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Abstract. This paper sets up a framework to organize anticyclotomic Iwasawa theory in the context of
the Gan–Gross–Prasad conjecture for unitary groups. We propose multiple main conjectures depending on

archimedean weight interlacing conditions, generalizing phenomena in the anticyclotomic Iwasawa theory of

elliptic curves. We also prove an abstract theorem in Galois cohomology which relates the conjectures.
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1. Introduction

In studying the arithmetic of elliptic curves, Heegner points play many important role. In the ordinary
case, the Heegner points fit into a p-adic family over the anticyclotomic Zp-extension of K. This family has
been used to deduce two kinds of results:

– rank 1: If the Heegner point is non-torsion, then the seminal work of Kolyvagin [Kol88] proves
that the Selmer group has rank 1 using an Euler system argument. This is extended to prove one
divisibility of Perrin-Riou’s Heegner point main conjecture [PR87] by Howard [How04a], leading to
results on the Birch–Swinnerton-Dyer formula in rank 1.

– rank 0: By p-adically deforming the family and using a special value formula proven by Bertolini–
Darmon–Prasanna [BDP13], Castella–Hsieh proved the vanishing of a Selmer group in the region
where the specialization is non-geometric [CH18]. They also proved one divisibility of the corre-
sponding Greenberg–Iwasawa main conjecture.

In other words, a special point controls two different flavours of Iwasawa theory. From an automorphic point
of view, the setting is conjugate self-dual, and the two different regions arise because of a change in the
global root number from −1 to +1. Their interplay continues to play an important role in the arithmetic of
elliptic curves, for example in the works of Skinner and Jetchev–Skinner–Wan towards rank 1 cases of the
BSD conjecture [Ski20, JSW17].

The goal of this article is to propose a framework which generalizes this phenomenon to a higher dimen-
sional setting, motivated by automorphic considerations arising from the Gan–Gross–Prasad conjecture and
its arithmetic counterpart [GGP12].

1.1. Main results. Let K/F be a CM extension, and let Π be an regular algebraic, conjugate self-dual,
cuspidal (RACSDC) automorphic representation on GLn−1(AK)×GLn(AK). Let p be a prime which splits
completely in K. Suppose Π is ordinary at p. We are interested in the Iwasawa theory as Π varies in the
full Hida family of 2n − 1 variables. Let T be the associated p-adic family of Galois representations. It
is a projective module over the ordinary Hecke algebra I attached to the Hida family. Its properties are
axiomatized in §5.2.

At each archimedean place of F , the weight of Π there can be labelled by two tuples of half-integers

(a1 > · · · > an) ∈
(
Z+

n− 1

2

)n
, (b1 > · · · > bn−1) ∈

(
Z+

n

2

)n−1

1
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The relative position of these weights plays an important role. We describe them using a weight interlacing
string □ (Definition 5.1). Each □ gives rise to a Selmer condition at primes above p. When n = 2 and
F = Q, the three possible interlacing conditions are

AAB : a1 > a2 > b1, ABA : a1 > b1 > a2, BAA : b1 > a1 > a2

In the middle case ABA, one example for Π is just an elliptic curve which is ordinary at p, and the Selmer
condition is the ordinary one [Ski18, §3.2.1]. If we twist the elliptic curve by an infinite order anticyclotomic
Hecke character, then we are in one of the other two cases. The corresponding Selmer condition is strict at
one place above p, and relaxed at the other place, leading to the BDP-Selmer group defined in [Ski18, §3.2.3].

Now consider the p-adic family T . For each string □, its Selmer condition interpolates to give one for
T , and we can define a Greenberg-style Selmer group (more precisely the cohomology group of a Selmer
complex, cf. §5.3)

H2
□(K,T ).

When specialized to a classical point x whose weight interlacing string is actually □, this recovers the Bloch–
Kato Selmer group. However, in a Hida family, the weight interlacing relation is not fixed, so we should
consider all such Selmer groups, one for each choice of □. As □ varies, the only change in the Selmer
condition is at the primes above p.

Each □ should lead to its own Iwasawa main conjecture, but the nature of the conjecture differs depending
on □. In fact, we expect that the rank of H2

□(K,T ) could be either 0 or 1 depending on □. To explain this,
note that the global root number of a specialization depends only on its weight interlacing string (Lemma 5.4).
As a result, for “half” of the strings □, the global root number is −1, and the Bloch–Kato conjecture predicts
that the Selmer groups for those specializations have rank at least 1. In this case, H2

□(K,T ) is expected
to have rank 1 over I. This is in contrast to non-self-dual settings such as cyclotomic deformation [Gre94],
where the rank is expected to be 0.

To formalize the above discussions, we propose the following framework.

Conjecture 1.1 (Conjecture 5.5). Suppose p splits completely in K and Π is ordinary at p. Given a p-

adic family of Galois representations T as above, there are
(
2n−1
n

)[F :Q]
main conjectures indexed by weight

interlacing strings □. They are divided into two types depending only on a sign attached to □:

– Coherent case The Selmer group H2
□(K,T ) is torsion over I, and

charI H
2
□(K,T ) = (L□

p )
2,

where L□
p is a p-adic L-function whose square interpolates central critical values of classical points

when their archimedean weights lie in the region defined by □.
– Incoherent case The Selmer group H2

□(K,T ) has rank 1 over I, and there is a special class

z□ ∈ H1
□(K,T )

such that

charI H
2
□(K,T )tors = charI

(
H1

□(K,T )

I · z□

)2

Remark 1.2. In the related orthogonal GGP setting SO4×SO5, analogous conjectures have been formulated
by Loeffler–Zerbes [LZ21].

The special class should play an important role for both the incoherent and coherent main conjecture. We
explain this as a wall crossing phenomenon. In the n = 2 case, if we change the weight interlacing relation
from (a1 > a2 > b1) to (a1 > b1 > a2), then the local root number at the archimedean place changes, so we
transition between a coherent and an incoherent region. This is an example of a pair of nearby interlacing
relations. In general, there is a relation between the main conjectures for nearby words.

Theorem 1.3 (Theorem 3.9). Assume I is Gorenstein. Suppose □ and △ are nearby (Definition 5.6), and
△ is incoherent, then there is a regulator map

reg : H̃1
△(K,T )→ I
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If reg(z△) ̸= 0 for some z△ ∈ H̃1
△(K,T ), then the incoherent main conjecture for △ and special cycle z△

is equivalent to the coherent main conjecture for □, with the p-adic L-function L□
p replaced by the motivic

p-adic L-function defined by L□
mot := reg(z△).

The main input to this theorem is the construction of the regulator map, which comes down to the one-
dimensional Coleman map. The proof of the equivalence then involves a series of applications of global
duality theorems, which we organize using Selmer complexes.

1.2. Related and future works. We know describe some cases of the conjecture which have been studied
in the literature. Along the way, we indicate a few questions for future investigations.

1.2.1. Diagonal condition. We first consider the “diagonal” interlacing condition

diag : a1 > b1 > a2 > · · · > bn−1 > an.

For a single representation Π with this interlacing condition, the paper [LTX+22] made significant progresses
towards rank 0 and 1 cases of the Bloch–Kato conjecture. For the partial family of Π twisted by Hecke
characters, the p-adic L-function Ldiagp in the coherent case and the special class zdiag in the incoherent case
were both constructed by Yifeng Liu [Liu23]. Under some technical hypotheses, the divisibility (LHS)|(RHS)
of both the coherent and the incoherent main conjecture was recently established by Liu–Tian–Xiao [LTX24].

The theory of split anticyclotomic Euler systems by Jetchev–Nekovář–Skinner [JNS24] offers an alternative
approach to establishing cases of the incoherent main conjecture. The necessary Euler system input was
recently constructed by the author and Skinner [LS24], giving a different proof the incoherent divisibility of
Liu–Tian–Xiao. It is likely one make this approach work over the full Hida family using the method described
in [LRZ24]. We plan to investigate this in a future work.

When n = 3 and F = Q, the full 5-variable p-adic L-function Ldiagp has been constructed by Hsieh–Yamana
[HY23]. It would be interesting to study if the method of [LTX24] can be extended to prove one divisibility
of the 5-variable coherent main conjecture.

1.2.2. Other conditions. Starting with diag, there are 2(n− 1) nearby words, one example being

□ : b1 > a1 > a2 > b2 > · · · > bn−1 > an,

which we obtained from diag by switching the order of a1 and b1. In the case where diag is incoherent, all
such nearby words are coherent. Once the full Hida family deformation zdiag is constructed, our theorem
relates the incoherent main conjecture for diag to coherent main conjectures for all 2(n− 1) nearby words.

To exploit this relation, we need to relate the regulator of zdiag to a p-adic L-function obtained by
interpolation, or in other words, prove an “explicit reciprocity law”. In the case of □ given above, a 1-
variable p-adic L-function has been constructed by Harris [Har21]. As explained in Example 5.11, this is
exactly the variable needed to deform the word □ into diag. The explicit reciprocity law in this case should
be within reach of current methods.

On the other hand, when the word diag is coherent, its p-adic L-function should be related to special
classes for nearby words such as □. However, currently there is no construction of these special classes
except for n = 2, which is a recent work of Castella–Do [CD23]. One way to replicate their construction in
our setting is to allow non-cuspidal Π. In the product Π = Πn−1 × Πn, we can take Πn to be an isobaric
sum of the form Πn−2 ⊞ χ1 ⊞ χ2 for two auxiliary characters χ1, χ2. Then the Galois representation for Π
decomposes as a direct sum, where one piece is associated to the lower rank case Πn−2×Πn−1. It is a subtle
and interesting question to understand this process in family.

Finally, some computations in §5.4 raises a possibility that there may be further connections between the
regions of interpolation. This already appears in the n = 3 case, and we hope this can be clarified in the
near future.

1.3. Notations and conventions. Let F be a totally real field of degree g, and let K be a CM extension
of F . Let c be a fixed element in GalF which is non-trivial in Gal(K/F). Fix a CM type Σ+

∞ for K. We will
typically use it to index the archimedean places of F , so for each archimedean place, we have a distinguished
embedding K ↪→ C.

Let p > 2 be a rational prime such that

(spl) p splits completely in K
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Fix an isomorphism ι : C ≃ Cp. Let Σ+
p = {ι ◦ σ |σ ∈ Σ+

∞}. This is a p-adic CM type, and we may identify

Σ+
p with a set of p-adic places of K. Moreover, Σ+

p ∩ Σ+
p c = ∅, so for each p-adic place v of F , the CM type

distinguishes one of the two places above v.
Let A denote the ring of adeles of F and AK denote the ring of adeles of K. We will systematically use

the following convention: a superscript consisting of places indicates omitting those places, and a subscript
consisting of places indicates only considering those places. For example, AK,f is the ring of finite adeles of
K, and Apf = Ap∞ is the ring of finite adeles of F omitting the places above p.

Class field theory is always normalized geometrically. We will implicitly use it to pass between characters of
the Galois group and algebraic Hecke characters. Hodge–Tate weights are normalized so that the cyclotomic
character has weight −1.

Acknowledgement. This article is a part of the author’s PhD thesis, and I would like to thank my advisor
Christopher Skinner for suggesting this problem and advising me throughout the process. I would also like to
thank Ashay Burungale, Francesc Castella, Zheng Liu, and Wei Zhang for their interests, helpful discussions,
and constant encouragement.

2. p-adic family of Galois representations

In this section, we set up some notations and definitions for Iwasawa theory. In particular, we construct a
Coleman map in our setting. Fix E, a finite extension of Qp. Let O be its ring of integers. They will serve
as coefficients for the representations we consider.

2.1. Weight space. Let T = ResF/Q Gr
m. Let Λ = O[[T(Zp)]] be its completed group ring. This is a

semi-local regular Noetherian ring. Let T0 be the pro-p part of the abelian group T(Zp), then we have a
factorization

T(Zp) = T0 ×∆

for some finite abelian group ∆. Correspondingly, we can write Λ = Λ[∆], where Λ is the completed group
ring of T0. Given a character ψ : ∆ → O×, we can pair with it to get a surjection prψ : Λ → Λ. This

presents Λ as a Λ-algebra, and we will write Λψ if we want to emphasize this structure.
Let W be the rigid analytic space attached to Spf Λ, then it is a disjoint union of open unit discs labelled

by characters of ∆. Let Wψ denote the component corresponding to ψ. We will view Λ as the bounded
functions in the space of rigid functions O(W).

Given a cocharacter ϵ : ResF/Q Gm → T, we can define the tautological character

(1) χϵ : GalK ↠ Gal(Kac/K)→ ResFp/Qp
Z×
p → Λ×,

where the final step sends z to the group element [ϵ(z)]. We say a specialization x : Λ → Q̄p is classical
if x ◦ χϵ is Hodge–Tate for all ϵ. In this case, we define the ϵ-weight wϵ(x) ∈ Zg to be negative of the
Hodge–Tate weight of x ◦ χϵ at the places of K lying in the CM type Σ+

p . In particular, by taking ε to be
the r standard cocharacters, we get a tuple of weights

(wσ1 , · · · , wσr )σ∈Σ+
p
∈
∏
σ∈Σ+

p

Zr

attached to x. The subset of classical points of W will be denoted by Wcl.

2.2. p-adic family. Let I be a ring with a finite inclusion Λ→ I. Let E denote the rigid space attached to
Spf I, so we have a finite morphism E → W. We say a point of E is classical if its image in W is classical. In
the intended applications, E occurs as an irreducible component of the ordinary eigenvariety.

Definition 2.1. A p-adic family of Galois representations is a finitely generated I-module T with an action
of GalK such that

(1) The GalK-action is admissible in the sense of [Nek06, Section 3.2].
(2) As a Λ-module, T is projective.

The first condition is a version of continuity. In the cases we will consider, it holds for a finite rank
I-module if the action is continuous with respect to the topology induced from each of the maximal ideal of
Λ. The notion is also stable under Pontryagin duality and extensions, so we will usually not need to explicitly
check it in practice.
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If χ is a character valued in I×, then we write I(χ) to mean I with the Galois group acting through χ.
This is admissible if and only if χ is continuous. In that case it defines a p-adic family of characters. In
particular, for any α ∈ I×, we can form the unramified character

α : GalQp
→ I×

sending a geometric Frobenius to α. Moreover, using the inclusion Λ→ I, the universal characters χϵ defined
in equation (1) are also characters on I.

2.3. Commutative algebra. The notation (−)∨ will always mean taking the (underived) dual with respect
to a dualizing module over the implied base ring. This is usually applied with Zp or Λ, depending on the
context. Both of them are Gorenstein, so they are their own dualizing module.

Definition 2.2. A p-adic family T is conjugate self-dual if there exists a GalK-invariant bilinear pairing
T ⊗Λ T c → Λ(1) which induces an isomorphism T c ≃ HomΛ(T ,Λ)(1).

Now suppose T is conjugate self-dual. There are two types of duality pairing we want to consider for
T . For the ring R = Λ, the representations T and T c satisfy condition 5.2.3(B) of [Nek06], so we get a
good theory of duality for their Galois cohomology complexes viewed as Λ-modules. Let (−)∗ denote the
Pontryagin dual, then we have T ∗ ≃ T∨ ⊗Λ Λ∗ as Λ-modules. The pair T and T c ⊗Λ Λ∗ therefore satisfies
condition 5.2.3(A) of [Nek06].

Finally, we define notations surrounding the characteristic ideal. Let P be a height one prime ideal of a
complete local ring R (either Λ or I in applications). It is associated to a valuation vP on Λ which can be
computed as vP (x) = lengthRP

(RP /(x)). The characteristic ideal of a torsion R-module X is defined to be

charR(X) := {x ∈ Λ | vP (x) ≥ lengthRP
(XP ) for all P of height 1}

It is clear that the characteristic ideal is multiplicative in exact sequences. A torsion module is pseudo-null
if its characteristic ideal is the unit ideal. They form a Serre subcategory of the category of all R-modules.
We use the notation psModR to denote the quotient abelian category. Though we will not use it, we remark
that all torsion Λ-modules are isomorphic to a direct sum of the form

⊕
i Λ/(fi) in psModΛ.

2.4. Coleman map. We want to generalize the classical Coleman logarithm H1(Qp,Λ(1)) ≃ Λ to our setting.
Our result will follow from a slight modification of the constructions in [Och03]. We first recall some notations.
Let Qur

p denote the maximal unramified extension of Qp and Γur = Gal(Qur
p /Qp). There is a canonical

isomorphism Ẑ→ Γur sending 1 to the geometric Frobenius σ.
Let χcyc : GalQp → Z×

p be the cyclotomic character. Let ϵ : Gm → T be a standard cocharacter, so we

have a universal character χϵ : GalQp
→ Λ× defined by equation (1). Let α ∈ I×, which gives an unramified

character α. We are interested in the character

χ = αχϵ : GalQp
→ I×.

Theorem 2.3. Suppose that the specialization of α at the trivial character is not equal to 1. Then for any
finitely generated I-module M which is projective over Λ, there is an isomorphism of I-modules

Col : H1(Qp,M(χ))→ (M(α)⊗̂Zp
Ẑur
p )Γur

Moreover, the right hand side is non-canonically isomorphic to M .

Proof. We will work over each component of I separately, so fix a tame character ψ and suppress it from the
notation. The group Γur has p-cohomological dimension 1, so we have the following exact sequence

0→ H1(Γur,M(χ)
GalQur

p )→ H1(Qp,M(χ))→ H1(Qur
p ,M(χ))Γur → 0

By assumption, ϵ is non-trivial andM is p-torsion-free, so the GalQur
p
-invariant is trivial. Moreover, over Qur

p ,
we can factor out the unramified character α. Therefore,

H1(Qp,M(χ)) ≃
(
H1(Qur

p ,Λ(χϵ))⊗Λ M(α)
)Γur

Fix an isomorphism T ≃ Gr
m such that ϵ is the first component, then as a Galois module,

Λ(χϵ) = Λ1(χcyc)⊗̂Λr−1

where Λ1 ≃ Zp[[Zp]], and the Galois action on the second term is trivial.
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We now recall the Coleman map, in the form stated as [Och03, Proposition 5.10]. It gives a short exact
sequence

0→ Zp → H1(Qur
p ,Λ1(χcyc))

Log−−−→ Λ1⊗̂Zp Ẑur
p → 0

such that for any classical point η, the following diagram commutes

H1(Qur
p ,Λ1(χcyc)) Λ1⊗̂Zp

Zur
p

H1(Qur
p , Fη(η)) Dur

dR(Fη(η))

Log

spη spη

logη

We need to define logη. Write η = ϕχwcyc, where ϕ has finite order and w ≥ 1 is the weight of η. Let ps be
the conductor of ϕ, then

logη(z) :=

(
σ−1

pw−1

)s(
1− pw−1ϕ(p)

σ−1

)(
1− σ−1ϕ(p)

pw

)
(−1)w−1

(w − 1)!
logBK(z)

The σ here represents the geometric Frobenius acting on Qur
p , which explains the presence of inverses.

To complete the proof, it remains to observe that the kernel term only shows up if the tame character ψ
is trivial. In this case,

(Zp ⊗Λ M(α))Γur = 0

since M is projective over Λ, and the reduction of α is not trivial. It follows that we have an isomorphism

H1(Qp,M(χ)) ≃ (M(α)⊗̂Zp
Ẑur
p )Γur

Finally, the proof of [Och03, Lemma 3.3] gives an isomorphism of abelian groups between the right hand side
and M . It is clear from the construction that this preserves the I-module structure. □

3. Selmer groups and main conjectures

This is the main technical part of the paper. In a conjugate self-dual situation, we will propose two types
of abstract Iwasawa main conjectures. Using a formal computation in Galois cohomology, we will prove
their equivalence, assuming the existence of certain “special elements”. This will be applied in §5 to bridge
between the Iwasawa main conjectures stated there.

3.1. Ordinary family. In this section, fix a tame character ψ, and hence a component Λ of Λ. Let T be a
conjugate self-dual p-adic family of representations. Fix a p-adic place v of F . Let w be the place of K above
v which lies in Σ+

p . We impose the following condition.

(ordv)
There exists two GalKw

-stable Λ-projective submodules T ⌞ ⊆ T ⌝ ⊆ T such that T ⌝/T ⌞ has
rank one over I, and its Galois action given by a character of the form αχϵ for some non-trivial
cocharacter ϵ.

Using the isomorphism T c ≃ T∨(1), we can dualize the two submodules to obtain a sequence of GalKw̄
-stable

submodules T c,⌝ ⊆ T c,⌞ ⊆ T c, so for example, T c,⌝ is the transfer of the annihilator of T ⌝ in T∨. We view
them as GalKw̄

-stable submodules of T . The action of GalKw̄
on T c,⌞/T c,⌝ is given by α−1χ−ϵχcyc.

Remark 3.1. The notations used here is supposed to represent the following picture.

We think of T as the whole box, T ⌝ as the filled in subspace in the first diagram, and T ⌞ as the one for the
second diagram, removing a single I-rank-1 piece. The notations on the dual space are chosen so that the
Selmer conditions (⌞, ⌞) and (⌝, ⌝) we define later are self-dual.

The Coleman map gives the following result on the local cohomology of T ⌝/T ⌞.

Corollary 3.2. There is a non-canonical isomorphism RΓcont(Kw,T ⌝/T ⌞) ≃ (T ⌝/T ⌞)[1] in Db(psModΛ).
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Proof. Given Theorem 2.3, the claim follows from the statement that Hi(Kw,M) is pseudo-null if i = 0, 2,
where M is an I-module with GalKw

acting through a character of the type specified. The case of i = 0 holds
since ϵ ̸= 1 and T is Λ-projective. By the same reason, it holds for M∨(1). We prove the i = 2 part for M
and M∨(1) at the same time.

By local duality in the form of [Nek06, Theorem 5.2.6], we have an isomorphism RΓcont(Kw,M∨(1)) ≃
RHom(RΓcont(Kw,M),Λ)[2]. After applying the known values for degrees 0 and 1, the spectral sequence
computing the right hand side degenerates to

ExtiΛ(H
2(Kw,M),Λ) =

{
H2(Kw,M∨(1)) i = 2

0 otherwise

and similarly with the roles ofM andM∨(1) exchanged. When localized at a height one prime, the left hand
side vanishes for i ≥ 2 since Λ is regular. This proves the required conclusion. □

3.2. Selmer groups and complexes. In this section, we recall various general facts about Selmer groups
and Selmer complexes, in particular setting up notations for later use. Fix a finite set S of finite places of K
such that T is unramified away from S and ∞. Suppose also S contains all places above p.

Definition 3.3. Let F be a Selmer structure for T , namely a choice of a subspace Fv ⊆ H1(Kv,T ) for each
v ∈ S. The compact Selmer group is

H1
F (K,T ) := ker

(
H1(K,T )→

⊕
v

H1(Kv,T )/Fv

)
Let F ′

v be the image of Fv under the map H1(Kv,T )→ H1(Kv,T ⊗Λ Λ∗). The Greenberg Selmer group is

SelF (K,T ) := ker

(
H1(K,T ⊗Λ Λ∗)→

⊕
v

H1(Kv,T ⊗Λ Λ∗)/F ′
v

)
Its Pontryagin dual will be denoted by XF (K,T ).

Fix a choice of Selmer conditions at the places above p which are not w or w̄. At w, we will use ♠ ∈ {⌞, ⌝}
to denote the (strict) Greenberg-type Selmer condition

Fw♠ = ker(H1(Kw,T )→ H1(Kw,T /T♠))

The same symbols {⌝, ⌞} will also be used to denote the dual Selmer conditions at w̄. Unless otherwise stated,

the Selmer condition at a place away from p is the unramified subspace H1(Fv,T Iv ), viewed as a subspace of
H1(Kv,T ) by inflation. Therefore, we will use variations of the notation H1

♠,♣ to denote ♠-condition at w,
♣-condition at w̄, and the unramified condition everywhere else.

Definition 3.4. A local condition ∆v is a map of complexes U+
v → C•

cont(GalKv
,T ). Given a collection

∆ = (∆v)v∈S , the associated Selmer complex is

R̃Γ∆(K,T ) := Cone

(
C•

cont(GalK,S ,T )⊕
⊕
v∈S

U+
v

resv−∆v−−−−−−→
⊕
v∈S

C•
cont(GalKv

,T )

)
[−1]

Its cohomology groups will be denoted by H̃•
∆(K,T ).

Similarly as before, for ♠ ∈ {⌞, ⌝}, we can define the local condition

(2) ∆w
♠ : C•

cont(GalKw ,T
♠)→ C•

cont(GalKw ,T )

at w, and for ♣ ∈ {⌝, ⌞} at , we can define the condition ∆w̄
♣ at w̄. Away from p, we use the unramified local

condition C•
cont(GalKv

/Iv,T
Iv )→ C•

cont(GalKv
,T ).

By construction, the subspaces T ⌞ and T c,⌞ are mutual annihilators. It follows from [Nek06, Proposition
6.7.6] that ∆w

⌞ and ∆w̄
⌞ are orthogonal complements at the complex level. The same discussion holds with

all ⌞ replaced by ⌝.
One version of global duality can be stated cleanly in this language. We have a Pontryagin duality pairing

T ⊗Λ (T c ⊗Λ Λ∗)→ Λ∗(1). From [Nek06, §7.8.4.3], we get an isomorphism

(∗) R̃Γ♠,♣(K,T ) ≃ Homcont(R̃Γ♣,♠(K,T ⊗Λ Λ∗),Qp/Zp)[−3]
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However, we will also need a version of duality arising from the pairing T ⊗Λ T c → Λ(1). This runs into
subtleties at ramified places away from p, since the unramified local conditions are no longer in perfect pairing,
and we encounter error terms which contribute to Tamagawa numbers. More precisely, [Nek06, §7.8.4.4] gives
an exact triangle

(∨) R̃Γ♠,♣(K,T )→ RHomΛ(R̃Γ♣,♠(K,T ),Λ)[−3]→
⊕

v∈S−{w,w̄}

Errv → [1]

The error term above is the definition in [Nek06, Section 6.2.3] applied to the unramified local conditions.
The necessary properties for our purposes are stated in the following proposition.

Proposition 3.5. Let P be a height one prime ideal of Λ, then

lengthΛP
(Hi(Errv)P ) =

{
Tamv(T , P ) i = 1, 2

0 otherwise

where the Tamagawa number is defined by

Tamv(T , P ) = lengthΛP
(H1(Iv,T P )

Frobv=1
tors )

Proof. This follows from [Nek06, §7.6.10.7] since Λ is regular. The notation Errurv (D , T ) used there is exactly
our Errv. □

In particular, the error terms are 0 when localized at a minimal prime, so it does not enter into rank
calculations. In particular, the next proposition, usually credited to Greenberg or Wiles, follows easily from
global duality and the Euler–Poincaré characteristic formula. We include the proof for completeness.

Proposition 3.6. Let R be a Noetherian regular local domain. Let V be a projective R-module with an
admissible action of GalK, and let V ∨(1) = HomR(V,R(1)). Suppose V GalK = (V ∨(1))GalK = 0.

For each v ∈ S, choose a GalKv
-stable subspace Vv ⊆ V and define the local condition ∆v to be the

Greenberg condition corresponding to it. Let ∆∨ be the local condition for V ∨(1) which is the orthogonal
complement to ∆, then

rankR H̃1
∆(GalK,S , V )− rankR H̃1

∆∨(GalK,S , V
∨(1)) = − rankR V +

∑
v∈S

[Kv : Qv] rankR Vv

Proof. For each v ∈ S, we have U+
v = C•

cont(GalKv
, Vv). Let str denote the strict local condition where

U+
v = 0 for each v ∈ S, then R̃Γstr computes the compactly supported Galois cohomology in the sense of

[Nek06, Definition 5.3.1.1], and we have the following exact triangle

R̃Γstr → R̃Γ∆ →
⊕
v∈S

U+
v → [1]

If χ(−) denotes the Euler–Poincaré characteristics, then we get

χ(R̃Γ∆) = χ(R̃Γstr) +
∑
v∈S

χ(U+
v ) = rankR V −

∑
v∈S

[Kv : Qv] rankR Vv

where we have applied Theorems 5.3.6 and 5.2.11 of [Nek06] to each of the two terms. Moreover, equation

(∨) and the remark after it shows that rankR H̃i∆ = rankR H̃3−i
∆∨ . In particular,

rankR H̃1
∆ − rankR H̃1

∆∨ = rankR H̃1
∆ − rankR H̃2

∆

= −χ(R̃Γ∆) + rankR H̃0
∆

Finally, observe that H̃0
∆(GalK,S , V ) ⊆ V GalK = 0, so the two error terms are 0. □

In what follows, we will typically drop the (K,T ) from the notation when no confusion arises this way.
We now study some basic properties of Selmer groups and Selmer complexes. In our applications, we will
typically have the following mild hypothesis

(no-pole) TGalK = 0, and TGalK is pseudo-null

Both statements will usually hold because the Galois action is sufficiently non-trivial. Assuming this, it is

immediately seen that H̃0
♠,♣ = 0, and (∗) then implies H̃3

♠,♣ is pseudo-null. They are also related to torsions

in H̃1, as shown in the next proposition.
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Proposition 3.7. If (no-pole) holds, then the torsion subgroup of H̃1
♠,♣(K,T ) is pseudo-null.

Proof. In equation (∨), let A1 be the first cohomology of the middle term, then a spectral sequence argument

plus the fact that HomΛ(−,Λ) is always torsion-free shows that (A1)tors = Ext1Λ(H̃
3
♣,♠(K,T ),Λ). By the

discussion before this proposition, the first term inside Ext1Λ is pseudo-null, so it has codimension at least
2. Recall from homological algebra that ExtiΛ(M,Λ) = 0 if i < codim(M) [Nek06, Theorem 9.1.3(iii)].
Therefore, (A1)tors = 0. Finally, the long exact sequence attached to (∨) has the form

A0 → Err0 → H̃1
♠,♣(K,T )→ A1

By Proposition 3.5, Err0 is pseudo-null, and the desired result follows. □

For each v, let U−
v = Cone(−∆v), then by definition, we have an exact triangle

R̃Γ♠,♣ → RΓ(GalK,S ,T )→
⊕
v∈S

U−
v → [1]

If ∆v is the unramified local condition, then U−
v is concentrated in degrees [1, 2]. If ∆v is the Greenberg

local condition defined by T ?, then U−
v = C•

cont(GalKv
,T /T ?), so it is concentrated in degrees [0, 2]. Taking

cohomology gives the following exact sequences: for H̃0

0→ H̃0
♠,♣ → TGalK →

(
T /T♠)GalKw ⊕ (T /T♣)GalKw̄

and for H̃1 (
T /T♠)GalKw ⊕ (T /T♣)GalKw̄ → H̃1

♠,♣ → H1
♠,♣ → 0

To study H̃2, we use global duality in the form of equation (∗) to obtain the following exact sequence

0→ X♣,♠ → H̃2
♠,♣ → H2(Kw,T♠)⊕H2(Kw̄,T♣)

The error terms with local invariants and co-invariants are related to trivial zeroes, cf. the computation in
[Nek06, Section 0.10]. From an algebraic point of view, this is an error term which shows up in the control
theorem. We will often impose the following hypothesis to rule them out at the family level.

(no-triv-zero)
(
T /T♠)GalKw = 0, ♠ ∈ {⌞, ⌝}

Assuming it and (no-pole), we have H̃1
♠,♣ = H1

♠,♣, and X♣,♠ = H̃2
♠,♣ up to a pseudo-null quotient. In

the later applications in §5, the module T will come with a bi-filtration whose graded pieces are projective
Λ-modules with non-trivial Galois action, which implies (no-triv-zero).

3.3. Equivalence of main conjectures. In classical Iwasawa theory, we want to study the compact I-
modules X⌝,⌝ and X⌞,⌞ since they interpolate Bloch–Kato Selmer groups if T ⌞ and T ⌝ are chosen appropri-
ately. They are singled out in parts because their local conditions are self-dual. We might expect the central
values of the associated L-functions to not vanish generically in the family we are considering, in which case
a module like X would be torsion, and we have an Iwasawa main conjecture equating its characteristic ideal
to a p-adic L-function, cf. [Gre94].

In the case which inspired the current axiomatization, there is a further feature, namely the L-functions
are self-dual, and the sign of the function equation is constant in family. In the sign −1 case, the central
values vanish automatically, and we instead expect X to have rank 1. This is the case Perrin-Riou considered
in [PR87], leading to her Heegner point main conjecture.

In our setting, X⌞,⌞ and X⌝,⌝ will correspond to families with opposite signs. Our main result of this
section is that a good global class can be used to relate the Iwasawa main conjecture and the Perrin-Riou
main conjecture. To make this precise, we need to introduce the regulator map.

Definition 3.8. The regulator map is the following composite

reg : H̃1
⌝,⌝ → H1(Kw,T ⌝)→ H1(Kw,T ⌝/T ⌞)

Col−−→M

where M is abstractly isomorphic to T ⌝/T ⌞, so by (ord), it is a rank-1 I-module which is projective over Λ.

Theorem 3.9. Let T be an ordinary conjugate self-dual family of Galois representations. Suppose there

exists an element z ∈ H̃1
⌝,⌝ such that

(1) H̃1
⌝,⌝/I · z is a torsion I-module.
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(2) reg(z) is non-torsion.

then rankI H̃
2
⌝,⌝ = 1, rankI H̃

2
⌞,⌞ = 0. Moreover, if (no-pole) holds, then the following equivalence holds

charΛ H̃2
⌞,⌞ = charΛ(reg(z))

2 ⇐⇒ charΛ(H̃
2
⌝,⌝)tors = charΛ

(
H̃1

⌝,⌝

I · z

)2

In fact, the equalities can be replaced by either divisibility in the above equivalence.

In particular, if in addition (no-triv-zero) holds, then we can replace H̃1 by H1 and H̃2 by X in the above
statements to get an equivalence between two types of Iwasawa main conjectures.

Proof. For ♠ ∈ {⌞, ⌝}, the Selmer complex R̃Γ♠,♠ is self-dual, so we have rankI H̃
1
♠,♠ = rankI H̃

2
♠,♠. Our

hypothesis therefore implies rankI H̃
2
⌝,⌝ = 1. We have the exact triangle

R̃Γ⌞,⌝ → R̃Γ⌝,⌝ → Uw → [1]

where Uw := C•
cont(GalKw ,T

⌝/T ⌞). By Corollary 3.2, Uw ≃ M [1] in Db(psModΛ). The associated long
exact sequence contains the following piece

(T ⌝/T ⌞)GalKw → H̃1
⌞,⌝ → H̃1

⌝,⌝ → H1(Kw,T ⌝/T ⌞)

By the assumption on the Galois action, the first term is trivial, and the Coleman map gives an isomorphism

of the final term with a rank one I-module. Therefore, rankI H̃
1
⌝,⌝ ≤ rankI H̃

1
⌞,⌝ + 1. Moreover, assumption

(2) implies the final morphism is surjective when tensored with Frac(I), so equality holds and rankI H̃
1
⌞,⌝ = 0.

On the other hand, we can apply Proposition 3.6 to get

rankΛ H̃1
⌝,⌞ − rankΛ H̃1

⌞,⌝ = rankΛ T ⌝ + rankΛ T c,⌞ − rankΛ T

We can further convert all rankΛ to rankI since Λ → I is finite. By assumption, T ⌞ and T c,⌞ are mutual
annihilators, so rankI T

⌞ + rankI T
c,⌞ = rankI T . Again by ordinarity, rankI T

⌝ − rankI T
⌞ = 1. Therefore,

rankI H̃
1
⌝,⌞ − rankI H̃

1
⌞,⌝ = 1

It follows that rankI H̃
1
⌝,⌞ = 1. By applying the argument in the previous paragraph to the exact triangle

R̃Γ⌞,⌞ → R̃Γ⌝,⌞ → Uw → [1], it remains to show that H̃1
⌝,⌞ → H1(Kw,T ⌝/T ⌞) has non-torsion image. This

again follows from assumption (2) since the regulator map factors through H̃1
⌝,⌞.

We now verify the equivalence in the second part of the statement. First observe that by the rank

calculation above and Proposition 3.7, we must have H̃1
⌞,⌝ is pseudo-null. Let C = coker(reg). It is torsion

since M has I-rank 1 and Im(reg) contains a non-torsion element by part (2) of the hypothesis. The long

exact sequence attached to the exact triangle R̃Γ⌞,⌝ → R̃Γ⌝,⌝ → Uw → [1] gives

H̃1
⌞,⌝ → H̃1

⌝,⌝ →M → H̃2
⌞,⌝ → H̃2

⌝,ad → H2(Uw)

The two end terms are pseudo-null. In the middle, the map H̃1
⌝,⌝ → M is exactly the regulator map by

definition. Therefore, we can split it into the following two short exact sequences:

(pseudo-null)→ H̃1
⌝,⌝ →M → C → 0

0→ C → H̃2
⌞,⌝ → H̃2

⌝,⌝ → (pseudo-null)

In the first sequence, after quotienting out by I · z, we get the relation

charΛ(C) charΛ
H̃1

⌝,⌝

I · z
= charΛ(reg(z))

In the second sequence, since C is torsion, we can take the torsion subgroup without affecting the pseudo-null
cokernel, so

charΛ
(
H̃2

⌞,⌝

)
tors

= charΛ C charΛ
(
H̃2

⌝,⌝

)
tors

Again by Proposition 3.7, the module C is also the cokernel of localization from H̃1
⌝,⌞, so by the same argument

as before, we have a third exact sequence

0→ C → H̃2
⌞,⌞ → H̃2

⌝,⌞ → (pseudo-null)
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This gives another equality of characteristic ideals. Combining it with the previous two, we see that it remains

to show that charΛ
(
H̃2

⌞,⌝

)
tors

= charΛ H̃2
⌝,⌞.

This is now a consequence of global duality. We work one prime at a time. Let P be a height one prime

in Λ, and let R = ΛP . It is a discrete valuation ring, and we need to prove (H̃2
⌞,⌝)tors and H̃2

⌝,⌞ have the

same lengths after localizing at P . Since localization is exact, equation (∨) still holds with Λ replaced by R
everywhere. We apply it to get the following exact triangle

R̃Γ⌞,⌝ → RHomR(R̃Γ⌝,⌞, R)[3]→ Err→ [1]

Let A• denote the cohomology of the middle term. It can be computed by the spectral sequence

ExtiR(H̃
j
⌝,⌞, R)⇒ Ai−j+3

Since R is a DVR, the Ext-groups vanish for i ≥ 2, and Ext1(−, R) computes the torsion module. Moreover,

we have computed that rankR H̃j⌝,⌞ = 1 if j = 1 and is 0 otherwise. The assumption (no-pole) implies

H̃0
⌝,⌞ = 0, and by global duality (∗) also implies H̃3

⌝,⌞ = 0. Finally, Proposition 3.7 implies that H̃1
⌝,⌞ is

torsion-free, so it is abstractly isomorphic to R. The spectral sequence therefore degenerates on page 2 and
gives

Ai =

{
R⊕ H̃2

⌝,⌞ i = 2

0 i ̸= 2

Plugging this into the long exact sequence and splitting it gives the following two short exact sequences

0→ Err1 → H̃2
⌞,⌝ → N → 0

0→ N → R⊕ H̃2
⌝,⌞ → Err2 → 0

By Proposition 3.5, the two error terms are torsion and have the same length, so N ≃ R⊕ ((H̃2
⌞,⌝)tors/Err

1).

But from the second sequence, N ≃ R ⊕ ker(H̃2
⌝,⌞ → Err2). Taking the length of Ntors gives the desired

equality. □

Remark 3.10. (1) We can interchange ⌞ with ⌝ throughout the entire theorem. This requires localizing
at w̄ instead of w, and the proof goes through with this change.

(2) If we know that I is Gorenstein and T is projective over I, then we can do the above computations over
I instead of Λ. This has the effect of taking all characteristic ideals over I, which gives a refinement
of the current statements.

(3) We could replace the base ring Λ by any of its localizations without changing any argument, producing
results over the localization. This is useful when the constructed lattice T has defects. For example,
in §5.2, the pseudocharacter argument only shows conjugate self-duality over an affinoid subset of
the weight space.

(4) We do not expect an implication of the form rankΛ H̃2
⌞,⌞ = 0 =⇒ rankΛ H̃2

⌝,⌝ = 1 in this generality.

Running through the argument would give a local class in H̃1
⌝(Kw,T ), but it is difficult to show that

this comes from a global class.

3.4. Applications. In this subsection, we give two applications of the above formalism. The first will recover
one main theorem of [CH18] without the rank 0 Kolyvagin system argument. The second allows one to deduce
the rank 0 results in [CD23] using the Euler systems they constructed. This section also hints at the wall
crossing phenomena we will explain in general in the following section.

3.4.1. Set-up. We specialize to F = Q, though many of the results stated here extend (or should extend) to
more general totally real fields.

Let N be a square-free natural number. Let f ∈ Snew
k (Γ0(N)) be a modular form which is ordinary at p.

The modular form f has an attached p-adic Galois representation Tf : GalQ → GL2(O), where O is a finite
extension of Zp. We assume that Tf is residually irreducible. Let Dp be a decomposition group of GalQ at
p, then Tf has the following Dp-stable filtration

0→ T−
f → Tf → T+

f → 0
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where Dp acts on T−
f as αpχcyc and on T+

f as βp, for some units αp, βp ∈ O×, identified as the unramified

character sending Frobenius to that value. Both T−
f and T+

f are 1-dimensional, and there is a perfect pairing

on Tf exchanging T−
f and T+

f .
We are interested in the anticyclotomic Iwasawa theory of f . Fix an anticyclotomic character χ of our

imaginary quadratic field K. For simplicity, we assume the numbers N ,disc(K), cond(χ), p are pairwise
coprime. Let Kac be the anticyclotomic Zp-extension of K, Γac = Gal(Kac/K) ≃ Zp, Λac = O[[Γac]], and
Ψ : GalK → Λac be the canonical character. Our p-adic family of Galois representation will be

T = Tf ⊗O Λac(χΨ)

with GalK acting diagonally. This certainly satisfies (no-pole) by residual irreducibility. For the Selmer
condition defined by either T or T−

f ⊗O Λac(χΨ), the condition (no-triv-zero) is easily checked. Moreover,
the pairing on Tf induces a perfect pairing on T .

3.4.2. Heegner points. The theory in this setting was very clearly set up in [BCK21], and this was the model
on which we built our abstract framework. Suppose the generalized Heegner condition holds, namely the
number of primes ℓ|N which is inert in K is even. Let T ⌞ = 0 and T ⌝ = T−

f ⊗Zp Λac(χΨ). This satisfies

(ord) since χ is unramified at p. The dual spaces are T c,⌝ = T ⌝ and T c,⌞ = T .
The special class here is the Howard’s big Heegner point [How04b].

zc ∈ lim←−
n

H1(K[cpn], T−
f ) = H1(K[c], T−

f ⊗ Λac(Ψ))

where we have used the notation K[c] to denote the ring class field of K with conductor c, and the equality is
by a standard application of Shapiro’s lemma. If c = cond(χ), then we can further project to the χ-isotypic

part to produce an element zχ ∈ H1(K,T ⌝). Since the dual condition is also defined by the same space, we
have zχ ∈ H1

⌝,⌝.

To verify the hypothesis (2) of Theorem 3.9, we need to compute reg(zχ), where zχ ∈ lim←−nH
1(K[pn]w, T−

f ).

This is the explicit reciprocity law proven in [BCK21, Theorem 4.4]. It now follows from [Bur17] that the
localization at w is non-torsion.

Hypothesis (1) as well as one divisibility of the Perrin-Riou main conjecture are both proven in [How04b]
using a bipartite Euler system argument. Using our theorem, this implies

charΛac X⌞,⌞|(LBDP
p )2

In classical terms, the Selmer group X⌞,⌞ is the Greenberg Selmer group with the strict and relaxed conditions
at w and w̄ respectively. The other side (with the square) is the p-adic L-function first constructed by
Bertolini–Darmon–Prasanna [BDP13] interpolating the algebraic parts of the central values L( 12 , f × χ′)
where the weights of χ′ are greater than those of f . It follows by a standard application of the control
theorem that L( 12 , f × χ

′) ̸= 0 implies SelGr(Vf ⊗ χ′) = 0 under the previous assumptions on f .

Remark 3.11. By applying complex conjugation to our argument, we can prove a similar rank-0 results for
the relaxed-strict Selmer group, corresponding to the case where the weight of χ′ is less than 0. In this case,
the result is just the conjugate of the one for positive weight. However, we will see that in general, one special
cycle can control several rank 0 regions which appear to be fundamentally different.

3.4.3. No Heegner points. We now consider the opposite of the above setting, so the number of prime ℓ|N
which is inert in K is odd. In this case, we know that L( 12 , f × χ) ̸= 0 for a generic finite order χ by the

main result of [Vat03]. They can be interpolated into a p-adic L-function LBD
p (cf. [CD23, Theorem 5.1.1]),

and we have an Iwasawa main conjecture of the form

Xord(E/K)|(LBD
p )

which implies a generic rank 0 result. This conjecture was established by Bertolini–Darmon [BD05] using
level-raising methods under mild technical hypotheses.

In [CD23], Castella-Tuan constructed an Euler system for the representation Vf ⊗ χ′, where χ′ has large
weight. In short, they specialized the Euler system constructed by Bertolini–Seveso–Venerucci [BSV22] in
the balanced triple product setting to the case where two of the forms have CM by K. As was further shown
in [CD23], the explicit reciprocity law computes the big logarithm of their class as a p-adic L-function with
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certain interpolation properties coming from an easy factorization of the unbalanced triple product p-adic
L-function.

In our formalism, let T ⌞ = T−
f ⊗Λac(χΨ) and T ⌝ = T , so we start with information about the Greenberg

Selmer group and want to derive a rank-0 result for the usual Selmer group. The above construction gives
rise to a class zCT satisfying the following properties

zCT ∈ H1
⌝,⌝, reg(zCT)

2 = LBD
p

The interpolation property as well as the result of Vatsal cited earlier imply that LBD
p is non-torsion, so

Jetchev–Nekovář–Skinner’s Euler system argument [JNS24] implies one divisibility of the Perrin-Riou main
conjecture. Therefore, by Theorem 3.9,

charΛac Xord|LBD
p

The usual control theorem argument implies a rank 0 result. This was deduced without appealing to cy-
clotomic constructions such as the Rankin–Eisenstein elements of [KLZ17]. While this is not known at the
moment, the generalization of the results in the triple product setting to the totally real field case appears
to be within reach, so this argument could lead to rank-0 results in those cases as well, where the cyclotomic
constructions are not known.

4. Automorphic background

Before presenting our proposed framework, we use this expository section to recall certain aspects of
the Gan–Gross–Prasad conjecture. In the discrete series case, we will also explain the combinatorial recipe
relating the distinguished signatures and the weight interlacing conditions.

4.1. Discrete series. This section recalls some facts about the discrete series on real unitary groups.
Throughout this section, the group U(p, q) is the unitary group of the Hermitian space Vp,q defined using the

Hermitian form 1p,q =
( 1p

−1q

)
. We view it as a real Lie group embedded in GLn(C), where n = p+ q.

4.1.1. Root data. Let T be the diagonal torus in U(p, q), then T ≃ U(1)n is a compact maximal torus. Define
the characters t1, · · · , tn, so that z ∈ T is equal to diag(t1(z), · · · , tn(z)). We will label a general character∑n
i=1 aiti by the tuple a = (a1, · · · , an) ∈ Zn. We pick ∆+ = {ti− tj | 1 ≤ i < j ≤ n} to be the set of positive

roots, and we let

ρ =

(
n− 1

2
,
n− 3

2
, · · · , 1− n

2

)
be the half sum of positive roots.

Let Kp,q ⊆ U(p, q) be the maximal compact subgroup consisting of matrices of the form
( g

h

)
, where

g ∈ U(p) and h ∈ U(q). The torus T is also a maximal torus of Kp,q.

4.1.2. Harish-Chandra classification. The discrete series of the group G = U(p, q) can be indexed its Harish-
Chandra parameter, which we combinatorially represent by

– a regular infinitesimal character a = (a1 > · · · > an) ∈
(
Z+ n−1

2

)n
and

– a binary string ϵ ∈ {0, 1}n with exactly p 0s.

We call the binary string its Harish-Chandra code. Let i1, · · · , ip be the location of the 0s in ϵ and j1, · · · , jq
be the location of the 1s, then (a, ϵ) represents

(ai1 , · · · , aip ; aj1 , · · · , ajq ) ∈ X∗(T ) + ρ

in the usual notations for the Harish-Chandra parameter. In particular, the holomorphic discrete series whose
minimal K-type is κ = (κ1 ≥ · · · ≥ κp;κp+1 ≥ · · · ≥ κn) is represented by the pair

(κ+ ρ, 1 · · · 1︸ ︷︷ ︸
q

0 · · · 0︸ ︷︷ ︸
p

)

Such a representation exists if and only if κn ≥ κ1 + n. This will be generalized in §4.1.4.
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4.1.3. Generic datum. We now specify the choices needed to call a representation “generic”. This will be
used in the following section to label elements of the Vogan L-packet.

Let V be a split Hermitian space over C. Let G = U(V ), then G is quasi-split. Let B be a Borel subgroup
of G with Levi decomposition B = T ⋉N . Let λ : N → C× be a generic character, then a representation π
is (N,λ)-generic if

dimC HomN (π, λ) = 1

The torus T acts on λ, and the above condition is invariant under such action. It is now useful to split into
two cases, depending on the parity of n = dimV .

n odd: The action of T on the space of generic characters is transitive, and there is a unique generic discrete
series representation for each infinitesimal character a. If n = 2m + 1, then it is the representation
on U(m+ 1,m) with Harish-Chandra code 01 · · · 010.

n even: The action of T on the space of generic characters has two orbits, which correspond to the two
R×

+-orbits on additive characters ψ : C/R → C× (cf. [GGP12, Section 12]). A set of representative
characters is

ψC : z 7→ exp(2π(z̄ − z)), ψC : z 7→ exp(2π(z − z̄))
Let n = 2m, then the Harish-Chandra code for the ψC-generic (resp. ψC-generic) representation is
01 · · · 01 (resp. 10 · · · 10).

Proofs of the above claims can be found in [Ato20, §A.3].

4.1.4. Coherent cohomology. Let V be a Hermitian space defined over the extension K/F . At the archimedean
places, write its signature as {(aσ, bσ)}σ∈Σ+

∞
. Let G = U(V ) be its unitary group, then we fix an isomorphism

G∞ ≃
∏
σ∈Σ+

∞

U(aσ, bσ).

Let K∞ ⊆ G∞ be the maximal compact subgroup of G∞ which corresponds to
∏
σKaσ,bσ under this

isomorphism. The Shimura datum for G defined by

z 7→
(
z/z̄·1aσ

1bσ

)
σ∈Σ+

∞

gives rise to a Shimura variety ShG whose reflex field is contained in K. Let ξ be an algebraic representation
of K∞, then it gives rise to an automorphic vector bundle Vξ over ShG.

Let π be a cusp form on G whose archimedean components lie in the discrete series. For each σ ∈ Σ+
∞,

we have a pair (aσ, ϵσ) as described in §4.1.2. Let qσ denotes the number of times where 0 occurs before 1 in
ϵσ, so 0 ≤ qσ ≤ aσbσ. Let qπ =

∑
σ qσ, then 0 ≤ qπ ≤ dimShG.

Suppose aσ is sufficiently far from walls for all σ, then by theorems B and D of [Har90], π contributes to
the coherent cohomology of Vξ for a unique ξ, in which case its contribution is concentrated in the degree qπ.
We will use this to check some dimension compatibility for p-adic L-functions.

4.2. Gan–Gross–Prasad conjecture. Let Π = Πn−1 ⊗Πn be a RACSDC automorphic representation on
GLn(AK)×GLn+1(AK). We are interested in the arithmetic of Π, in particular its central L-value L

(
1
2 ,Π

)
.

This value depends on the endoscopic transfer of Π to a specific pair of unitary groups, predicted by a local
restriction problem. This section will briefly recall the key points of this picture.

4.2.1. Vogan packets. Let v be a place of F which does not split, and let w be the place of K above v. For
i = n− 1, n, the local Langlands correspondence attaches to Πi an L-parameter

ϕi,w : WDKw
→ GLi(C).

It is conjugate self-dual. The algebraicity requirement forces the sign to be (−1)i−1 (cf. §4.2.2). It follows
from [GGP12, Theorem 8.1] that ϕi descends to an L-parameter

ϕi,v : WDFv
→ LUi.

We now explain some aspects of endoscopic classification following [GGP12, Section 9]. By definition, the
Vogan packet Πϕi,v attached to ϕi,v is a disjoint union

Πϕi,v =
⊔
V

ΠVϕi,v,
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where V runs over all isomorphism classes of Hermitian spaces over Kw/Fv of dimension i, and each ΠVϕi,v

is a collection of irreducible admissible representations of U(V ). Given π ∈ Πϕi,v, let V
(π) be the Hermitian

space such that π is a member of ΠV
(π)

ϕi,v
. For any representation π ∈ Πϕi,v, its base change to Kw is Πi,w.

Let Aϕi,v be the component group of the centralizer of ϕi,v. By the discussion in [GGP12, Section 4], it
is an elementary abelian 2-group. There is a bijection

Jv : A
∨
ϕi,v ≃ Πϕi,v.

More precisely, this depends on the following auxiliary data.

i odd: There are exactly two split Hermitian spaces of dimension i up to isomorphism. They are distin-
guished by their discriminants δ ∈ F×

v /NKw/Fv
K×
w . We need to choose one of them.

i even: The action of NKw/Fv
K×
w on the space of additive characters Kw/Fv → C× has two orbits. We need

to choose one of the orbits.

Following [GGP12, Section 8], this choice determines a generic datum, which determines a unique generic
representation in Πϕi,v. By construction, it corresponds to the trivial character. The bijection is characterized
by certain endoscopic character identities, which are established in [KMSW14, Theorem 1.6.1].

4.2.2. Archimedean packets. Let v be an archimedean place of F , and let w be the place of K above v. The
CM type Σ+

∞ selected in the beginning gives an identification Kw ≃ C.
Let i ∈ {n − 1, n}. Since Πi,w is regular algebraic, its infinitesimal character a lies in (Z + i−1

2 )i. Its
Langlands parameter is the representation φa : C× → GLn(C) defined by

φa(z) = diag
(
(z/z̄)a1 , · · · , (z/z̄)an

)
,

where (z/z̄)α := z2α(zz̄)−α if α ∈ 1
2Z. This is conjugate self-dual of sign (−1)i−1. The Vogan L-packet for

φa is the disjoint union

Πa =

n⊔
p=0

Π(p)
a

where Π
(p)
a consists of all discrete series representations on U(p, q) whose infinitesimal character is a. Let

π ∈ Πa. Denote its Harish-Chandra code by ϵHC
π ∈ {0, 1}n. The association π 7→ ϵHC

π is a bijection.
The component group of φa is

An ≃
n∏
i=1

(Z/2Z)ei.

Therefore, a character χ : An → {±1} can be represented by the binary string ϵχ ∈ {0, 1}n such that (ϵχ)i = 1
if and only if χ(ei) = −1. From the previous subsection, we have a bijection

J∞ : A∨
n ≃ Πa.

Given π ∈ Πa, let ϵ
End
π denote the binary string representing J−1

∞ (π). The relation between ϵHC
π and ϵEnd

π is
very concrete. It is useful to split into two cases depending on the parity of i.

i odd: Let i = 2m + 1. For the split Hermitian space of dimension 2m + 1, we choose Vm+1,m, which has
discriminant 1. In this case,

ϵHC
π = ϵEnd

π + 01 · · · 010

i even: Let i = 2m. The two orbits are represented by ψC and ψC. We choose the character ψC (this will
explained in the next subsection). In this case

ϵHC
π = ϵEnd

π + 01 · · · 01

Proofs of the above claims, namely verifications of the relevant endoscopic character identities, can be found
in [Ato20, §A.4]. Note that in both cases, if π is the generic representation corresponding to the opposite
choice, then ϵEnd

π = 11 · · · 1.
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4.2.3. Local conjecture. From the point of view of this paper, the local GGP conjecture identifies a specific
element of the product Πϕn−1,v × Πϕn,v which is important to the arithmetic of Π. We will recall this
construction and make it explicit in the archimedean case.

Let v be a place of F which does not split in K. Let ψv : Kw/Fv → C× be an additive character. If M is
any representation of the Weil–Deligne group WDKw

, then we have a local root number

ε(M,ψv) ∈ {±1}

defined in [GGP12, Section 5]. Using it, we form two distinguished characters as follows. If a ∈ Aϕn,v, then
the subspace ϕa=−1

n,v where a acts by −1 is stable under WDKw . Define

χn : Aϕn
→ {±1}, a 7→ ε(ϕn−1,v ⊗ ϕa=−1

n,v , ψv)

and similarly define χn−1 : Aϕn−1
→ {±1}. We can now state the local GGP conjecture, which was proven

by Beuzart-Plessis [BP16, BP15] in general.

Theorem 4.1. Let Vn−1 ⊆ Vn be split Hermitian spaces over Kw/Fv of dimensions n− 1 and n respectively.
There is a unique pair (πn−1.v, πn,v) in Πϕn−1,v ×Πϕn,v satisfying the conditions

(1) Relevancy: V (πn−1,v) ⊆ V (πn,v), and the quotient is isomorphic to Vn/Vn−1;
(2) Distinguished: the Hom-space

Hom
U(V (πn−1,v))

(πn ⊗ πn−1,C)

is non-trivial, which implies it is one dimensional.

Let δ be the discriminant of the odd Hermitian space used to label the Vogan L-packet on the odd group.
Let ψ′

v(x) = ψv(−2δx). If we label the Vogan L-packet for the even space using ψ′
v, then πi,v = Jv(χi) for

i = n− 1, n.

Now suppose v|∞. We describe the distinguished representation explicitly in terms of their Harish-Chandra
codes. In this case, the local conjecture was first proven by H. He, who gave a different combinatorial recipe
for describing the distinguished representation [He17]. Choose ψC(z) = e2π(z̄−z), and suppose the parameter
ϕ corresponds to discrete series with infinitesimal character

ϕa ↔ (a1 > a2 > · · · > an), ϕb ↔ (b1 > b2 > · · · > bn−1)

We consider the pair of parameters (ϕ∨b , ϕa). This is the point of view of a restriction problem, which we find

to be clearer. For 1 ≤ i ≤ n, we have ϕei=−1
a = C((z/z̄)ai), so

χn(ei) = ε(C((z/z̄)ai ⊗ ϕ∨b , ψC) =

n−1∏
j=1

ε(C((z/z̄)ai−bj ), ψC) = (−1)#{j | ai>bj}

where the final equality follows from [Tat79, (3.2.5)]. Similarly, we have

χn−1(fj) = (−1)#{i | ai>bn−j}

where the appearance of n− j instead of j is due to the contragredient on ϕb. The Harish-Chandra codes of
the distinguished representations are obtained by adding 0101 · · · to the codes for χn and χn−1.

Since we are always labelling the odd unitary group using the space Vm,m−1 of discriminant 1, our starting
pair is one of the two pairs

(3) U(m− 1,m− 1) ⊆ U(m,m− 1) or U(m,m− 1) ⊆ U(m,m),

depending on the parity of n. The twist by −2δ in the statement of the theorem explains our previous choice
of labelling the Vogan packets on the even unitary group using ψC. As a sanity check, we prove an easy
combinatorial lemma which shows that the resulting Harish-Chandra codes always give a relevant pair of
Hermitian spaces.

Lemma 4.2. Let ϵn and ϵn−1 be the binary strings obtained from the above procedure. Let pn (resp. pn−1)
be the number of 1s in ϵn (resp. ϵn−1). If n is even, then pn − pn−1 = 1, otherwise pn − pn−1 = 0.
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Proof. We first show that if ai < bj is a part of the weight interlacing condition, then (ϵn)i = (ϵn−1)j . We will
check that this holds for the classical branching law in the next example, and it’s easy to see that changing
the order of two consecutive weights preserve the property, so this is proven. It follows that if we change
ai < bj to bj < ai, then only (ϵn)i and (ϵn−1)j gets flipped, so pn− pn−1 does not change. Again by the next
example, pn − pn−1 takes the prescribed value in the case of the classical branching law, so we are done. □

Finally, we give two examples to illustrate the above combinatorial recipe.

Example 4.3. This is compatible with the classical branching law for compact groups. Recall that if πn is
the representation of the compact Lie group U(n) with highest weight (w1 ≥ w2 ≥ · · · ≥ wn), then πn|U(n−1)

is a multiplicity-free direct sum of representations with highest weights (v1 ≥ v2 ≥ · · · ≥ vn−1) satisfying the
perfect interlacing condition

w1 ≥ v1 ≥ w2 ≥ v2 · · · ≥ vn−1 ≥ wn
The infinitesimal character a is equal to w+ρn, where ρn =

(
n−1
2 , n−3

2 , · · · , 1−n2
)
is half of the sum of positive

roots. Similarly for b. Therefore, the interlacing condition in terms of infinitesimal characters is

a1 > b1 > a2 > · · · > an−1 > bn−1 > an

The distinguished characters have binary words

χn : · · · 1010, χn−1 : · · · 0101
If n is even, then the Harish-Chandra codes for both groups are entirely 1, corresponding to the inner forms
U(0, n− 1) ⊆ U(0, n). If n is odd, then they are all 0, corresponding to the inner forms U(n− 1, 0) ⊆ U(n, 0).
Note that in both cases, the pairs are relevant.

Example 4.4. This is also compatible with Blattner’s formula in the case U(n, 0) ⊆ U(n, 1) [HS75]. We
consider the case n is odd for simplicity, otherwise the relevant signature is U(0, n) ⊆ U(1, n), but the
discussion is identical if we had chosen a different odd Hermitian space as our base space.

We use the notations in loc. cit. to state the formula. Suppose the Harish-Chandra parameter is

λ = (a1, · · · , ak−1, ak+1, · · · , an+1, ak)

The positive roots associated with this system are

R+
c = {ti − tj | 1 ≤ i < j ≤ n}, R+

n = {t1 − tn+1, · · · , tk−1 − tn+1,−tk + tn+1, · · · ,−tn + tn+1}
Let (c1, · · · , cn+1) be a character whose components sum to 0, then Q(c1, · · · , cn+1) is 1 if and only if
c1, · · · , ck−1 ≥ 0 and ck, · · · , cn ≤ 0. Since (b1 > · · · > bn) is the infinitesimal character on U(n), we have

µ+ρc = (b1, · · · , bn, bn+1), where bn+1 is chosen so that
∑n+1
i=1 bi =

∑n+1
i=1 ai and correspond to the character

on U(1). Moreover, we can compute that

λ+ ρn =
(
a1 +

1

2
, · · · , ak−1 +

1

2
, ak+1 −

1

2
, · · · , an+1 −

1

2
, ak +

n− 2k + 2

2

)
If the weight interlacing condition is

b1 > a1 > · · · > bk−1 > ak−1 > ak > ak+1 > bk · · · > an+1 > bn

then it’s easy to check that the multiplicity given by Blattner’s formula is 1. Moreover, in a weight interlacing
condition with bi > bi+1 and no ai′ in between, the transposition (i i+1) does not change the value of Q, but
it changes the sign, so the total sum is 0. Therefore, we have described the exact weight interlacing condition
distinguished by U(n, 0) ⊆ U(n, 1).

The distinguished representation predicted by the local GGP conjecture satisfy χn = 01 · · · 010 and χn+1

differs from 10 · · · 1010 at the k-th bit. It is easy to see that they correspond exactly to the weight interlacing
condition computed above.

4.2.4. Global conjecture. Going back to the RACSDC global representation Π = Πn−1 ⊗ Πn. Fix a global
additive character ψ : AK/A→ C×. Using it, we can define the global root number

ε(Π) =
∏
v

ε(ϕn−1,v ⊗ ϕn,v, ψv) ∈ {±1}

It is independent of the choice of ψ, and it is the sign of the functional equation of L(s,Π) at the centre
s = 1

2 . We have two cases.
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Coherent case: ε(Π) = 1. There is a pair of Hermitian spaces Vn−1 ⊆ Vn and a cuspidal automorphic
representation π on U(Vn−1)×U(Vn) such that
(1) The base change of π to K is Π.
(2) For each non-split place v, the local component πv is the distinguished element of the Vogan

packet specified by the local conjecture.
(3) For any φ ∈ π, there is a formula of the form∣∣∣∣∣

∫
[U(Vn−1)]

φ(h) dh

∣∣∣∣∣
2

= (∗) · L
(1
2
,Π
)
· L(1,Π, ad)−1

where the term (∗) consists of an elementary term and an explicit product of local terms de-
pending on φ. It is non-zero for some choice of φ.

By the discussion in [GGP12, Section 25], items (1) and (2) follows from the endoscopic classifica-
tion, which is known by [KMSW14] since our L-parameters are generic. Item (3) is the Gan–Gross–
Prasad formula, fully proven in our case by [BPLZZ21] (since we are starting with a cusp form Π,
our parameters are stable).

Incoherent case: ε(Π) = −1. In contrast to the previous case,
(1) The collection of local Hermitian spaces distinguished by the local conjecture no longer fits

together into a Hermitian space defined over K/F .
(2) L

(
1
2 ,Π

)
= 0 trivially by the functional equation.

By the Beilinson–Bloch–Kato conjecture, this vanishing of the central value should be explained
by the presence of certain algebraic cycles. In the “minimal weight” case, where the infinitesimal
character of Π at each archimedean place is given by the pair

Πn−1 :
(
− n− 2

2
,−n− 4

2
, · · · , n− 2

2

)
, Πn :

(
− n− 1

2
,−n− 3

2
, · · · , n− 1

2

)
,

such an algebraic cycle is conjecturally constructed in [GGP12, §27] and [Zha12]. In the more general
case where the archimedean weights are perfectly interlacing (as in Example 4.3), one may construct
the realizations of such cycles in various cohomology theories using coefficients.

As will be explained later in this article, such a dichotomy is also present in Iwasawa theory, producing
what we will call coherent and incoherent Iwasawa main conjectures. The incoherent case appears to be
considerably deeper, and it actually implies a version of the coherent main conjecture.

4.3. Galois representations.

4.3.1. General properties. Let Π be an RACSDC automorphic representation of GLn(AK). By the work of
many people (cf. [CH13, Car12]), there is a geometric Galois representation

ρΠ : GalK → GLn(Q̄p)

attached to Π in the sense that

(4) L(s,Π) = L
(
ι−1ρΠ, s+

n− 1

2

)
.

Recall that ι : C ≃ Cp was a fixed isomorphism. Since Π is conjugate self-dual of sign (−1)n−1, the same is
true for ρΠ up to a twist, namely we have an isomorphism

ρcΠ ≃ ρ∨Π(1− n).

Moreover, ρΠ is pure of weight n− 1.
We recall the Hodge–Tate weights of ρΠ at places above p. This requires some bookkeeping. Let σ ∈ Σ+

∞
be an embedding K ↪→ C. The associated archimedean places of K and F will also be denoted by σ. Let
(aσi )1≤i≤n ∈ (Z+ n−1

2 )n be the infinitesimal character of Πσ. The composition σp := ι ◦ σ : K ↪→ Cp induces
a p-adic place w of K. Let v be the place of F below w, then v = ww̄ since p splits completely in K. The
Hodge–Tate weights of ρΠ are(n− 1

2
− aσi

)
1≤i≤n

at w,
(n− 1

2
+ aσi

)
1≤i≤n

at w̄.

Recall that by our convention, the cyclotomic character has Hodge–Tate weight −1.
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4.3.2. Ordinary representations. Let σ, σp, v, w be as in the previous subsection. Suppose Π is unramified at
w (equivalently w̄), then Πw is an unramified representation of GLn(Fv). Write its Satake parameters in the
form

p−a
σ
1 ι−1(ασ1 ), · · · p−a

σ
nι−1(ασn) ∈ C

so we have a list of p-adic numbers ασ1 , · · · , ασn ∈ Cp. The representation ρΠ is crystalline at w [CH18], and
its Frobenius eigenvalues are (

p
n−1
2 −aσi ασi

)
1≤i≤n

,

which can be read off from equation (4).
We say Π is ordinary (at p) if

(ord)

{
(i) Π is unramified at all places above p

(ii) |ασi |v = 1 for all i and all σ

Equivalently, the Hodge polygon and the Newton polygon coincide for Dcris(ρπ). It follows that the local
Galois representation ρΠ|GalKw

is upper triangular for each p-adic place w (cf. [SU14, Lemma 7.2]). More
precisely, if w ∈ Σ+

p , then there exists a GalKw
-stable increasing filtration

0 = Fil0ρΠ ⊆ · · · ⊆ FilnρΠ = ρΠ

such that for i = 1, · · · , n, the graded pieces are

(Fili/Fili−1)ρΠ ≃ ασi χ
aσi −

n−1
2

cyc ,

where we also use αi to denote the unramified character such that αi(Frobw) = αi.
Choose a basis {v1, · · · , vn} for ρπ so that Filiρπ = ⟨v1, · · · , vi⟩. Let {v∨1 , · · · , v∨n} be the dual basis on

ρ∨Π. Using the identification ρ∨Π ≃ ρcΠ(n−1), we view ρ∨Π as supported on the same space as ρΠ. This induces
a decreasing GalKw̄ -stable filtration

ρΠ = Fil0ρΠ ⊇ · · · ⊇ FilnρΠ = 0

with FiliρΠ = ⟨v∨i+1, · · · , v∨n ⟩. The graded pieces hare are

(Fili−1/Fili)ρΠ ≃ α−1
i χ

−ai+n−1
2

cyc

as GalKw̄ -representations.

5. Framework and further speculations

Let Π = Π∨
n−1⊗Πn be an RACSDC representation of the group GLn−1(AK)×GLn(AK) which is ordinary

at p. The contragredient is inserted, since we are taking the point of view of a restriction problem. The
various numerology will also be simpler.

In this section, we propose a framework to understand Iwasawa theory for Π. Recall that for each σ ∈ Σ+
∞,

we also denote its induced places on F and K by σ. In addition, let

(aσ1 > · · · > aσn), (bσ1 > · · · > bσn−1)

be the infinitesimal characters of Πn,σ and Πn−1,σ respectively. Their relative position plays a key role in
our discussion.

5.1. Interlacing and Selmer conditions. By applying the constructions in §4.3 to Πn−1 and Πn, we can
define an n(n− 1)-dimensional geometric Galois representation

ρΠ := ρΠ∨
n−1
⊗ ρΠn

(n) : GalK → GLn(n−1)(Q̄p)

which is attached to Π in the sense that

L
(
s+

1

2
,Π
)
= L(ρΠ, s)

It is arithmetically conjugate-symplectic. As a result, L(ρΠ, 0) is always a critical value. More precisely, the
L-factor at the archimedean place σ is

Lσ(ρΠ, s) =

n∏
i=1

n−1∏
j=1

ΓC

(
s+

∣∣bσj − aσi ∣∣+ 1

2

)
.
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It follows that the critical values are those s such that |s| ≤
∣∣bσj − aσi ∣∣+ 1

2 for all i, j, σ.
The Bloch–Kato conjecture for Π states that

ords= 1
2
L(s,Π)

?
= dimK H1

f (K, ρΠ)

Here, the subscript f is the Bloch–Kato local condition. It is the unramified condition away from p, but
the conditions at the two primes above p are more subtle. However, it is easy to describe if ρΠ satisfies the
Panchishkin condition

(P)
At each p-adic place w of K, the representation ρΠ contains a GalKw

-stable subspace ρ−Π
such that the Hodge–Tate weights of ρ−Π are non-positive and the Hodge–Tate weights

of ρΠ/ρ
−
Π are positive.

Since ρΠ is pure of weight −1, we know that

H1
f (Kw, ρΠ) = ker(H1(Kw, ρΠ)→ H1(Kw, ρΠ/ρ−Π))

by [Nek07, Proposition 3.3.2(2)].
The Hodge–Tate weights of ρΠ are directly related to the relative sizes of the infinitesimal characters for

Πn and Πn+1. We describe it using a “weight interlacing string”.

Definition 5.1. An interlacing string is any string of length 2n− 1 with exactly n As and n− 1 Bs.
Given two regular algebraic representations Πn−1,∞ and Πn,∞ with infinitesimal characters (b1 > · · · >

bn−1) and (a1 > · · · > an) respectively. Define their weight interlacing string as follows: first write the
numbers a1, · · · , an, b1, · · · , bn−1 in descending orders, then forget the subscript to obtain a string of the
desired form.

The weight interlacing string for Π is the collection of the weight interlacing strings as above, indexed by
the archimedean places of F .

Recall that ai ∈ Z + n+1
2 , but bj ∈ Z + n

2 , so they cannot be equal. Now if Π is ordinary (and hence
unramified) at p, then all Selmer conditions are Panchishkin, and they are naturally indexed by weight
interlacing strings. This is very explicit. Fix a p-adic place v and let w be the place above v in the p-adic
CM type. As described in Section 4.3, choose a basis {w1, · · · , wn−1} for ρΠn−1

which is compatible with
the filtration. Similarly, choose a basis {v1, · · · , vn} for ρΠn . Then a basis for ρΠ is {vi ⊗ w∨

j }. Given an
interlacing string □, we can define a subspace

ρ□ := ⟨vi ⊗ w∨
j | ai − bj > 0⟩ ⊆ ρΠ.

By its compatibility with filtration, this is GalKw
-stable and therefore defines a Selmer condition. At the

place w̄, the dual space is

ρc□ := ⟨v∨i ⊗ wj | ai − bj < 0⟩ ⊆ ρcΠ.
which is a GalKw̄

-invariant subspace.
Given a collection of interlacing strings □ = (□σ)σ∈Σ+

∞
, we may use it to define Selmer conditions at all

p-adic places of K as above. Together with the unramified condition away from p, this gives a Selmer group
H1

□(K, ρΠ). If □ is the weight interlacing string of Π, then the previous discussion shows that

H1
□(K, ρΠ) = H1

f (K, ρΠ),

so □ defines the correct Selmer condition.
Pictorially, we view one such subspace as a tableau, for example

a1

a2

a3

a4

b3 b2 b1

In this diagram, each square represents a basis element, and the filled in area represents ρ□, consisting of
the subset of basis elements defined by the inequality ai > bj . Since the sequences a and b are decreasing,
the shaded part is lower-left closed. The same combinatorial structure appears in [GHL21] to determine the
transcendental period.
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Example 5.2. Let F = Q for simplicity. The case n = 2 is the case of a modular form f twisted by an
anticyclotomic Hecke character χ. In this case, there are 3 weight interlacing strings: ABA, AAB, BAA.
The filtration on ρf = ρΠ2

is the usual ordinary filtration on the Tate module. Therefore, in more classical
notations for Selmer groups, we have

H1
ABA = H1

ord, H1
AAB = H1

rel,str, H1
BAA = H1

str,rel

At the archimedean place, if f has weight k, then its infinitesimal character is
(
k−1
2 ,−k−1

2

)
. There is a

subtlety in identifying modular forms with automorphic forms on U(1, 1), but this is fine if f has trivial
nebentype, which implies k ∈ 2Z. The infinitesimal character of χ is (ℓ), with ℓ ∈ Z. If |ℓ| < k−1

2 , then we

are in the first setting ABA. If |ℓ| > k−1
2 , then we are in one of the last two cases depending on the sign of ℓ.

5.2. Hypothesis on Hida family. This section recalls some aspects of Hida theory on a unitary group.
Let V be an n-dimensional Hermitian space with respect to K/F , and let G = U(V). Since p splits completely
in K, it contains a maximal torus of the form

Tn = ResF/Q Gn
m.

Following the notations introduced in §2.1, we have the weight space W. Given a classical point x ∈ Wn, let
(wσ1 , · · · , wσn)σ∈Σ+

p
be its collection of weights. Its unitary weight is the tuple (aσ1 , · · · , aσn)Σ+

∞
defined by

aσ∞
i = wι◦σ∞

i +
n− 1

2
∈ Z+

n− 1

2

This definition reflects the shifts used in defining Galois representations in §4.3.
Let Λn = O[[Tn(Zp)]]. For i = 1, · · · , n, there are standard cocharacters ϵi : ResF/Q Gm → Tn. Form the

tautological character χi : GalK → Λ× as in equation (1). For a fixed tame level, let In be the big ordinary
Hecke algebra for G, cf. for example [EHLS20, §7.1], where it is denoted by Tord

Kr,R
for R = O. By Hida’s

control theorem (Theorem 7.2.1 of op. cit.), In is finite locally free over Λn.

Hypothesis 5.3. There exists a p-adic family of Galois representations T n of rank n over In which is
conjugate self-dual in the sense of Definition 2.2. Moreover, for each w ∈ Σ+

p , it comes with an increasing
GalKw -stable filtration

0 = Fil0T n ⊆ · · · ⊆ FilnT n = T n

whose graded pieces are
(Fili/Fili−1)T n ≃ αwi χi|GalKw

Finally, there exists a point of xΠn
: In → Q̄p such that the specialization of T n at xΠn

is the Galois
representation attached to Πn as in §4.3.

In the residually multiplicity-free case, the existence of T together with the ordinary filtration follows from
the construction of a p-refined pseudocharacter in [BC09, §7.5] together with their result lifting pseudochar-
acters to representations (Proposition 1.6.1 of op. cit.). However, it is not clear that conjugate self-duality,
in the strong sense we require, follows from the construction, so we are stating it as a hypothesis.

5.3. Iwasawa theory: algebraic side. Apply the discussion of the previous subsection to Π∨
n−1 and Πn.

This gives a full weight space
W :=Wn−1 ×Wn

of dimension (2n−1)g. Given a collection of weight interlacing strings □ = (□σ)σ∈Σ+
∞
, we can define a subset

of classical points

W□ ⊆ Wcl

as those points whose unitary weights interlace according to □ at each p-adic place. This is Zariski dense for

any choice of □. As □ runs over all tuples of interlacing strings, the sets W□ partition the set of classical
points.

Over the weight space, we have a finite flat Hecke algebra I and a p-adic family of Galois representations

T := T n−1 ⊗ T n(n)

It is conjugate self-dual of rank n(n + 1) over I. Using the filtrations on T n−1 and T n, we can define
GalKw

-invariant subspaces
T□ ⊆ T
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for each interlacing string □, analogous to the definition of ρ□ ⊆ ρΠ. Given a collection □ = (□σ)σ∈Σ+
∞
, we

obtain a Greenberg-type local condition for each pair of places (w, w̄) of K above p, as in equation (2). All
together, we can define the Selmer complex

R̃Γ□(K,T )

and its cohomology groups H̃∗
□(K,T ).

By construction, ρΠ is a specialization of T . The next result follows easily from [Nek07, Proposition 2.2.4].

Lemma 5.4. There exists εT ∈ {±1} such that for all classical points x : I→ Q̄p, the specialization T x has
finite ε-factor equal to εT .

Therefore, the global root number at a classical point x is

ε(T x) = εT ε∞(T x)

By a computation similar to the one made in Section 4.2, the archimedean root number (for the fixed additive
character ψC) counts the number of positive Hodge–Tate weights, so it is a function of the weight interlacing

string. We denote it by ε(□). In particular, if εT ε(□) = −1, then the central L-values of all x ∈ W□ vanish
for sign reasons. Taking this into account, we need both the coherent and incoherent versions of Iwasawa
main conjecture.

Conjecture 5.5. Let □ be a tuple of interlacing strings. There are two cases

– Coherent case If εT ε(□) = 1, then H̃2
□(K,T ) is torsion, and

charI H̃
2
□(K,T ) = (L□

p )
2

where L□
p is a p-adic measure whose square interpolates the central L-values of points in W□, to be

discussed in the following subsection.

– Incoherent case If εT ε(□) = −1, then H̃2
□(K,T ) has rank 1 over I, and there is a special class

z ∈ H̃1
□(K,T )

such that

charI H̃
2
□(K,T )tors = charI

(
H̃1

□(K,T )

I · z

)2

Our main result Theorem 3.9 was axiomatized to relate these two conjectures. To relate them, we introduce
the following notion.

Definition 5.6. We say two interlacing strings □ and △ are nearby if one if obtained from another by
replacing a substring AB with BA. Two weight interlacing strings are nearby if they are nearby at exactly
one archimedean place, and they are the same elsewhere.

On the tableau, this corresponds to the operation of deleting an extremal square, for example

×

The quotient T□/T△ is then the rank 1 space corresponding to the square deleted, so we can apply the
theorem, at least over Λ. Further observe that ε(△)ε(□) = −1, so exactly one of them is incoherent. We can
state the following expectation.

Expectation 5.7. Given a family T , let △ be an incoherent word for T , i.e. εT ε(△) = −1. Suppose we

have a “special class” z△ ∈ H̃1
△(K,T ), then

charI H̃
2
△(K,T )tors ⊇ charI

(
H̃1

△(K,T )

I · z△

)2

For any nearby word □, let L□
p be the image of z△ under the corresponding regulator map, then

charI H̃
2
□(K,T ) ⊇ (L□

p )
2

Moreover, equality in any of the statements implies equality in all other statements.
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As explained in the remark following Theorem 3.9, the first divisibility should follow from the construction
of z△ by an Euler system argument. However, we only have one example so far:

△ = diag, εT = −ε(△)

In this case, the method of [Loe21, LRZ24] allows one to interpolate the usual diagonal cycles in a p-adic
family, and the constructions of [LS24] can be used to extend them to an Euler system. The above expectation
relates this cycle to p-adic L-functions in the 2n tableaux nearby to it. For n = 2, they are

Example 5.11 works out some numerology for constructing p-adic L-functions in this case.
Beyond the diagonal cycle, we are not aware of any systematic construction of Selmer classes. Moreover,

if εT = ε(diag), then there is no systematic construction of Selmer classes for any weight interlacing string.
It should be possible to construct them by degenerating p-adic families. For example, in the case n = 2, the
work of Castella–Tuan [CD23] discussed in §3.4.3 constructs the special class for the interlacing string AAB
using Gross–Kudla–Schoen cycles.

5.4. Iwasawa theory: analytic side. From algebraic considerations, we see that different p-adic L-
functions attached to each weight interlacing string. This can also be seen on the analytic side, though
there are more mysterious phenomena here. We will explain some of them in the approach using coherent
cohomology.

The global Gan–Gross–Prasad formula expresses the central L-value in terms of a period integral, which
can potentially be interpolated to construct a p-adic L-function. The archimedean data, i.e. the signatures
of W, V and the nature of the discrete series at infinity, should determine the transcendental period. This is
made precise in [GHL21]. Since the underlying geometry is so different, we are also not expecting a uniform
p-adic L-function for all archimedean data. In fact, we propose the following imprecise conjecture.

Conjecture 5.8. For each of the
(
2n−1
n

)g
weight interlacing strings □, there exists a p-adic L-function L□

p

in the Hecke algebra I which interpolates L
(
1
2 ,Π

)
when the weights belong to W□.

Remark 5.9. This is an anticyclotomic p-adic L-function, in the sense that all of its points of interpolation
corresponds to central L-values. It is different from the cyclotomic p-adic L-function recently constructed in
[DZ24]. One could imagine extending the above conjecture to a p-adic L-function in n(n+ 1) + 1 variables,
incorporating cyclotomic deformations.

One standard approach to construct p-adic L-functions is to interpret the period integral as a pairing
in coherent cohomology of Shimura varieties. More precisely, suppose Π is coherent, and Vn−1 ⊆ Vn is the
relevant pair of Hermitian spaces distinguished by Π. For N ∈ {n − 1, n}, we can form the unitary group
GN = U(VN ) and its associated Shimura variety ShN . To construct the p-adic L-function, one would like to
interpret the period integral ∫

[Gn−1]

φ∨
n−1(h)φn(h) dh

as a pairing between coherent classes on Shn−1. Let (□σ)σ∈Σ+
∞

be the weight interlacing string for Π, then

the local conjecture predicts a pair of Harish-Chandra codes (ϵHC
n−1,σ, ϵ

HC
n,σ) for each archimedean place σ. Let

qn−1 and qn be the degrees described in §4.1.4 attached to this collection, then a basic numerology for the
construction to succeed is

(5) qn−1 = qn.

For example, [Har21] considers the case where the pair (Πn−1,Πn) distinguishes the holomorphic discrete
series on both groups, so qn−1 = qn = 0. Note that we are using Π = Π∨

n−1 ⊗ Πn, which is consistent with
the use of anti -holomorphic forms on the small group in op. cit.

We now compute what this means in terms of weight interlacing. In the case of Harris’ work, the Harish-
Chandra codes are

ϵHC
n−1 = 1 · · · 1︸ ︷︷ ︸

q−1

0 · · · 0︸ ︷︷ ︸
p

, ϵHC
n = 1 · · · 1︸ ︷︷ ︸

q

0 · · · 0︸ ︷︷ ︸
p
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Using the recipe described in §4.2, we see that at every archimeden place, the weight interlacing tableau
consists of removing a block of p contiguous squares from diag from the end.

p = 2

×
×

Technically, the above pair is only relevant if n is even, and the relevant pair for odd n are the anti-holomorphic
representations. This is because of our choice of base point for the endoscopic labelling, cf. equation (3).
This does not affect our discussion.

Remark 5.10. The construction in [Har21] only gives a 1-variable p-adic L-function. In our framework, this
weight deformation corresponds to the top-left square of the contiguous block. In the case represented by
the previous picture, we would be considering the relations between the incoherent conjecture for △ and the
coherent conjecture for □.

△ = □ =

In the case p = 1, △ = diag, and □ is nearby, so this 1-dimensional deformation is the exact one needed to
relate L-values to the diagonal cycles.

In general, removing an arbitrary set of squares from the diagonal results in a pair of Harish-Chandra
codes such that ϵHC

n is obtained from ϵHC
n−1 by appending a 1 to the front. The result still satisfies equation (5),

though the common degree is no longer 0, and higher Hida theory would be required to construct the relevant
p-adic L-functions. By conjugation, the same holds if we add an arbitrary set of squares to the diagonal.

Example 5.11. The 2n tableaux nearby to the diagonal cycles correspond to either adding or removing
one square from the diagonal tableau. Since the diagonal tableau distinguishes the totally definite signature,
these nearby tableaux distinguishes the signature U(n − 2, 1) ↪→ U(n − 1, 1). The graph of this embedding
gives rise to the diagonal cycle.

On the other hand, the above computation shows that the p-adic L-function for these tableaux can
potentially be constructed using cup products in coherent cohomology for the same embedding. Therefore,
it is reasonable to expect that current methods can prove explicit reciprocity laws relating the diagonal cycle
to all 2n nearby p-adic L-functions.

This does not account for all weight interlacing strings satisfying the numerology (5). The point is as
follows: we have defined a function

dist : {weight interlacing strings} → {pairs of chambers}

It turns out that both sides have the same size, but the map is not a bijection. Indeed, an operation of the
form AABB → BBAA does not change the image. On a tableau, this corresponds to removing an extremal
2× 2 square, for example

×

×

We suspect that this operation alone explains the fibres of dist. If two words have the same image, then
the archimedean data describing their period integrals are identical. This is a genuinely new phenomenon
beyond the GL2-case. If □ and □′ are in the same fibre, then we expect there should be a relation between
L□
p and L□′

p . However, note that the description of the transcendental period in [GHL21] is different for □
and □′. Similarly, the p-adic Euler factors should also differ.

On the algebraic side, in the process of deleting the 2× 2 square, we see the following 6 regions:
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The two diagrams at the end are coherent. If we expect their p-adic L-functions to be related, then there
should be a relation between the special classes for the diagrams in the second and fourth column. The
simplest case is the relation between the diagonal cycle and the conjectural one attached to weight interlacing
string BABAA. This new string distinguishes the archimedean data U(2, 0) ↪→ U(2, 1), with the form on
U(2, 1) in the holomorphic discrete series.
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[BC09] Joël Belläıche and Gaëtan Chenevier. Families of Galois representations and Selmer groups. Astérisque,
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[BP16] Raphaël Beuzart-Plessis. La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes

unitaires. Mém. Soc. Math. Fr. (N.S.), (149):vii+191, 2016.
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