρssP (GL) =
∏

p∈P

ρssp (GL) ⊆
∏

p∈P

Gss
p (Fp).

Item (2) of the choice of P implies that ρssp (GL) contains the subgroup Ip for all p ∈ P . Therefore,

ρssP(GK) ⊇ ρssP (GL) ⊇
∏

p∈P

Ip.

In other words, ρssP (GK) is a subgroup of
∏

p∈P Gss
p (Fp) which contains the subgroup

∏

p∈P Ip. �
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4.2. Proof of Theorem 1.1. Let d be a square-free product of primes in P . Let Fd be the union of all
conjugacy classes ρssd (Frobv) for v ∈ SA,M not dividing d.

By Lemma 4.1, we have

Fd ⊆
(

∏

p|d

Bp

)

∩ ρssd (GK)

where Bp is the bounding set for Gss
p introduced in Definition 3.3. The Chebotarev density theorem implies

that

(4.1) ud(SA,M ) ≤
|Fd|

|ρssd (GK)|
≤

∣

∣

(
∏

p|dBp

)

∩ ρssd (GK)
∣

∣

|ρssd (GK)|
.

To estimate the right hand side, we utilise the following decomposition

ρssd (GK) =
s
⊔

i=1

(

gi
∏

p|d

Ip

)

=
s
⊔

i=1

(

∏

p|d

gi,pIp

)

given by Lemma 4.2. In view of Proposition 2.8, Gss
p is non-abelian7. Therefore, Proposition 3.6 can be

applied, giving the upper bound

(4.2)

∣

∣

∣

∣

(

∏

p|d

Bp

)

∩ ρssd (GK)

∣

∣

∣

∣

=
s

∑

i=1

∣

∣

∣

∣

∏

p|d

(

Bp ∩ gi,pIp
)

∣

∣

∣

∣

≤ s
∏

p|d

(3

4
|Ip|

)

=
(3

4

)ω(d)

|ρssd (GK)|

where ω(d) is the number of prime divisors of d.

Combining equations (4.1) and (4.2), we get

ud(SA,M ) ≤
(3

4

)ω(d)

for any d which is a square-free product of primes in P . Since P is infinite, this implies that

ud(SA,M ) = 0.

4.3. Proof of Theorem 1.3. We will now use the effective Chebotarev theorem of Lagarias–Odlyzko and
the Selberg sieve to obtain a power saving upper bound for the number of places with a given Frobenius field
M . This is possibly the approach suggested by Serre in [28, §8.2].

In this section we will write f(X) = O(g(X)) or f(X)≪ g(X) to mean the existence of an absolute constant
c such that |f(X)| ≤ c |g(X)| for all X . If the constant is allowed to depend on some other object, we will
indicate so in the subscripts. All constants are in fact effectively computable.

Remark 4.3. This section will be conditional on the GRH. Unconditionally, we expect that the standard
methods lead to an upper bound of the form O

(

X
(logX)α

)

for some explicit α > 1, but we have not worked out

the details.

4.3.1. Sieving setup. In this subsection, we recast the problem into a form where the Selberg sieve can be
directly applied. There are notational complications since we are only assuming potential independence of the
Galois images at different primes p. No important idea is lost if one assumes L = K, i.e. the family of Galois
representations over K has independent image.

Fix a positive real number X . Let ΣK(X) be the set of all finite places of K of norm at most X where A
has good reduction. Recall that in §4.1, we have chosen a finite Galois extension L/K and an infinite set of
primes P defined by a splitting condition.

Let R be the set of square-free product of primes in P . Let d ∈ R ∪ {∞}. In the infinite case, the condition
“p|d” should be interpreted as “p ∈ P”. Let Gd =

∏

p|dG
ss
p (Fp), so we have a Galois representation

ρssd : GK → Gd.

7The generic fibre is abelian if and if the special fibre is, since G
ss
p is reductive over Zp.
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Denote its image by G′
d and the fixed field of its kernel by Kd, so we have an isomorphism

Gal(Kd/K) ≃ G′
d,

and Kd is the compositum of all Kp for p|d. Define Hd and Ld similarly using the restriction ρssd |GL
. By the

choice of L, we have Hd =
∏

p|d Hp. In these notations, we have

Id :=
∏

p|d

Ip ⊆ Hd ⊆ G′
d ⊆ Gd

where the first inclusion is due to Corollary 2.7.

Here is a summary of the above definitions

K

Kd ∩ L

LKd

Ld Hd =
∏

p|dHp

G′
d Gal(L/K)

Let I = G′
∞/H∞, then from the above diagram, I = Gal(K∞ ∩ L/K) is finite. Fix an integer d such that

Kd ∩ L = K∞ ∩ L, so if d|d, then G′
d/Hd ≃ I. Write down a coset decomposition

G′
∞ =

⊔

i∈I

giH∞ =
⊔

i∈I

∏

p∈P

gi,pHp.

For any d as above, define gi,d = (gi,p)p|d ∈ G′
d, so we have a decomposition G′

d =
⋃

i∈I gi,dHd. By comparing
indices, this is a disjoint union if d|d.

For each p ∈ P , let Bp ⊆ Gp be the bounding set as in the previous section (cf. Definition 3.3). Let
Cp = Gp − Bp. For a general d ∈ R ∪ {∞}, define Cd and Bd as a product of the corresponding sets for p
dividing d. Let C′d = Cd ∩G′

d and B
′
d = Bd ∩G′

d. For an index i ∈ I, define

B
(i)
d = Bd ∩

∏

p|d

gi,pHp.

So we have B
(i)
d =

∏

p|dB
(i)
p . Moreover, B′

d =
⋃

i∈I C
(i)
B . Define the subset C

(i)
d similarly. If p is a prime, then

gi,pHp = B
(i)
p ⊔ C

(i)
p .

Remark 4.4. It could be the case that B
(i)
d = B

(i′)
d even though i 6= i′ in I. However, this cannot happen if

d|d, in which case B
′
d =

⊔

i∈I B
(i)
d . In other words, the purpose of the auxiliary d will play is to identify the

correct coset.

Let C be any union of conjugacy classes in G′
d. Define

Ed(C) =
{

v ∈ ΣK(X)
∣

∣

∣
v does not lie above any p|d, ρssd (Frobv) ∈ C

}

.

The proof of Theorem 1.1 in the previous subsection then implies SA,M (X) ⊆ Ed(B
′
d). This form does not

immediately yield a power saving upper bound. Instead, we re-write it in a different way.

Proposition 4.5. We have an inclusion

SA,M (X) ⊆
⊔

i∈I

(

Ed(B
(i)
d )−

⋃

p∈P(d)

Edp(B
(i)
d × C

(i)
p )

)

where P(d) consists of the primes in P which do not divide d.
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Proof. Implicit in the statement is that B
(i)
d is a union of conjugacy classes in G′

d for all d. To see this, observe

that B
′
d is a union of conjugacy classes, and B

(i)
d is its intersection with a coset of Hd in G′

d. It remains to
observe that Hd is a normal subgroup of G′

d, and the quotient is abelian, since it is a subquotient of the abelian
group Gd/Id (cf. §3.3). The same argument works for the second term.

The containment is apparent: let v ∈ SA,M (X) and g = (gp)p∈P = ρss∞(Frobv) ∈ G′
∞. Then there exists a

unique i ∈ I such that g ∈ giH∞. Moreover, we know that gp ∈ B
′
p for all p ∈ P , so gp /∈ C′p. It follows that

(gp)p|d ∈ B
(i)
d , but it is not in B

(i)
d × C

(i)
p for any prime p. �

Each term in the disjoin union in Proposition 4.5 is a sieving problem. We now recall a form of the Selberg
sieve.

Theorem 4.6. Let P be a set of primes, and let R be the set of square-free products of primes in P.

Let A be a finite set. For each p ∈ P, let Ap ⊆ A. For d ∈ R, define Ad =
⋂

p|dAp. If d = 1, set A1 = A.
Suppose for all d, we can write

|Ad| = βdcLi(X) +Rd

where Rd is some real number, the function d 7→ βd is multiplicative, and there exists constants 0 < β < β < 1

such that β < βp < β for all p ∈P.

Under these assumptions, for any positive real numbers z and ε, we have
∣

∣

∣

∣

A−
⋃

p∈P

Ap

∣

∣

∣

∣

≪β,β,ε

cLi(X)

πP(z)
+

(

z1+ε

πP(z)

)2
∑

d1,d2≤z
d1,d2∈R

R[d1,d2]

d1d2

where πP(z) = |{p ∈P | p ≤ z}|.

Proof. This follows from a minor refinement to the proof of [9, Theorem 7.2.1], and we borrow their notations,
with the obvious modification that their X is cLi(X) in our case. It is easy to compute that f(d) = β−1

d ,

f1(d) =
∏

p|d
1−βp

βp
, and

V (z) =
∑

d≤z
d|P (z)

µ2(d)

f1(d)
≥

∑

p≤z
p∈P

1

f1(p)
=

∑

p≤z
p∈P

βp

1− βp
≥

β

1− β
πP(z).

The first term in the upper bound is the main term of the conclusion in loc. cit.. For second term, we start
from the third displayed equation on page 122 and improve on the estimate |λd| ≤ 1. From the second to last
displayed equation on page 122, we have

(4.3) |V (z)λd| ≤
∏

p|d

1

1− βp
·
∑

t≤ z
d

t∈R

µ2(t)

f1(t)

Fix an ε > 0, then for all t ∈ R,

1

f1(t)
=

∏

p|t

βp

1− βp
≤

(

β

1− β

)ω(t)

≪β,ε t
ε

The same argument can be applied to the first term of equation (4.3). Therefore,

|V (z)λd| ≪β,ε d
ε
∑

t≤ z
d

t∈R

tε ≤ d−1z1+ε

Combined with the above lower bounds for V (z), we get

|λd| ≪β,β,ε d
−1 z1+ε

πP(z)

This concludes the proof. �
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In our applications, we will take P = P(d), A = Ed(B
(i)
d ), and Ap = Edp(B

(i)
d × C

(i)
p ). Let R(d) be the subset

of R which are coprime to d, then for all d ∈ R(d), we have

Ad =
⋂

p|d

Edp(B
(i)
d × C

(i)
p ) = Edd(B

(i)
d × C

(i)
d )

The sizes of Ad will be estimated using versions of the effective Chebotarev theorem, which we now recall.

4.3.2. Background on effective Chebotarev. For any number field k, let nk = [k : Q] and ∆k be its absolute
discriminant. Given a finite extension l/k, let D(l/k) denote the set of rational primes that lie below the
ramified finite places of l/k. Define

M(l/k) = |G|∆
1

nk

k

∏

p∈D(l/k)

p.

Suppose that l/k is Galois with Galois group G. Let C ⊆ G be a union of conjugacy classes. For any positive
real number X , define

π(X,C, l/k) := |{p | p is unramified in l, Frobp ∈ C, Nk/Qp ≤ X}|.

We are interested in the error term

R(X,C, l/k) := π(X,C, l/k)−
|C|

|G|
Li(X).

The following result is equation (20R) in [28, §2.4], which is an improvement to Lagarias–Odlyzko’s original
result [18].

Theorem 4.7. Assume the GRH holds for the Artin L-functions of irreducible representations of l/k, then

|R(X,C, l/k)| ≪ |C|nkX
1
2

(

logX + logM(l/k)
)

.

Assuming the AHC, Murty–Murty–Saradha obtained the following improvement [23, Corollary 3.10].

Theorem 4.8. Let H be a subgroup of G such that the GRH and AHC hold for the Artin L-functions of the
irreducible characters of H. Suppose H meets every conjugacy class contained in C, then

R(X,C, l/k)≪ |C|
1
2 [G : H ]

1
2nkX

1
2

(

logX + logM(l/k)
)

.

If |C| is of roughly the same size as |G|, then this estimate saves a factor of |H |
1
2 compared to Theorem 4.7.

We therefore want to take |H | as large as possible.

Remark 4.9. This theorem is a corollary of a precise result [23, Proposition 3.9]. While it suffices for our
purpose, we expect that a finer analysis of centralizers in finite reductive groups can give a better exponent.

4.3.3. Applications. We now apply the above results to the various terms appearing in Theorem 4.6. Fix i ∈ I.
For each d ∈ R, define

α
(i)
d =

|B
(i)
d |

|Hd|
, β

(i)
d =

|C
(i)
d |

|Hd|
.

Then we have the relations

α
(i)
d =

∏

p|d

α(i)
p , β

(i)
d =

∏

p|d

β(i)
p , α(i)

p + β(i)
p = 1

for all p ∈ P and d ∈ R. If d1, d2 are coprime numbers in R, then in the above notations,

(4.4)
∣

∣Ed1d2(B
(i)
d1
× C

(i)
d2

)
∣

∣ =
1

[G′
d1d2

: Hd1d2 ]
α
(i)
d1
β
(i)
d2
Li(X) +R(X,B

(i)
d1
× C

(i)
d2

,Kd1d2/K).

Using Theorem 4.7 alone, this error term is of the order |Gd1d2 |X
1
2+ε.

In this subsection, we show that the error term for
∣

∣Ed(B
(i)
d )

∣

∣ can be improved using Theorem 4.8. This yields
the required estimate for (4.4) using the principle of inclusion-exclusion. The main result is Proposition 4.13.
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For each prime p, fix a Borel subgroup Bp ⊆Gss
p , and let

Bp = Bp(Fp).

Define Bd =
∏

p|d Bp and B′
d = Bd ∩ G′

d. This is a subgroup of G′
d. The next two lemmas verify that it

satisfies the conditions in Theorem 4.8.

Lemma 4.10. All conjugacy classes in B
(i)
d intersect B′

d.

Proof. By the Borel conjugacy theorem [3, Théorème 4.13(b)], this result holds in Gd. To conclude, we will
show that the conjugating element can be chosen to lie in Id. It is enough to do this for d = p, a prime.

Suppose b ∈ B
′
p and gbg−1 ∈ B′

p, where g ∈ Gp. Let Tp ⊆ Bp be a maximal torus. Then the commutative
diagram appearing §3.3 shows that Tp(Fp) intersects all cosets of Ip. Choose t ∈ Tp(Fp) so that t and g are
in the same coset, then t−1g is an element of Ip conjugating b to B′

p. �

Lemma 4.11. All irreducible representations of B′
d are induced from abelian characters. Consequently, the

AHC holds for Kd/K
B′

d

d , and the GRH holds provided it holds for all Hecke L-functions.

Proof. We will show that if p ∈ P , then Bp is supersolvable. The group B′
d is a subquotient of their product,

so it is also supersolvable. The first claim of the lemma is an elementary group theory fact [26, Theorem
12.8.5]. The second part of the lemma is a standard consequence of class field theory.

Let p ∈ P . We first observe that Gss
p is actually split over Fp. Indeed, by a result of Serre (cf. [5, Corollary

3.8]), the element ρp(Frobv) ∈ Gp(Qp) generates a maximal torus for a density one set of places v. On the
other hand, p splits completely in M , so this element lies in a split torus. Therefore, we have constructed a
split maximal torus of Gp over Qp, which also implies Gss

p is split.

Fix a faithful representation Gss
p →֒ GLN defined over Fp, we see that Bp is isomorphic to a subgroup of RN ,

the group of upper triangular matrices in GLN (Fp). Write the derived series of RN as

RN ⊲ SN ⊲ SN−1 ⊲ · · · ⊲ S0 = {1}.

Then a standard calculation shows that

Sk = {g ∈ RN | gii = 1, gij = 0 if 0 < j − i ≤ N − k}.

For v = 1, · · · , k − 1, let

Sk,v = {g ∈ Sk | gi,i+N−k = 0 if i ≤ v}.

Then we have a normal series Sk⊲Sk,1⊲· · ·⊲Sk,k−1 = Sk−1 where each quotient is isomorphic to Fp. Conjugation
by a diagonal matrix preserves Sk,v, so all of the groups are normal in RN . This normal series shows that RN

is a supersolvable group, which completes the proof. �

Proposition 4.12. For each prime p, let

(4.5) Np =
∣

∣Gss
p (Fp)

∣

∣ · |Bp(Fp)|
− 1

2 .

Assume the GRH for Hecke L-functions. Then for all d ∈ R, we have
∣

∣Ed(B
(i)
d )

∣

∣ =
1

[G′
d : Hd]

α
(i)
d Li(X) +OA,K

(

∏

p|d

Np ·X
1
2 (logX + log d)

)

.

Proof. Applying Theorem 4.8 to the extension l/k = Kd/K with the subgroup H = B′
d gives the error term

∣

∣

∣
R(X,B

(i)
d ,Kd/K)

∣

∣

∣
≪ (|B

(i)
d | · [G

′
d : B′

d])
1
2nKX

1
2

(

logX + logM(Kd/K)
)

≤ (|Gd| · [Gd : Bd])
1
2nKX

1
2

(

logX + logM(Kd/K)
)

=
∏

p|d

Np · nKX
1
2

(

logX + logM(Kd/K)
)

.
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For the terms beside Np, recall that Kd/K is unramified away from the places of K dividing d∆A, so

logM(Kd/K) = log |G′
d|+

log(∆K)

nK
+
∑

p|d

log p+
∑

p|∆A

log p

≤
∑

p|d

log
∣

∣Gss
p (Fp)

∣

∣+ log d+OA,K(1)

≪A,K log d

where for the final estimate, we used the trivial bound
∣

∣Gss
p (Fp)

∣

∣ ≤
∣

∣GSp2g(Fp)
∣

∣. �

We now apply this to calculate the intersection terms in the Selberg sieve.

Proposition 4.13. Assume the GRH for Hecke L-functions. If d ∈ R is coprime to d, then
∣

∣

∣

∣

⋂

p|d

Edp(B
(i)
d × C

(i)
p )

∣

∣

∣

∣

=
1

|I|
α
(i)
d β

(i)
d Li(X) +OA,K

(

2ω(d)
∏

p|dd

Np ·X
1
2

(

logX + log(dd)
)

)

.

Proof. We have the equality
⋂

p|d

Edp(B
(i)
d × C

(i)
p ) = Ed(B

(i)
d )−

⋃

p|d

Edp(B
(i)
dp ).

To see this, observe that B
(i)
p ⊔ C

(i)
p is the coset of gi,pHp, and the condition defining the set Ed(B

(i)
d ) already

forces the Frobenius element to be in this coset (cf. Remark 4.4).

The principle of inclusion-exclusion now gives
∣

∣

∣

∣

⋂

p|d

Edp(B
(i)
d × C

(i)
p )

∣

∣

∣

∣

=
∑

d′|d

µ(d′)
∣

∣Edd′(B
(i)
dd′)

∣

∣.

Apply the previous proposition to the right hand side. There are 2ω(d) terms in the above sum, so the error
term has the required form by the triangle inequality. In the main term, the coefficient in front of Li(X) is
given by

∑

d′|d

µ(d′) ·
1

|I|
α
(i)
dd′ =

1

|I|
α
(i)
d

∏

p|d

(1− α(i)
p ) =

1

|I|
α
(i)
d β

(i)
d

where we used the observation that [G′
d : Hd] = [G′

∞ : H∞] = |I| for d|d. �

4.3.4. Point counting. We will now estimate Np, defined in (4.5).

Proposition 4.14. Let G be the Mumford–Tate group of A/K and Gss its semisimple quotient. Put

γ =
1

4
(3 dimGss − rankGss).

There exists a constant C depending only on g such that

Np ≤ Cpγ

for all primes p.

The key feature of this proposition is that neither C nor γ depend on the prime p, even though the mon-
odromy groups Gp are not assumed to interpolate into a group over Q. The proposition follows by combining
Lemma 4.15 and Corollary 4.17 below.

Lemma 4.15. There exists a constant C depending only on g such that for all prime p,

Np ≤ CpdimG
ss
p − 1

2 dimBp .
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Proof. In view of Lemma 3.5 we may replace Gss
p with Gsc

p in the definition of Np. The base change (G
sc
p )/Fp

is a simply connected semisimple group, so it is a product of simply connected split simple groups. These
are classified by Dynkin diagrams. Since the rank is bounded (say by 2g), there are only a finite number of
possibilities. Moreover, each of them is obtained from a Chevalley group over Z by base change.

Now, Gsc
p (Fp) is the set of fixed points of the Frobenius operator F acting on Gsc

p (Fp). The Grothendieck–
Lefschetz trace formula gives

∣

∣Gsc
p (Fp)

∣

∣ =

2 dimG
sc
p

∑

i=0

(−1)iTr
(

F,Hi
c

(

(Gsc
p )/Fp

,Qℓ

))

The top degree term is pdimG
sc
p since Gsc

p is geometrically connected. Deligne’s Weil bound gives an upper
bound for the Frobenius eigenvalues on each of the remaining terms. In particular, it implies

∣

∣

∣
p− dimG

sc
p

∣

∣Gsc
p (Fp)

∣

∣− 1
∣

∣

∣
≤ bp−

1
2

where b is the sum of the dimensions of all lower degree cohomology groups. The argument in the previous
paragraph gives a finite list of possibilities for b independently of p. Therefore, we get positive constants
c1(g), c2(g) depending only on g such that

c1p
dimG

sc
p ≤

∣

∣Gsc
p (Fp)

∣

∣ ≤ c2p
dimG

sc
p

for all primes p.

By applying the exact same argument to the term |Bp(Fp)|, the assertion follows. �

Let G be the Mumford–Tate group of A. For our purpose, it suffices to know that this is a reductive group
over Q which “contains” all p-adic monodromy groups, made precise by the following theorem of Deligne [10].

Theorem 4.16. For all primes p, we have8 Gp/Qp
⊆ G×Q Qp.

Corollary 4.17. Let Gss denote the semisimple quotient of G, then for all primes p,

dimGss
p −

1

2
dimBp ≤

1

4
(3 dimGss − rankGss)

Proof. Fix a prime p. For simplicity, we base change the pertinent groups to Qp. This does not change its
dimension or rank.

Recall that Bp is a Borel subgroup of Gss
p . Let Np be its unipotent radical. We have the relations

dimGss
p = 2dimBp − rankGss

p = dimBp + dimNp

Rearranging this, we get

dimGss
p −

1

2
dimBp =

1

4
(3 dimGss

p − rankGss
p ) =

1

2
dimGss

p +
1

2
dimNp

It remains to show that dimGss
p ≤ dimGss and dimNp ≤ dimN.

The previous theorem gives an embedding Gp ⊆ G of reductive groups, and hence the inclusion of the derived
subgroups Gder

p ⊆Gder. Moreover, the derived subgroup is isogenous to the semisimple quotient, so they have
the same dimension and rank. The first inequality follows. For the second part, the image of Np is again a
unipotent subgroup, so it lies in a conjugate of N. �

8Recall that we are assuming all monodromy groups are connected.
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4.3.5. Conclusion of the proof. We now assemble the pieces to conclude the proof.

Lemma 4.18. If v is a finite place of K not dividing ∆A, then

log |∆F (A,v)| ≪g logNK/Qv.

Proof. Let P (T ) ∈ Z[T ] be the characteristic polynomial of ρp(Frobv). Let α1, · · · , α2g be the roots of P (T ),
then F (A, v) is the compostium of the fields Q(αi). Therefore,

log |∆F (A,v)|

[F (A, v) : Q]
≤

2g
∑

i=1

log |∆Q(αi)|

[Q(αi) : Q]
.

Let q = NK/Qv, then all the roots of P (T ) have complex absolute value q
1
2 , so

log
∣

∣∆Q(α)

∣

∣ ≤ log |discP (T )| =
∑

i6=j

log |αi − αj | ≤ ((2g)2 − 2g) log
(

2q
1
2

)

.

Combining the above two inequalities gives the claim. �

Theorem 4.19. Assume the GRH. For any ε > 0, we have

|SA,M (X)| ≪A,K,ε X
1− 1

4γ+2+ε,

where γ = 1
4 (3 dimGss − rankGss) from Proposition 4.14.

Proof. Fix ε > 0, then Proposition 4.5 gives an equality

|SA,M (X)| =
∑

i∈I

∣

∣

∣

∣

Ed(B
(i)
d )−

⋃

p∈P(d)

Edp(B
(i)
d × C

(i)
p )

∣

∣

∣

∣

.

Fix an index i ∈ I. We will apply Theorem 4.6 to the corresponding term in the above sum. Take A =

E∞(giH∞), sieving primes P(d), and excluded subsets Ap = Edp(B
(i)
d × C

(i)
p ). By combing Proposition 4.13

and Proposition 4.14, we get the estimate

|Ad| =

∣

∣

∣

∣

⋂

p|d

Edp(B
(i)
d × C

(i)
p )

∣

∣

∣

∣

=
1

|I|
α
(i)
d β

(i)
d Li(X) +OA,K

(

(2C)ω(d)dγX
1
2 (logX + log d)

)

=
1

|I|
α
(i)
d β

(i)
d Li(X) +OA,K,ε

(

dγ+εX
1
2 (logX + log d)

)

.

By definition, the function d 7→ β
(i)
d is multiplicative. Let p ∈ P(d), then

β(i)
p =

|Cp ∩ gi,pHp|

|Hp|
= 1−

|Bp ∩ gi,pHp|

|Hp|
.

Recall that Hp contains Ip, so each gi,pHp is a union of cosets of Ip. Over each such coset, Proposition 3.6

gives uniform upper and lower bounds for its intersection with Bp. It follows that β
(i)
p is uniformly bounded

away from 0 and 1, and the bounds only depend on the dimension g.

Having verified all of the hypotheses, Theorem 4.6 gives the estimate

∣

∣

∣

∣

Ed(B
(i)
d )−

⋃

p∈P(d)

Edp(B
(i)
d × C

(i)
p )

∣

∣

∣

∣

≪A,K,ε
1

|I|
α
(i)
d ·

Li(X)

πP(d)(z)
+

(

z1+ε

πP(d)(z)

)2

X
1
2

∑

d1,d2≤z

d1,d2∈R(d)

[d1, d2]
γ+ε

d1d2
(logX + log[d1, d2]).



18 ASHAY A. BURUNGALE, HARUZO HIDA, AND SHILIN LAI

In the sum for the second term, use the trivial bound [d1, d2] ≤ d1d2 and extend the sum to all pairs d1, d2 ≤ z.
In particular, log[d1, d2] ≤ log(z2). Therefore,

∑

d1,d2≤z

d1,d2∈R(d)

[d1, d2]
γ+ε

d1d2
(logX + log[d1, d2]) ≤

∑

d1,d2≤z

(d1d2)
γ−1+ε(logX + 2 log z)

= (logX + 2 log z)
(

∑

d≤z

dγ−1+ε
)2

≪γ z2γ+2ε(logX + log z).

which gives

(4.6)

∣

∣

∣

∣

Ed(B
(i)
d )−

⋃

p∈P(d)

Edp(B
(i)
d × C

(i)
p )

∣

∣

∣

∣

≪A,K,ε
X

πP(d)(z)
+

(

z1+ε

πP(d)(z)

)2

X
1
2 z2γ+2ε log(Xz).

It remains to bound πP(d)(z) from below. By definition,

πP(d)(z) = π(z, {1},M/Q)− OA,K(1)

By the effective Chebotarev theorem (Theorem 4.7, also cf. [28, Equation (14R)]), we have

π(z, {1},M/Q) =
1

[M : Q]
Li(z) +Og

(

z
1
2 (log z + log |∆M |)

)

.

We may assume log |∆M | ≪g logX , since otherwise SA,M (X) = ∅ by Lemma 4.18. Now choose z = Xβ,
where β = 1

4γ+2 , then

πP(d)(z) =
1

[M : Q]
Li(Xβ) +Og,β(X

β
2 logX)−OA,K(1)≫A,K,ε X

β−ε.

Substituting this in equation 4.6 and summing over all i ∈ I gives the desired result. �

Remark 4.20. We only needed the error term in the effective Chebotarev theorem on average. The situation
is analogous to the Bombieri–Vinogradov theorem, except that it deals with the family of abelian extensions
{Q(ζq)/Q}, and we have a family of non-abelian Lie-extensions {Kd/K}. There are some works when the
Galois group is fixed (cf. [24]), but we are not aware of any work in our setting.
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