
INTRODUCTION TO LOCAL HARMONIC ANALYSIS

SHILIN LAI

These are notes for an introductory talk on representation theory over non-archimedean local fields, mainly
focusing on the unramified setting. The usual references for smooth representations of p-adic groups include
Cartier’s article in Corvallis [BC79], Casselman’s notes [Cas95], and Bernstein’s Harvard notes [BR92]. A
comprehensive reference for abstract harmonic analysis is [Dix77], but we can state the results we actually
need more explicitly.

1. Representations

In this section, G is a second countable, Hausdorff, locally compact group. Concretely, think of R, or
GL2(C), or G(F ) where G is an algebraic group and F is a locally compact field.

1.1. Unitary representations. Let X be a topological space with a right G-action. Further suppose that
X has a G-invariant measure, which is fixed throughout. Recall that L2(X) is the space of (complex valued)
measurable functions on X which are square integrable with respect to µ. This has a natural left G-action
by right translation

(Rgf)(x) = f(xg)

The central question in harmonic analysis (for our purpose) is to decompose L2(X) into irreducible repre-
sentations of G, for “interesting” choices of X.

A key feature of L2(X) is that it is unitary, namely it has a positive definite Hermitian inner product

⟨f, g⟩X :=

∫
X

f(x)g(x)dx

which is moreover invariant under the action of G. As a result, each of its subrepresentation is also unitary.
It therefore makes sense to only concentrate on those representations.

Definition 1.1.

(1) A unitary representation of G is a Hilbert space H with a group homomorphism π : G → U(H )
which is continuous in the sense that g 7→ π(g)v : G → H is continuous for all v ∈ H .

(2) A unitary representation (π,H ) is irreducible if it contains no closed invariant subspaces other than
{0} and H .

(3) The unitary dual of G is the set of equivalence classes of topologically irreducible unitary represen-
tations of G. We denote it by Πunit(G).1

By an abuse of notation, it is typical for π to also denote the Hilbert space.

There is a natural topology on Πunit(G) called the Fell topology. It is roughly compact-open convergence
of matrix coefficients. Using this, we can make the above questions more precise.

Question 1.2.

(1) Unitary dual: Describe Πunit(G) as a topological space.
(2) Plancherel formula: Find a G-equivariant decomposition

L2(X) =

∫
Πunit(G)

π⊕mπdµ(π)

where mπ is the multiplicity, and µ is a positive Borel measure called the Plancherel measure.2

We will not define the direct integral construction. Instead, we will do some examples which illustrate its
relation with the usual Plancherel formula.

1Most sources would use Ĝ, but that will mean the dual reductive group for us later.
2As we will see in the examples, “the” Plancherel measure is not unique.
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Example 1.3.

(1) Let G = S1. For each n ∈ Z, let en(z) = zn. This is a unitary character of G. Let C(en) be the
one-dimensional space where G acts by en, then Πunit(G) = {C(n)|n ∈ Z}, with the discrete topology.

Moreover, en ∈ L2(G) is an eigenfunction for the action of G. This defines a closed embedding
C(en) ↪→ L2(G). The associated projection map is

f 7→ f̂(n)en ∈ C(n), f̂(n) :=

∫
S1

f(z)en(z)dz

The basic result in Fourier series is that we have a decomposition of L2(G) into irreducibles

L2(S1) ≃
∫
Z
C(en)dµ(n), f 7→ (f̂(n)en)n∈Z

where the Plancherel measure µ(n) is just the counting measure. The direct integral here is just
suitably (namely L2) completed direct sum.

More concretely, the direct integral decomposition means there is a Fourier inversion formula

f(z) =
∑
n∈Z

f̂(n)zn

Applying it to f̄ ∗ f gives the classical Plancherel formula

∥f∥L2(G) = ∥f̂∥L2(Πunit(G)) =
∑
n∈Z

∣∣f̂(n)∣∣2
Note that all the formulae above depends on various choices: the Haar measure on S1 was normalized
to have total volume 1, and the eigenfunctions en were chosen so that en(1) = 1. This is a general
feature: the Plancherel measure depends on these choices, but the resulting L2-space does not change.

(2) Let G = R. For each x ∈ R, let ex : G → S1, y 7→ e2πixy, then Πunit(G) = {ex|x ∈ R} ≃ R with the
usual topology.

The new feature here is that ex /∈ L2(G). In fact, G acting on L2(G) has no eigenvectors. Instead,
ex approximate eigenvectors. This is a feature of the continuous spectrum, and the direct integral
construction is used to decompose L2(G) as a “direct sum” of a continuum number of approximate
eigenspaces. In this case, it is just the Fourier inversion formula

L2(G) ≃
∫
R
C(ex) dx, f(x) =

∫
R
f̂(y)ex(y)dy, where f̂(x) =

∫
R
f(y)ex(y)dy

The Plancherel measure is a suitably normalized Haar measure on R, and we have the classical

Plancherel formula ∥f∥L2(G) = ∥f̂∥L2(Πunit(G)).

If we allow x to be a complex number, then ex defined by the same formula is still a character
G → C×, but it is no longer unitary, so it does not appear in the Plancherel formula. It might still
make sense to consider them in a classification, and we will discuss this later.

(3) Let G = R×. This is isomorphic to R× {±1}, so the unitary is two copies of R. It is usual to index
them differently here. Let s ∈ iR, then define

e±s (x) = |x|s ·

{
1 +

x/ |x| −

so Πunit(G) ≃ iR ⊔ iR, with the usual topology.
Let X = A1 = R, then the projection of L2(X) to approximate eigenspaces is classically called

the Mellin transform

(M±f)(s) =

∫
X

f(x)e±s (x)d
×x =

∫ ∞

0

f±(x)x−s dx

x

where f = f++f− is the decomposition into even and odd parts. Correspondingly, the disintegration
of L2(X) is just the Mellin inversion formula

L2(X) ≃
∫
Πunit(G)

C(e±s ) ds, f(x) =
∑

ϵ∈{±}

∫
iR
(Mϵf)(s)es(x)ds

The Plancherel measure is again just the Haar measure on iR, suitably normalized.
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We have carefully avoided convergence issues. Before now, everything worked in the dense subspace
C∞

c (G) ⊆ L2(G), but now the integral defining Mf might not converge even if f ∈ C∞
c (X). The

issue is the point 0 ∈ X, and this was prominently featured in Tate’s thesis. He had to work with
non-unitary es, where Re(s) ≫ 0. This is another reason to think about non-unitary representations.

(4) We now move on to some non-abelian groups. Let G = SU(2), a compact Lie group. Its unitary dual
is Πunit(G) = {πn|n ∈ Z≥1}, where πn is the irreducible representation of dimension n.

The Peter–Weyl theorem can be written in the following form

L2(G) ≃
∫
Πunit(G)

π∗ ⊗ π dµ(π), f 7→ π(f) :=

∫
G

f(g)π(g)dg ∈ End(π)

One new feature is that the π-isotypic component is no longer multiplicity-free. Instead of a natural
embedding π ↪→ L2(G), matrix coefficients gives a natural embedding π∗ ⊗ π → L2(G), namely

v∗ ⊗ v 7→ (g 7→ ⟨v∗, π(g)v⟩) ∈ L2(G)

This is the equivalent of normalizing the eigenfunctions. With this normalization, the Plancherel
measure is no longer the counting measure. In fact, if f ∈ L2(G), then

f(g) =

∞∑
n=1

n · Tr(πn(f)πn(g))

In other words, µ assigns a weight of dimπ to each π ∈ Πunit(G). This is holds more generally for any
compact groups. The proof is analogous to the character orthogonality relations for finite groups.

The multiplicity feature can be explained away in general. From the point of view of spherical
varieties, the correct action should be G×G acting on X = △G\G×G. Equivalently, this is G×G
acting on G by left and right multiplication. The direct integral is now multiplicity free, and the
Plancherel measure is supported on the the diagonal of Πunit(G×G) = Πunit(G)2.

(5) The group G = SU(2) also acts on X = S2 via the double cover G ↠ SO(3). Due to central character
constraint, only the odd dimensional representations show up in L2(X). More precisely, we have the
following multiplicity-free decomposition.

L2(X) ≃
∫
n odd

πndµ(πn)

To obtain this decomposition, the usual technique is to use the Lie group action g on the smooth
functions C∞(X). The Casimir operator Ω ∈ g becomes the Laplace operator, and it acts by a
different scalar on each πn, so we get a lot of information from the spectral decomposition of the
Laplacian on S2. This transfer from L2(X) to C∞(X) will be replicated in the p-adic setting using
smooth representations.

(6) Finally, we look at a complicated example. Let G = PGL2(F ), where F = Fq((t)). The unitary dual
for general GLn(F ) was first computed by Tadić [Tad86], but the n = 2 case should be known before.
The picture is already quite complicated.

{±1}⊗

πi
log q

0 1
2

Unitary
principal
series

Complementary
series Steinberg

Character

Supercuspidal

Hom(O×,C×)⊗ iR/ 2πi
log qZ

Figure 1. Unitary dual of PGL2(F )

We briefly explain this picture. Fix a uniformizer, so F× ≃ O×
F × Z. Given a character χ in the

discrete set Hom(O×, S1), we can form the twist χ |·|s, which is a character on F×. The parameter s
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runs over the cylinder C/ 2πi
log qZ, and the character is unitary exactly when s ∈ iR. There is a general

process of parabolic induction. Using it, we can form a (not necessarily unitary) representation

Ind(χ |·|s , χ−1 |·|−s
). If χ ̸= χ−1, then this is unitary exactly when s ∈ iR, creating the right most

part, which is a countable disjoint union of circles.
There are exactly two characters with χ = χ−1. For those, s ↔ −s does not change the represen-

tation, so the circle becomes a line segment. On the other hand, if s ∈ (0, 1
2 ), the a priori non-unitary

inner product can be modified into a unitary one. At s = 1
2 , this representation becomes reducible,

and Πunit(G) is not Hausdorff there.
Finally, there is a countable discrete set of unitary representations which do not arise this way.

They are known as the supercuspidal representations. They are at the heart of the local Langlands
correspondence. All of them are infinite dimensional.

The Plancherel measure is only supported on the unitary principle series, supercuspidals, and the
two Steinberg points: the complementary series does not contribute to L2(G). This is reflected in the
asymptotic property of their matrix coefficients. Unlike in the previous cases, the Plancherel measures
on the vertical lines are not the Haar measure. For example, on the component corresponding to the
trivial character, it is given by

L(1− 2it,1)L(1 + 2it,1)

L(−2it,1)L(2it,1)
· q + 1

2
· log q

π
dt

where L(s,1) := (1 − q−s)−1. This is a consequence of Macdonald’s spherical Plancherel formula,
which we will see later. The explicit Plancherel measure for GLn can be found in [AP05].

This picture gets even more complicated for groups beyond GL2. The standard reference is [Wal03],
but there are still ongoing works to make it explicit beyond GLn. Luckily for us, we will be looking at
the unramified representations. This is a more algebraic theory, so we will want to introduce an algebraic
replacement of Hilbert space representations, which also allows for non-unitary representations.

1.2. Smooth and admissible representations. In this section, we restrict further and suppose G is a
second countable td-group, where the td property means that the identity of G has a neighbourhood basis
of open compact subgroups. In particular, G is locally compact, Hausdorff, and totally disconnected, which
also characterizes td-groups. We continue to fix a Haar measure on G.

Concretely, think of G = G(F ), where G is an algebraic group and F is a local field. Even more concretely,
think of G = GLn(Fq((t))).

Definition 1.4. Let (π, V ) be an algebraic representation of G.

(1) A vector v ∈ V is smooth if its stabilizer is open in G.
(2) The representation π is smooth if every vector is smooth.
(3) If V is an arbitrary representation, then the subset of smooth vectors is a smooth representation of

G, which we denote by V ∞.

(4) The contragredient of (π, V ) is the representation (V ∗)∞, usually denoted by (π̃, Ṽ ).

We will often abuse notation and let π also denote V . The category of smooth representations of G will
be denoted by Sm(G). The equivalence classes of irreducible objects will be denoted by Πsm(G).

The algebraic counterpart of L1(G) is the Hecke algebra H(G) := C∞
c (G) under convolution. A new

feature is that G has many open compact subgroups, so it makes sense to introduce certain refinements.

Definition 1.5. Let K be an open compact subgroup of G, then the Hecke algebra H(G,K) is the space
C∞

c (K\G/K,C) with multiplication given by

(f1 ∗ f2)(x) =
∫
G

f1(xg)f2(g
−1)dg

This is a unital associative algebra with unit eK = vol(K)−11K .
If K ′ ⊆ K, then H(G,K) ⊆ H(G,K ′) as associative algebras, but it does not preserve the unit. The direct

limit over all K is just H(G), which is no longer unital.

Lemma 1.6. (1) The category of smooth representations is equivalent to the category of non-degenerate
H(G)-modules (non-degenerate means the map H(G)× V → V is surjective).
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Moreover, if K is an open compact subgroup, then the subcategory of representations generated by
K-fixed vectors and H(G,K)-modules are also equivalent.

(2) Schur’s lemma holds: if V is smooth irreducible, then any intertwining operator is a multiple of the
identity. In particular, V has a central character.

We need to impose more finiteness conditions to make the algebraic theory nicer. In particular, we want
things like ˜̃π ≃ π and Frobenius reciprocity, which are not true algebraically if the underlying vector spaces
are infinite dimensional.

Definition 1.7. A representation (π, V ) of G is admissible if it is smooth and for every open compact
subgroup K ⊆ G, the invariants V K is finite dimensional.

One can think of this as finite multiplicity of K-types for irreducible unitary representations of real Lie
groups. In fact, for the groups we are interested in, there are similar automatic admissibility statements.
The following two results are very difficult.

Theorem 1.8. Let G be the F -points of a reductive group, where F is a local field.

(1) (Jacquet) If π is an irreducible smooth representation of G, then π is admissible.
(2) (Bernstein) If π is an irreducible unitary representation of G, then π∞ is dense in π, and the

representation is admissible.
(3) The operation of taking smooth vectors is an injection Πunit(G) → Πsm(G). The image is exactly

those representations with a G-invariant positive definite linear form (which is necessarily unique up
to scalar multiples).

As a result of this theorem, there are two steps in classifying Πunit(G), with different flavours.

(1) Classify Πsm(G): this is the content of the local Langlands conjecture.
(2) Determine which ones are in Πunit(G): this has more to do with analysis than arithmetic.

The development of the Plancherel formula for L2(G) is closely related to item (2), though as we have seen,
the support of the Plancherel measure is sometimes smaller than Πunit(G).

2. Unramified representations

In this section, F is a non-archimedean local field with ring of integers O, uniformizer ϖ, and residue field
k of order q = pn. The norm is normalized by |ϖ|F = q−1. Let G be a split reductive group scheme over
SpecO with generic fibre G. Let G = G(F ). It has a subgroup K = G(O), which is a maximal open compact
subgroup. There is a canonical normalization of the Haar measure by taking vol(K) = 1.

Again, concretely, we may take G = GLn(Fq((ϖ))) and K = GLn(Fq[[ϖ]]).

2.1. Satake isomorphism.

Definition 2.1. A smooth representation π of G is spherical or unramified if πK ̸= {0}.

Remark 2.2. This definition may depend on the choice of the smooth model G/O. In the case G = GLn, it is
the case that all such choices lead to conjugate K, so the above definition is independent of choices.

Example 2.3. The trivial representation is unramified and unitary. From the point of view of L2-harmonic
analysis, it is very far from the general case.

Let H◦(G) = H(G,K). This is called the unramified Hecke algebra, and it acts on the K-fixed vectors
of a smooth representation. There is a bijection between smooth irreducible representations and simple
H◦(G)-modules. The Satake isomorphism gives a very simple description of the structure of H◦(G).

We first introduce more notations. Let T be a split maximal torus in G with group of cocharacters X∗(T ).
Let B be a Borel subgroup containing T , with unipotent factor N . Let WT = NG(T )/T be the Weyl group
for T . Let T ◦ be the integral elements of T . Finally, let δ(t) = |det(Adt|N)|F . This is twice the half sum of
positive roots.

In the explicit example of GLn(F )

– T is the diagonal torus, T ◦ ≃ (O×)n.
– X∗(T ) ≃ Zn, identifying a ∈ Zn with the map z 7→ diag(za1 , · · · , zan).
– B is the upper triangular matrices.
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– N is the unipotent upper triangular matrices.
– W ≃ Sn can be represented by the permutation matrices.

– δ(diag(t1, · · · , tn)) =
∏

i |ti|
n−2i+1
F .

Theorem 2.4 (Satake isomorphism). There is an isomorphism of algebras

S : H◦(G)
∼−→ H(T, T ◦)WT , Sf(t) = δ(t)

1
2

∫
N

f(tn)dn

In particular, H◦(G) is commutative.

Remark 2.5. The integral is a version of the Jacquet functor construction. It is also an analogue of the
constant term of global automorphic forms.

Idea of proof. It is formal to check that S is an algebra homomorphism. To show the image is WT -invariant,
one can rewrite S as an orbital integral using the Weyl integral formula, or alternatively use the theory of
intertwining operators introduced later.

Let λ ∈ X∗(T )
+, the set cocharacters which are positive with respect to the chosen Borel subgroup B. By

an abuse of notation, let λ = λ(ϖ) ∈ T . Form the indicator function

cλ = 1[KλK] ∈ H◦(G)

By the Cartan decomposition, {cλ |λ ∈ X∗(T )
+} is a basis for H◦(G).

On the target space, λ 7→ λ(ϖ) gives an isomorphism of abelian groups X∗(T ) ≃ T/T ◦. Therefore,
restriction to the positive cone identifies H(T, T ◦)WT with X∗(T )

+.
Let λ, µ ∈ X∗(T )

+, then the key computation is

S(cλ)(µ) =

{
δ(λ)−

1
2 µ = λ

0 µ ̸≤ λ

where the partial order is defined by µ ≤ λ if λ − µ is a sum of positive coroots. From this, the matrix of
S is upper triangular with non-zero diagonal entries with respect to the chosen bases, so S is bijective. This
computation is very clearly explained in [Gro98]. □

Example 2.6. We will compute the above isomorphism for G = SL2 by hand. It has a single positive coroot,
which we denote by α, and the Cartan decomposition is

G =
⊔
n≥0

KtnK, tn = α(ϖ)n =
(
ϖn

ϖ−n

)
Concretely, a matrix g is in KtnK if and only if the minimal valuation of the entries of g is −n. Let
cn = 1[KtnK], then for all m ≥ 0,

S(cn)(tm) = δ(tm)
1
2

∫
F

cn

(
tm
(
1 x

1

))
dx

= q−m

∫
F

cn

((
ϖm ϖmx

ϖ−m

))
dx

If m > n, then the integral is 0. If m = n, then the integral is supported on the set v(x) ≥ −2n. If m < n,
then the integral is supported on the set v(x) = −n−m. Therefore,

S(cn)(tm) =


0 m > n

qn m = n

qn−1(q − 1) m < n

One can check similarly that S(cn)(t−1
m ) = S(cn)(tm), proving that S(cn) ∈ H(T, T ◦)WT ≃ C[α+α−1]. More

precisely, the above computation gives

S(cn) = qn(αn + α−n) + qn−1(q − 1)
∑

1≤m<n

(αm + α−m) + qn−1(q − 1)
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A nicer way to write this is to compute that∑
m≤n

S(cm) = qn
∑
|k|≤n

αk

Moreover, note that
∑

|k|≤n α
k is the character of the representation of PGL2 of dimension 2n+ 1.

2.2. Unramified representations and L-group. By our discussion before, there is an isomorphism of
algebras H(T, T ◦) ≃ C[X∗(T )]. This is the space of compactly supported functions on the free abelian group
X∗(T ). Given f ∈ C[X∗(T )], its Fourier transform is

Ff(α) =
∑

λ∈X∗(T )

f(λ)⟨α, λ⟩, α ∈ X∗(T )⊗Z C×

We can interpret X∗(T ) ⊗Z C× as the C-points of the algebraic torus T̂ such that X∗(T̂ ) = X∗(T ). By an

abuse of notation, we will write T̂ = T̂ (C). The subgroup of unitary characters X∗(T )⊗Z S
1 will be denoted

by T̂ 1. 3 In summary, F identifies C[X∗(T )] with O(T̂ ). Taking into account the Weyl-action, we get

Corollary 2.7. There is a sequence of isomorphisms

H◦(G)
S−→ H(T, T ◦)WT

F−→ O(T̂ /WT )

Since H◦(G) is abelian, the irreducible unramified representations are identified with the C-points of
SpecH◦(G). By the above version of the Satake isomorphism, this is just the C-points of the quotient

T̂ /WT . This can be interpreted in terms of semisimple conjugacy classes in a dual group.

Definition 2.8. Let G be a split reductive group over F . Its dual group Ĝ is the split reductive group
whose root datum is the dual of the root datum for G.

Example 2.9. Here are some pairs of dual groups

G GLn SLn PGLn Sp2n O2n

Ĝ GLn PGLn SLn O2n+1 O2n

Corollary 2.10. There is a bijection between irreducible unramified representations of G(F ) and semisimple

conjugacy classes of Ĝ(C).

Example 2.11. We compute the image of the trivial representation. This corresponds to the algebra
homomorphism

H◦(G) → C, f 7→
∫
G

f(g)dg

The Iwasawa decomposition gives an integral formula∫
G

f(g)dg =

∫
T

∫
N

∫
K

f(tnk)dkdndt =

∫
T

δ−
1
2 (t)(Sf)(t)dt

Therefore, it is attached to the character δ−
1
2 . By making a substitution z = q−s, which changesX∗(T )⊗ZC×

to X∗(T )⊗Z C, this is exactly ρ = 1
2

∑
α∈R+ α.

Let Π◦
sm(G) ⊆ Πsm(G) denote the set of unramified representations, then we have a very concrete descrip-

tion Π◦
sm(G) = T̂ /WT . A natural question is to identify which of them are unitarizable, since this should be

related to the L2-harmonic analysis questions we are interested in. Let T̂ 1 := Hom(X∗(T ), S
1) be the subset

of unitary characters, then it is not hard to show that points in T̂ 1/WT are unitary representations.

However, this is not the full set. In particular, the trivial representation corresponds to the character δ−
1
2 ,

which is very far from unitary. There is also the complementary series, as we saw in the PGL2(F ) example.
A lot of the difficulties for identifying Πunit(G) is already present in the unramified setting.

Remark 2.12. If G is not split, then the above results need to be modified to take into account the Galois
action on T . This is one origin of the Langlands dual group LG, which is a semidirect product of Ĝ with a
Galois group.

3In some references, T̂ denotes the group of unitary characters of T .
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2.3. Unramified Plancherel formula. Suppose X is a G-variety as before. We were looking for a direct
integral decomposition

L2(X) =

∫
Πunit(G)

π⊕mπdµ(π)

Since we understand Π◦
sm(G) very well, it makes sense to consider the K-invariant vectors of the above

decomposition.

L2(X)K = L2(X/K) =

∫
T̂ /WT

(πK
χ )⊕mχdµ(χ)

where we have used the Satake isomorphism to rewrite the smooth dual in a concrete way. Moreover, since
H◦(G) is abelian, the spaces πK

χ are 1-dimensional. The flavour is therefore close to the abelian Fourier
transform examples we did before.

To simplify notations, we now assume all the multiplicities are 1. This holds in many cases, but in general,
they should be labelled by a dual torus attached to X. Further fix a base point x0 ∈ X. For each π ∈ Π◦

unit(G)
that appears in the decomposition, let Ωπ be the eigenfunction normalized so that Ωπ(x0) = 1. This gives a
normalization of the spherical Fourier transform

f 7→ f̂(π) := ⟨f,Ωπ⟩L2(X)

Explicitly, the Plancherel measure needs to satisfy the Fourier inversion formula

f(x) =

∫
T̂ /WT

f̂(π)Ωπ(x)dµ(π)

This is equivalent to an L2-version, which is more often known as the Plancherel formula

⟨f, g⟩L2(X) =

∫
T̂ /WT

f̂(π)ĝ(π)dµ(π)

The determination of the Plancherel measure is closely related to calculation expressions for Ωπ.
In the case X = G (viewed as a G × G-space), such a formula was computed in general by Macdonald

[Mac71] and Casselman [Cas80] using a different method. The results are analogous to Harish-Chandra’s
formulae in the semisimple Lie group case. This was generalized by Sakellaridis [Sak13] to many spherical
cases, and the book [BZSV23] contains a conjectural categorification of these formulae.

2.4. Group case: statement of results. The group case is G×G acting on X = △G\G×G on the right.
The base point is chosen to be x0 = (1, 1). For the unramified theory, this unwinds to the left action of the
unramified Hecke algebra H◦(G) on the space L2(K\G/K), given by the formula

(f · φ)(x) =
∫
G

φ(xg)f(g)dg

Unfortunately, this differs from the convolution φ ∗ f by an inverse. Instead, f · φ = f∨ ∗ φ, where f∨ is the
pullback of f along g 7→ g−1. This causes some differences in labelling from several references.

Definition 2.13. A zonal spherical function is a function ω ∈ C(K\G/K) such that ω is an eigenfunction
for H◦(G) and ω(1) = 1.

These are the normalized spherical functions, so they can be labelled using elements χ ∈ T̂ , identifying
the WT -orbits. Since T/T ◦ ≃ X∗(T ), we will equivalently view χ ∈ T̂ as unramified characters of T .

Theorem 2.14 (Macdonald, Casselman). Let G = G(F ), where G is split and unramified, then

(1) For all χ ∈ T̂ , there exists a unique zonal spherical function ωχ.
(2) Let χ be a regular unramified character, then for all t ∈ X∗(T )

+, we have

(ω) ωχ(t) =
δ(t)

1
2

Q(q−1)

∑
w∈WT

c(wχ−1)wχ(t)

where Q(ξ) is the Poincaré polynomial of G, and c(χ) is the Harish-Chandra c-function.
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(3) Let dχ be the probability measure on T̂ 1, then the Plancherel measure is

(dµ) dµ(χ) =
Q(q−1)

#WT
· |c(χ)|−2 · dχ

Explicitly, for all f, g ∈ C∞
c (K\G/K), we have the Fourier inversion formula

(Inversion) f(x) =
Q(q−1)

#WT

∫
T̂ 1

f̂(χ)ωχ(x) |c(χ)|−2
dχ

and the Plancherel identity

(Plancherel) ⟨f, g⟩K\G/K =
Q(q−1)

#WT

∫
T̂ 1

f̂(χ)ĝ(χ) |c(χ)|−2
dχ

We still need to explain Q(ξ) and c. The first one is easy,

Q(ξ) =
∑
w∈W

ξℓ(w)

where ℓ(w) is the length of w, namely the minimal number of simple reflections required to decompose w. In
particular, Q(q) = #(B\G)(Fq). It shows up in the volume of double cosets in the Cartan decomposition.

The Harish-Chandra c-function is more interesting. By definition, for a regular χ,

c(χ) =
∏

α∈R+

c(α, χ), c(α, χ) :=
1− q−1χ(α∨)

1− χ(α∨)

It satisfies the following properties, which follow from the definition

(1) c(α, χ) = c(wα,wχ) for all w ∈ WT .
(2) c(χ−1) = c(w0χ), where w0 is the longest element in WT .

(3) |c(χ)|−2
is an analytic, WT -invariant function on T̂ 1.

Let χ ∈ T̂ 1, so χ−1 = χ̄, then

|c(χ)|2 =
∏

α∈R+

c(α, χ)c(α, χ)

=
∏

α∈R+

1− q−1χ(α∨)

1− χ(α∨)
· 1− q−1χ−1(α∨)

1− χ−1(α∨)

=
∏
α∈R

γ(χ(α∨)), γ(z) =
1− q−1z−1

1− z

Here, γ is the gamma factor from Tate’s thesis, up to an explicit constant. The product over all roots can be
interpreted as taking the adjoint representation, and we can write |c(χ)|−2

= γ(0, χ,Ad)−1. The occurrence
of the γ-factor is a general feature of the Plancherel formula for groups.

Remark 2.15. If χ is not regular, then c(χ) has a pole. Macdonald’s formula still makes sense by rational

continuation, since we will prove that χ 7→ ωχ(t) for a fixed t is a rational function on T̂ 1.

Remark 2.16. One consequence of the formula is that the Plancherel measure is supported on T̂ 1, so the
complementary series does not contribute to L2(K\G/K). One way to understand this is their matrix
coefficients are “very not square integrable”. For example, the matrix coefficients for the trivial representation
are the constant functions, which do not decay at all on K\G/K, so it is unreasonable to expect the trivial
representation as a component of L2(K\G/K).

The precise interpretation is that a representation contributes to the Plancherel measure if and only if all
of its matrix coefficients are in L2+ε(G) for all ε > 0. The proof of this depends on the asymptotic properties
of the c-function and harmonic analysis in Lp(G). This phenomenon was first observed and proved for SL2(R)
in [KS60], and later generalized to all semisimple groups over local fields in [Cow78]. Note that this is very
different from the abelian case, say G = R, where the eigenfunctions are not integrable at all.

2.5. Proof and example. We now explain some aspects of the proof and make it explicit in the case
G = SL2. This is both for concreteness purpose and because many parts of the general picture reduces to a
specific calculation on SL2.
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2.5.1. Spherical functions. Let χ ∈ T̂ , and let πχ ∈ Π◦
sm(G) be the smooth representation labelled by χ. The

space of invariants πK
χ is 1-dimensional, so its dual is also 1-dimensional. Fix vectors v◦ ∈ πK

χ and ṽ◦ ∈ π̃K
χ

so that ⟨v◦, ṽ◦⟩ = 1, then the zonal spherical function ωχ is just the matrix coefficient

ωχ(g) = ⟨πχ(g)v
◦, ṽ◦⟩

This proves existence. The uniqueness holds since the G-invariant subspace of C(G) generated by ωχ is
spherical and has character χ under the Satake isomorphism.

The function can be described more explicitly. Given an Iwasawa factorization g = tnk, define

ϕχ(g) = (χδ
1
2 )(t)

Then a short calculation shows that

ωχ(g) =

∫
K

ϕχ(kg)dk

satisfies all the defining properties of ωχ. This gives an explicit description ωχ.
The relation between the two constructions above is parabolic induction. Since B = T ⋉N , we can extend

the character χδ
1
2 to B by making it trivial on N . The parabolic induction of χ has the underlying vector

space given by

IndGT χ := {f : G → C | f(bg) = (χδ
1
2 )(b)f(g) for all b ∈ B, g ∈ G}sm

with G acting by right translation. The action is smooth by definition. The subspace of K-invariant vectors
is 1-dimensional by the Iwasawa decomposition, and it is generated by ϕχ. It follows that Ind

G
T χ has a unique

unramified subquotient.
It is a general fact that IndGT is irreducible if and only if χ is regular: χ ̸= wχ for all non-trivial w ∈ WT .

However, we are taking a spherical matrix coefficient, so we only care about the K-invariant vectors. Taking
the linear form

∫
K
dk recovers the integral formula for ωχ.

Remark 2.17. The only place where the Satake isomorphism was used was the statement that all zonal
spherical functions have the form ωχ. This is essentially the injectivity part.

2.5.2. Intertwining operator. We now derive Macdonald’s formula for ωχ, following the approach of Cassel-
man. The first piece of input is the asymptotic expansion of a general matrix coefficient due to Jacquet and
Casselman.

Theorem 2.18. Let π = IndGT χ.

(1) For each w ∈ WT , there is a B-equivariant linear form Ωw : π → C(δ 1
2wχ) such that the direct sum⊕

w∈WT
Ωw : π|B →

⊕
w∈WT

C(δ 1
2wχ) identifies the right hand side with the N -coinvariants of π|B.

(2) If |χ| ≪ 1, then the following integral converges

Ωw(f) =

∫
N∩w−1Nw\N

f(wn)dn

and defines by analytic continuation a normalized operator Ωw for all regular χ.
(3) For all v⊗ ṽ ∈ π⊗ π̃, there exists ε > 0 such that whenever t ∈ T satisfies |α(t)| < ε for all α ∈ R+,

we have

⟨π(t)v, ṽ⟩ = δ(t)
1
2 ·Q(q−1)−1

∑
w∈WT

Ωw(v)Ω̃w(ṽ)wχ(t)

About the proof. The construction (π|B)N is called the Jacquet functor. Both part (1) and part (2) can be

motivated by Mackey theory applied to decomposing ResGB IndGB χ. Moreover, by Frobenius reciprocity, Ωw

is equivalent to an intertwining operator

Tw : IndGT χ → IndGT wχ

The analytic continuation of the intertwining operator, as well as its zeroes and poles is very important in
local harmonic analysis. An example for SL2 will be done later.

Finally, part (3) is a general fact relating matrix coefficients of π with the matrix coefficients of its Jacquet
module. The only additional input is to compute the normalization factor Q(q−1)−1. This is done by
computing both sides at a specific function with a small support. □
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When taking v and ṽ to be spherical, part (1) shows that the asymptotic expansion of part (3) is actually
exact on all t ∈ X∗(T )

+. As a result, all we need to compute is the intertwining operator. By a formal
calculation, there is a product decomposition

Tw1w2 = Tw1Tw2 if ℓ(w1w2) = ℓ(w1)ℓ(w2)

This is the Gindikin–Karpelevič formula, which is very natural when expressed expressed in this representa-
tion theoretic language. The following example is found in [Kna03].

Example 2.19. For the group G = SL3(R), the integral is∫∫∫
R3

(1 + x2 + z2)−a(1 + y2 + (xy − z)2)−bdxdydz

By completing the square on the second term and changing the variable y → y ·
√
1+x2+z2

1+x2 , the integral
simplifies. With another change of variable, it becomes∫∫∫

R3

(1 + x2)−a(1 + y2)−b(1 + z2)−a−b+ 1
2 dxdydz

which factors and can be evaluated in terms of the Γ-function.

The product formula expresses Ωw(v
◦) as a product over simple reflections in w. Each term is a compu-

tation on a rank 1 group, which in the split case is just SL2. The result is a term in the product of c(wχ).

The dual term Ω̃w(ṽ) consists of the other terms. Together, this gives Macdonald’s formula (ω).

2.5.3. Plancherel formula. We will now prove the inner product formula, which formally implies the other
results. By linearity, it suffices to prove that for all λ, µ ∈ X∗(T )

+, we have the identity

Q(q−1)

#WT

∫
T̂ 1

ĉλ(χ)ĉµ(χ) |c(χ)|−2
dχ =

{
0 λ ̸= µ

µG(KλK) λ = µ

where cλ, cµ are the indicator functions we have seen before.
We first derive another expression for the spherical transform. Let f ∈ C∞

c (K\G/K), then

f̂(χ) =

∫
K\G/K

f(x)ωχ(x)dx

=

∫
K\G/K

f(x)

∫
K

ϕχ(kx)dkdx

=

∫
G

f(g)ϕχ(g)dg

The Iwasawa decomposition gives an integration formula∫
G

f(g)dg =

∫
T

∫
N

∫
K

f(tnk)dkdndt

This is not entirely straightforward since the Borel B = TN is not unimodular, and one has to be careful
with measures. Applying this, we get∫

G

f(g)ϕχ(g)dg =

∫
T

∫
N

∫
K

f(tnk)ϕχ(tnk)dkdndt

=

∫
T

χ(t)δ(t)
1
2

∫
N

f(tn)dndt

=

∫
T

Sf(t)χ(t)dt

This is exactly the Fourier transform of Sf evaluated at χ.

Proposition 2.20. f̂(χ) = FSf(χ).
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Remark 2.21. This proposition suggests that we should relate harmonic analysis on the torus T with harmonic
analysis on G. While we do not explicitly pursue it here, there is such a relation between the Plancherel
measures, with the intervening coefficients obtained from asymptotic expansions of matrix coefficients. This
and Macdonald’s formula explains the role of the Harish-Chandra c-function in the Plancherel formula.

There are various technical complications since the intertwining operators do not converge on the unitary
axis. We will see this for G = SL2. For the group case, this is carefully done in Waldspurger’s proof of the
full Plancherel formula [Wal03]. In the general spherical setting, this is the content of [SV17, Part 3].

The left hand side of the identity we need to prove is an L2(T̂ 1, dχ) inner product between the functions

fλ(χ) = ĉλ(χ), gµ(χ) =
Q(q−1)

#WT
ĉµ(χ) |c(χ)|−2

By the usual Plancherel identity and the above proposition,

⟨fλ, gµ⟩L2(T̂ 1) = ⟨Scλ,F−1gµ⟩L2(X∗(T ))

We now need to compute F−1gµ, which amounts to decomposing gµ(χ) into a Laurent series in χ.
From now on, we assume χ is unitary. Let vµ = µG(KµK), then by definition, ĉµ(χ) = vµωχ̄(µ) =

vµωχ−1(µ). Further assuming χ is regular, Macdonald’s formula implies

gµ(χ) =
vµδ(µ)

1
2

#WT

∑
w∈WT

c(wχ−1)

|c(χ)|2
⟨wχ, µ⟩

=
vµδ(µ)

1
2

#WT

∑
w∈WT

c(wχ)−1⟨wχ, µ⟩

Recall the definition of the c-function,

c(χ)−1 =
∏

α∈R+

1− χ(α∨)

1− q−1χ(α∨)
=
∏

α∈R+

(
1 + (q − 1)

∑
n>0

q−n⟨χ, nα∨⟩
)

Expanding the product, we see that c(χ)−1 = 1 +
∑

λ>0 aλ⟨χ, λ⟩ for some coefficients aλ. As a result,

gµ(χ) =
vµδ(µ)

1
2

#WT

( ∑
w∈WT

⟨χ,wµ⟩+
∑

w∈WT

∑
λ>0

aλ⟨χ,w(µ+ λ)⟩

)
It follows that F−1gµ is supported on the WT -orbit of cocharacters which are ≥ µ. On the other hand, Scλ
is supported on WT -orbits of characters which are ≤ λ. If µ ̸≤ λ, then the supports are disjoint, so the inner
product is 0. If µ > λ, then we obtain the same result by switching λ and µ. Finally, if λ = µ, then

⟨Scλ,F−1gλ⟩L2(X∗(T )) = δ(λ)−
1
2 · vλδ(λ)

1
2

#WT

∑
w∈WT

1[wλ] = vλ

This concludes the proof.

2.5.4. Example: SL2. For G = SL2(F ), we have T̂ = C×. The complex number z determines the unramified
character diag(t, t−1) 7→ z2ν(t). It is often more convenient to write z = q

s
2 , so the character becomes

χs :
(
t
t−1

)
7→ |t|s

The Weyl group has order two, with the non-trivial element w acting by s 7→ −s. The character χs is unitary
when Re(s) = 0. Finally, the character δ sends diag(t, t−1) to |t|2.

On the induced representation IndGK χs, the two linear forms are Ω1 : f 7→ f(1) and

Ω−1 : f 7→
∫
N

f(wn)dn =

∫
F

f
(( −1

1 x

))
dx

To compute the value of f , we need to know the Iwasawa factorization. In this case, it can be done explicitly.(
−1

1 x

)
=

(
x−1 −1

x

)(
1

x−1 1

)
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In particular, if f = ϕs is the normalized right K-invariant vector, then

Ω−1ϕs = 1 +

∫
F−O

|x|−(s+1)
dx

= 1 +
∑
n≥1

q−(s+1)n(qn − qn−1)

= 1 + (1− q−1)
∑
n≥1

q−sn =
1− q−1q−s

1− q−s

This manipulation only makes sense if Re(s) > 0, so it just fails to be defined on the unitary axis. However,
the analytic continuation gives the required expression.

Macdonald’s formula now reads

ωs(diag(t, t
−1)) =

|t|
1 + q−1

(
1− qs−1

1− qs
|t|s + 1− q−(s+1)

1− q−s
|t|−s

)
On the other hand, by our computation earlier,

(FScn)(qs) = qn
∑
|k|≤n

qsk − qn−1
∑

|k|≤n−1

qsk = q2n(1 + q−1)ωs(diag(ϖ
n, ϖ−n))

This verifies the above computations in a different way.

Remark 2.22. Let G = SL2(R), then the analogous construction would take K = SO2, so K\G/K can
be identified with the line segment [0,∞). The infinitesimal version of H◦ is a space of linear differential
operators (centre of Ug), generated by the hyperbolic Laplacian Df = f ′′(r) + 2 coth(r)f ′(r), so the zonal
spherical functions are solutions to the differential equation Df = λf . By studying the singularity at ∞,
Harish-Chandra was able to obtain asymptotic expansions for f analogous to Macdonald’s formula [HC58a].
The coefficients are expressed as certain integrals analogous to Ωw, though he was unable to evaluate them
explicitly beyond the rank 1 case. Assuming certain asymptotic properties, he proved the Plancherel formula
[HC58b]. These conjectures were later resolved in part thanks to the Gindinkin–Karpelevič formula.

Intertwining operators did not explicitly appear in this part of Harish-Chandra’s work, but they were
already part of harmonic analysis under different names. Again for G = SL2(R), the intertwining operator
turns out to be the integral operator

Tf =

∫
R

f(y)

|x− y|s
dy

If s = 1, this is essentially the Hilbert transform. It is easy to obtain analytic continuation if f is smooth,
but the general L2-case requires Fourier analysis. Boundedness properties on Lp are directly related to the
construction of the complementary series, initially observed by Kunze–Stein [KS60].
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[Kna03] A. W. Knapp. The Gindikin-Karpelevič formula and intertwining operators. In Lie groups and symmetric spaces,
volume 210 of Amer. Math. Soc. Transl. Ser. 2, pages 145–159. Amer. Math. Soc., Providence, RI, 2003.

[KS60] R. A. Kunze and E. M. Stein. Uniformly bounded representations and harmonic analysis of the 2×2 real unimodular

group. American Journal of Mathematics, 82:1–62, 1960.
[Mac71] I. G. Macdonald. Spherical functions on a group of p-adic type. Publications of the Ramanujan Institute, No. 2.

University of Madras, Centre for Advanced Study in Mathematics, Ramanujan Institute, Madras, 1971.

[Sak13] Yiannis Sakellaridis. Spherical functions on spherical varieties. American Journal of Mathematics, 135(5):1291–1381,
2013.

[SV17] Yiannis Sakellaridis and Akshay Venkatesh. Periods and harmonic analysis on spherical varieties. Astérisque,
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