
NORMS OF SINGULAR MODULI

SHILIN LAI

Abstract. The j-function is a special modular function on the upper half plane. Its values at imaginary
quadratic points are called singular moduli. It is a classical result that they are always algebraic integers. In

1983, Zagier discovered an explicit formula for the prime factorizations of their norms. This talk will sketch
his analytical proof of this result, after recalling the necessary background material.

This is the expanded version of the notes for my talk on the work of Gross and Zagier [GZ85] on the norm
of differences of two singular moduli with relatively prime discriminants, given at the Princeton Graduate
Students’ Seminar.

0. Motivation

(1) This talk will explain the approximation

eπ
√

163 ≈ 744 + (26 · 3 · 5 · 23 · 29)3

(2) The techniques used here are the same as the ones used in [GZ86] and [GKZ87] to relate the height
pairing of Heegner points to central derivatives of L-functions, except we are working in the simpler level 1
case. The second paper is more relevant since we will be dealing with points of coprime discriminants.

1. Some modular functions

Let H = {z ∈ C : Im(z) > 0} be the upper half-plane. Given γ =
(
a b
c d

)
∈ GL2(R)+, define the weight-k

slash operator f |kγ by

(f |kγ)(z) = (det γ)k/2(cz + d)−kf
(az + b

cz + d

)
We say that f transforms like a modular form of weight k if f |kγ = f for all γ ∈ SL2(Z). In this case, taking
γ to be

(
1 1
0 1

)
shows that f(z + 1) = f(z), so if f is smooth, then it has a Fourier expansion

f(z) =
∑
n∈Z

an(y)e2πinz =
∑
n∈Z

an(y)qn, an(y) =

∫ 1

0

f(z)e−2πinzdx

where y = Im(z) and q = e2πiz. If f is holomorphic, then an(y) is just a constant. A modular form is a
holomorphic function which transforms like a modular form and satisfies some growth conditions at infinity,
namely an = 0 if n < 0.

The classical examples of modular forms are the Eisenstein series

Gk(z) =
1

2

∑′

(m,n)∈Z2

1

(mz + n)k
=

∞∑
n=1

1

nk
+

∞∑
m=1

∑
n∈Z

1

(mz + n)k

First suppose k ≥ 4. The first sum converges absolutely. The slash operator changes the order of summation,
so Gk is a modular form. Note in addition that Gk is 0 unless k is even. If k = 2, then G2 is defined using
the second expression. It is not modular, but we will see how it can be modified into a modular function.
In either case, by applying Poisson summation to the inner sum, we get the q-expansion

Gk(z) = ζ(k) +
2(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn
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Here, σs(n) =
∑
d|n d

s is the divisor-sum function. Define Ek to be Gk normalized to have constant term 1,

so by the classical formulae for zeta-values,

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

where Bk are the Bernoulli numbers.
There is a good classification result for holomorphic modular forms. In particular, weight 2 holomorphic

modular forms do not exist. But if we drop the holomorphic assumption, then a weight 2 form can be
constructed via analytic continuation. Consider

G2(z, s) =
1

2

∑′

(m,n)∈Z2

ys

(mz + n)2 |mz + n|2s

where s is a complex variable. If Re(s) > 2, then the sum converges absolutely, giving a non-holomorphic
modular form of weight 2. Its Fourier expansion can be computed as before and is given by

ζ(2s+ 2)ys −
√
πsΓ

(
s+ 1

2

)
ζ(2s+ 1)

Γ(s+ 2)
y−1−s +

∑
n 6=0

an(y, s)e2πinz

with

an(y, s) =
2πs+1 |n|−s−

1
2

Γ(s+ 2)
σs+1(n)e2πny

( ∂
∂y
− 2πn

)(√
yKs+ 1

2
(2π |n| y)

)
where Kν(x) is the (modified) Bessel function defined by

Kν(x) =

∫ ∞
0

e−x cosh t cosh(νt)dt

Remark (on normalization). This is the unique solution to the 2nd order linear ODE

x2 d
2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0

on (0,∞) which satisfies y(x) ∼
√

π
2x
−1/2e−x as x→ +∞.

The point is that all terms can be analytically continued to s = 0, giving a function

G∗2(z) = lim
s→0+

G2(z, s)

which transforms like a modular form of weight 2 by the principle of analytic continuation. One checks using
the q-expansion that G∗2(z) = G2(z)− π

2y . We will do something like this many times later.

Define the modular discriminant ∆ =
E3

4−E
2
6

1728 . It follows easily from the Fourier expansions and elementary
number theory that ∆ has an integral q-expansion. It is a classical fact that ∆ has a product expansion

∆(q) = q

∞∏
n=1

(1− qn)24

which can be proven using the G∗2 introduced earlier. From this, it follows that ∆ is nowhere vanishing on
H. Finally, define j-invariant to be j = E3

4/∆. This is a holomorphic modular function of weight 0 with
a simple pole at infinity. In fact, the quotient SL2(Z)\H has a complex structure whose compactification

by adding ∞ is isomorphic to P1 (one need to be careful around the points i, ρ = 1+i
√

3
2 and ∞, which

have non-trivial stabilizers, but we will not go into details). The j-function gives an explicit isomorphism
SL2(Z)\H → P1. It follows that any meromorphic function f on H invariant under SL2(Z) is a rational
function of j. In particular, if the only pole of f is at ∞, then f is a polynomial in j. By comparing the
q-expansions, the coefficients of this polynomial lies in the ring generated by the principal part of f at ∞.

The q-expansion of the j-function is

j(z) =
1

q
+ 744 + 196884q + · · · = 1

q
+
∑
n≥0

cnq
n
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It is clear that cn are positive integers. The invariance of j under SL2(Z) means we have very precise
information about its behaviour near the real line. Using techniques such as the Hardy-Littlewood circle
method, one can prove an asymptotics

cn ∼
e4π
√
n

√
2n3/4

and extract an explicit bound on cn from the proof. More precise analysis done by [BP05] shows that cn is
always less than the above asymptotics if n ≥ 1. The upshot is that j is computable to arbitrary precision.

If we try to compute j
(

1+i
√

163
2

)
, we find that

j
(1 + i

√
163

2

)
= −eπ

√
163 + 744 + ε

where ε ≤ 10−12. We will see next that the left hand side is an integer, which explains why eπ
√

163 is almost
an integer.

2. Singular moduli

Let τ be an imaginary quadratic point in H, then τ satisfies aτ2 + bτ + c = 0 for some integers a, b, c
with gcd(a, b, c) = 1. Its discriminant is d = b2 − 4ac. By rearranging the equation, we can find a matrix
M ∈ GL2(Z)+ such that Mτ = τ . We are therefore led to investigating the function j(Mτ) = j|0M(τ).

Proposition 1. The function j|0M is integral over Z[j].

Proof. Let m = detM , and let Sm be the set of matrices with determinant m. The double coset space
SL2(Z)\Sm/SL2(Z) is represented by

{M1, · · · ,Mh} =
{(

a b
0 d

)
: ad = detM, 0 ≤ b < d

}
Consider the expression

h∏
i=1

(x− j|0Mi) = xh + Ph−1x
h−1 + · · ·+ P0

where P0, · · · , Ph−1 are symmetric polynomials of {j|0Mi}i. By construction, they are SL2(Z)-invariant.
Since j|0γ = j for all γ ∈ SL2(Z), it follows that j is a root of this polynomial. Observe that

j|0
(
a b
0 d

)
= j
(az + b

d

)
=

∞∑
n=−1

cne
2πibn/dqan/d ∈ Z[µd][[q

−1/d, q1/d]]

It follows that Pi are all in the above ring. But since they are modular of weight 0, we can only have integral
powers of d. Furthermore, by applying a transformation of the form ζd 7→ ζrd with gcd(r, d) = 1, we see that
the coefficients of the q-expansions of Pi are invariant. Therefore, Pi have integral q-expansions at infinity,
so they are integral polynomials of j. �

Corollary 2. If τ is imaginary quadratic, then j(τ) is an algebraic integer. They are called singular moduli.

This proof combined with the fact that j can be computed to arbitrary precision gives an algorithm to
compute the exact values of singular moduli (though it is not very efficient).

Example 3. Suppose we want to compute j
(

1+i
√

7
2

)
. We first note that(

0 −2
1 −1

)
1 + i

√
7

2
=

1 + i
√

7

2

According to the proof, we need to consider the polynomial(
x− j|0

(
1 0
0 2

))
·
(
x− j|0

(
1 1
0 2

))
·
(
x− j|0

(
2 0
0 1

))
= (x− j(2z))

(
x− j

(z + 1

2

))(
x− j

(z
2

))
= x3 − P2(z)x2 + P1(z)x− P0(z)
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One can check using the q-expansion that

P2 = j2 − 1488j + 16200

P1 = 1488j2 + 40773375j + 8748 000 000

P0 = −j3 + 162000j2 − 8748 000 000j + 157 464 000 000 000

It follows that j
(

1+i
√

7
2

)
is the root of the polynomial Ψ2(x, x), where

Ψ2(x, j) = x3 − (j2 − 1488j + 16200)x2 + (1488j2 + 40773375j + 8748 000 000)x

− (−j3 + 162000j2 − 8748 000 000j + 157 464 000 000 000)

One can factor Ψ2(x, x) = −(x− 8000)(x+ 3375)2(x− 1728). By numerical computation, j
(

1+i
√

7
2

)
is close

to −3375, so it must be −3375. The other roots are j(i) = 1728 and j(i
√

2) = 8000.

Remark. The exponent is related to the number of matrices of the given determinant (in this case 2) fixes
the point, but we need to mod out the contribution from the automorphism group in SL2(Z).

Remark. It is a general fact that Ψn(x, y) = Ψn(y, x).

Here are some more examples

j(ρ) = 0, j
(1 + i

√
67

2

)
= −2153353113, j

(1 + i
√

163

2

)
= −2183353233293

j(i
√

5) = 26
√

5
3
(13 + 5

√
5

2

)3

, j(i
√

6) = 2633(1 +
√

2)2(5 + 2
√

2)3

j
(1 + i

√
67

2

)
− j
(1 + i

√
163

2

)
= 215375372 · 13 · 139 · 331

One can say a lot more about the fields of definition of j(τ) and the action of Gal(Q̄/Q) on them. One

consequence is that if Q(
√
d) has class number 1, then j(τ) is an actual integer, as seen above.

Note that the numbers are very smooth. This is made explicit in the following theorem describing their
factorizations, which is the main theorem of the talk.

Theorem 4 (Gross-Zagier). Let d1 and d2 be coprime fundamental discriminants, then( ∏
τ1,τ2∈SL2(Z)\H

disc(τi)=di

(
j(τ1)− j(τ2)

)) 8
w1w2

= ±
∏
x2<D

x2≡D (mod 4)

∏
n|D−x2

4

n−ε(n)

where the left product is over pairs (τ1, τ2) of SL2(Z)-orbits of the given discriminants, wi is the number of
roots of unities in Q(

√
di), and ε is defined on primes by

ε(`) =


0 if

(
d1d2
`

)
= −1(

d1
`

)
if` - d1(

d2
`

)
if ` - d2

and extended multiplicatively.

Corollary 5. If `|j(τ1)− j(τ2), then
(
di
`

)
= −1 for i = 1, 2, and ` ≤ d1d2

4 .

Remark. (1) ε is well-defined.
(2) d is a fundamental discriminant if it is the discriminant of a quadratic field. This corresponds to

the maximal order case and is assumed for simplicity. There are similar formulae for norms of
Φm(j(τ1), j(τ2)) for m ≥ 1, which allows one to generalize the formula to situations where d1 and d2

may not be coprime or fundamental (see section 4 of [GZ85]).
(3) If d1, d2 < −4, then the left hand side is the sqaure of the norm of the algebraic integer j(τ1)− j(τ2).

Otherwise, we may have taken a square or cube root.
(4) If one were to define j as an isomorphism from X0(1) to P1, then it is natural to specify that it has a

simple pole of residue 1 at infinity. This still leaves us with a translational degree of freedom, which
is eliminated by taking differences.
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3. Sketch of proof

Fix coprime fundamental discriminants d1, d2 < 0. We are trying to prove T = −S, where

T =
4

w1w2

∑
disc(τi)=di

log |j(τ1)− j(τ2)|2

S =
∑
x2<D

x2≡D (mod 4)

∑
n| x2−D

4

ε(n) log n

(1) Re-write S.

Let D = d1d2, and let K = Q(
√
D), then its ring of integers consists of numbers of the form 1

2 (a+ b
√
D),

where a2 ≡ b2D (mod 4), and its different is d = (
√
D). Denote by ′ the non-trivial automorphism of K.

Let χ be the genus character of the narrow class group corresponding to the extension Q(
√
d1,
√
d2)/Q(

√
D),

which is unramified at all finite places. Then one can verify that S = a1, where

an =
∑
v∈d−1

v�0
Tr(v)=n

∑
n|vd

χ(n) logNn

This step is elementary and corresponds to the bijection (x, n)↔ (v = x+
√
D

2
√
D
, n), where Nn = n.

This can be further re-written as

an =
∑
v∈d−1

v�0
Tr(v)=n

∂

∂s

∣∣∣
s=0

σs,χ(vd)

where σs,χ is a divisor sum function

σs,χ(a) =
∑
n|a

χ(n)(Nn)s

(2) Relate an to something which transforms as a modular form of weight 2.
We do this using Hilbert modular forms, which are higher dimensional generalizations of classical modular

forms. More precisely, they are functions f : H2 → C such that

f(γz) = (cz1 + d)k(c′z2 + d′)kf(z)

for γ ∈ SL2(OK) (we only consider the parallel weight case). Since they are invariant under translation by
the lattice OK , they have Fourier expansions of the form

f(z1, z2) =
∑
v∈d−1

cve
2πi(vz1+v′z2)

where cv may depend on y and y′. The inverse different d−1 shows up since by definition, it is the dual lattice
to OK under the trace form. The transformation properties imply that f(z, z) transforms like a modular
form of weight 2k with Fourier expansion

f(z, z) = c0 +

∞∑
n=1

cne
2πinz, cn =

∑
v∈d−1

v�0
Tr(v)=n

cv

So we want to find an f such that cv(f) = ∂
∂s

∣∣
s=0

σ1+s,χ(vd). This is the derivative of a divisor sum, so
we are led to consider the Eisenstein series

Es(z1, z2) =
∑

a∈ClK

χ(a)(Na)1+2s
∑′

(m,n)∈a2/O×K

ys1y
s
2

(mz1 + n)(m′z2 + n′) |mz1 + n|2s |m′z2 + n′|2s

which converges absolutely if Re(s) is sufficiently large. This is a non-holomorphic Eisenstein series of parallel
weight 1 (we specify the value at each cusp, which are in bijection with ideal classes of OK). In particular,
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one need to verify that the expression being summed does not depend on the choice of a in an (wide) ideal
class. It is also standard to work out its Fourier expansion

Es(z1, z2) =L(1 + 2s, χ)ys1y
s
2 +D−

1
2L(s, χ)Φs(0)2y−s1 y−s2

+
∑
v∈d−1

v 6=0

D−
1
2 Φs(vy1)Φs(v

′y2)y−s1 y−s2 σ−2s,χ(vd)e2πi(vx1+v′x2)

where

Φs(t) =

∫ ∞
−∞

e−2πixt

(x+ i)(x2 + 1)s
dx

One can check that each term can be analytically continued to s = 0, and that the series actually converges.
The analytic continuation of Φs(t) is done by deforming the path of integration to a contour from i∞ to i
in the Re(z) < 0 region and then back in the Re(z) > 0 region. This also give the bound

|Φs(t)| � |t|O(1)
e−2π|t|, |t| → ∞

locally uniformly in s.

Remark. Using this expansion, it is easy to see that E0(z1, z2) = 0.

Let F (z) =
√
D

8π2
∂
∂s

∣∣
s=0

Es(z, z), then F is a non-holomorphic modular form of weight 2, and a computation
gives the q-expansion of F

F (z) =

√
D

2π2
(L(1, χ) log y + Cχ) +

∑
v∈d−1

v�0

∂

∂s

∣∣∣
s=0

σs,χ(vd)e2πiTr(v)z −
∑
v∈d−1

v>0>v′

σ0,χ(vd)Φ(|v′| y)e2πiTr(v)z

where

Cχ = L′(1, χ) +

(
1

2
logD − log π − γ

)
L(1, χ), Φ(t) =

i

2π
e−2πt ∂

∂s

∣∣∣
s=0

Φs(−t) =

∫ ∞
1

e−4πtu du

u

The coefficient of e2πiz is almost what we want.
(3) Apply holomorphic projector.

The space of functions of sufficiently slow growth at infinity which transform like modular forms of weight
k carries an inner product defined by

(f, g) =

∫
SL2(Z)\H

f(z)g(z)yk
dxdy

y2

This is non-degenerate on the space of cusp forms of weight k (modular forms for which a0 = 0). Given a non-
holomorphic modular form f =

∑
n≥0 an(y)qn, the functional (f,−) on Sk(SL2(Z)) is therefore represented

by a holomorphic cusp form g =
∑
n≥0 bnq

n. By pairing with special test functions (namely the Poincaré

series), one can evaluate bn in terms of an(y). This operation is called holomorphic projection.
But in weight 2, there are no holomorphic modular forms, so holomorphic projection should give 0. The

formulae for bn also requires modifications because the Poincaré series are no longer absolutely convergent.
Therefore, we need to use analytic continuation. The result is

Theorem 6 (Proposition 7.3 of [GZ85], Proposition 6.2 of [GZ86]). Let F (z) be a function on H which
transforms like a weight 2 modular form. Suppose it satisfies the growth condition F (z) = A log y+B+O(y−ε)
for some ε > 0. Let

∑
n∈Z an(y)e2πinz be its Fourier expansion, then for n ≥ 1,

lim
s→0

(
4πn

∫ ∞
0

an(y)e−4πnyysdy +
24Aσ1(n)

s

)

= 24A

(2
ζ ′

ζ
(2) + 1 + log(4n2)

)
σ1(n)−

∑
d|n

d log d

− 24Bσ1(n)
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Proof. Consider the non-holomorphic weight 2 Poincaré series

P
(m)
2,s =

1

2

∑
γ∈Γ∞\Γ

(
ys · e2πimz

)
|2γ

Its Fourier coefficients can be computed using the usual methods:

an(P
(m)
2,s ) = δmny

s +
∑
c>0

c−2s+2K(m,n, c)ys
∫ ∞+iy

−∞+iy

e
(
− m

c2z
− nz

)
z−2 |z|−2s

dz

where K(m,n, c) is the Kloosterman sum

K(m,n, c) =
∑

a,d∈(Z/cZ)×

ad=1

e
(md+ na

c

)

The classical Weil estimate gives |K(m,n, c)| �ε c
1
2 +ε uniformly in n if m > 0 [Sar90]. It follows that if

m > 0, the P
(m)
2,s can be analytically continued to s = 0 to a holomorphic form of weight 2, which must then

be identically 0 (if m = 0, we get the non-holomorphic E2).

If A = B = 0, then the integral defining (F, P
(m)
2,s ) converges absolutely when Re(s) > 1. The integral

itself can be computed using the standard unfolding trick. The formula follows from analytically continuing
the result to s = 0. In the general case, we need to subtract off non-holomorphic forms with known behavior
at infinity. Recall that

G2(z, s) =
1

2

∑′

(m,n)∈Z2

ys

(mz + n)2 |mz + n|2s

Define E2(z) = 6
π2G2(z, 0) and F2(z) = 6

π2
∂
∂s

∣∣
s=0

G2(z, s). Then one can check that

E2(z) = 1 +O
(
y−1

)
, F2(z) = log y +O

(
y−1 log y

)
So F ∗ = F − AF2 − BE2 satisfies F ∗(z) = O(y−ε). We can apply the special case to this and recover the
required formula using the Fourier expansion of G2(z, s) computed earlier. �

We apply this theorem to F (z) above to get finally

S = lim
s→0

( ∑
n>
√
D

n≡D (mod 2)

( ∑
d|n2−D

4

ε(d)
)

Ψs

(n−√D√
D

)
− 12

√
D

π2
L(1, χ)s−1

)

+
12
√
D

π2
L(1, χ)

(
2
ζ ′

ζ
(2) + 1 + γ + log

4π√
D

)
− 12

√
D

π2
L′(1, χ)

where

Ψs(t) = 4π

∫ ∞
0

Φ(ty)e−4πyysdy

The sum comes from re-writing the extra terms involving v > 0 > v′ in elementary terms.
(4) Archimedean height on modular curves

On a smooth compact Riemann surface X with a fixed point ∞, consider functions G(x, y) which satisfy
the next two properties

(i) G(x, y) is symmetric.
(ii) For a fixed y0 ∈ X − {∞}, x 7→ G(x, y0) is harmonic on X − {∞, y0}. It has a log-pole at y and ∞ of

residues 1 and −1 respectively.
Such a function is unique up to an additive constant if it exists, and it is called a Green’s function. We can
then define a height pairing between degree zero divisors with disjoint supports by setting

〈D1, D2〉 =
〈∑

i

ai(xi),
∑
j

bj(yj)
〉

=
∑
i,j

G(xi, yj)
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This is well-defined and is supposed to describe − log(“distance between D1 and D2”). If X is the complex
analytification of an arithmetic surface, then this gives the Néron local height at complex places. See [Gro86]
for more details.

Now specializing to the case X = P1 with ∞ marked, an obvious Green’s function is given by

G(z1, z2) = log |z1 − z2|2

On the other hand, we had an isomorphism j : SL2(Z)\H ∼−→ P1. In Chapter 2 of [GZ86], it was explained
how to construct a Green’s function on a modular curve. Roughly speaking, we try to average over some
harmonic function g on H satisfying the necessary boundary conditions. It turns out that this does not
converge, so we consider instead solutions to ∆gs = s(1 − s)gs, hoping they analytically continue to s = 1.
This actually works after some tweaking. Define the following:

Qs−1(t) =

∫ ∞
0

(t+
√
t2 − 1 coshx)−sdx (Legendre function of the 2nd type)

gs(z1, z2) = −2Qs−1

(
1 +
|z1 − z2|2

2y1y2

)
(Argument is cosh(d(z1, z2)), so invariant under SL2(R))

Gs(z1, z2) =
1

2

∑
γ∈SL2(Z)

gs(z1, γz2) (Converges absolutely and locally uniformly on Re(s) > 1)

E0(z, s) =
1

2

∑′

(m,n)∈Z2

ys

|mz + n|2s
(Eisenstein series of weight 0)

Then finally,

G(z1, z2) = lim
s→1

(
Gs(z1, z2) +

24

π
E0(z1, s) +

24

π
E0(z2, s)−

12

s− 1

)
is also a Green’s function on SL2(Z)\H. The Eisenstein series are there to make sure it is harmonic. We
therefore have the identity

log |j(z1)− j(z2)|2 = lim
s→1

(
Gs(z1, z2) +

24

π
E(z1, s) +

24

π
E(z2, s)−

12

s− 1

)
+ C

where C is a constant determined by studying the limit as y1 →∞, which gives

C = 24
(
− ζ ′

ζ
(2) + log 2− γ + 1

)
(5) Evaluate T by summing

Suppose z is imaginary quadratic, then E0(z, s) can be identified with a partial Dedekind ζ-function for
Q(z). More precisely, if τ has discriminant d which is fundamental, then

E(τ, s) = w |d|−
s
2 2s−1ζK,[a](s)

where K = Q(τ), w is the number of roots of unities in K, and [a] is the ideal class of ideals homothetic to
Z + τZ. Summing over all τ such that disc(τ) = d gives ζK(s) multiplied by the same factor.

To compute the summed version of the first term, unfold to get

4

w1w2

∑
disc(τi)=di

Gs(τ1, τ2) =
∑

(τ1,τ2)∈SL2(Z)\H2

disc(τi)=di

gs(τ1, τ2)

The map (a, b, c) 7→ τ = −b+
√
d

2a gives a bijection between τ ∈ H with discriminant d and triples of integers

(a, b, c) such that b2 − 4ac = d. When we represent τ1 and τ2 in this way, we see that

1 +
|τ1 − τ2|2

2τ1τ2
=

n√
D
, with n = 2a1c2 + 2a2c1 − b1b2 >

√
D
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It is also clear that n ≡ D (mod 2). Therefore, the above sum can be re-written as

−2
∑
n>
√
D

n≡D (mod 2)

ρ(n)Qs

( n√
D

)

where

ρ(n) =
1

2
#
(
{(a1, b1, c1, a2, b2, c2) ∈ Z6 : b2i − 4aici = di, b1b2 − 2a1c2 − 2a2c1 = −n}/SL2(Z)

)
The factor of 1

2 is to account for negatively definite forms.
Finally, we reach another formula

T = lim
s→1

( ∑
n>
√
D

n≡D (mod 2)

ρ(n)Qs

( n√
D

)
+

24

π

(
h′2

∣∣∣d1

2

∣∣∣s/2ζK1
(s) + h′1

∣∣∣d2

2

∣∣∣s/2ζK2
(s)
)
− 12h′1h

′
2

s− 1

)
+ h′1h

′
2C

where h′i = 2hi/wi.
(6) Compare the formulae

The inputs necessary are

(i) The function Ψs(λ)− 2Γ(2s+2)
(4π)sΓ(s+2)Qs(1 + 2λ) is O(λ−s−2) as λ→∞ and tends to 0 as s→ 0.

(ii) ρ(n) =
∑
d|n2−D

4

ε(d).

(iii) L(s, χ) = L(s, χ1)L(s, χ2), where χi is the character associated to Ki/Q.

(iv) L(1, χi) = πh′i/
√
|di|.

Of these, the first is standard asymptotic analysis of the functions present. The second can be deduced
from genus theory, and it will be explained. The third is standard L-function formalism. The fourth is the
analytic class number formula. Using these, the rest is just a computation.

We now explain step (ii) in detail. First observe that the right hand side is∑
d|n2−D

4

ε(d) =
∑
n|µ

χ(n) = r(µ)

where µ = n−
√
D

2 , n and χ are as before, and r is the number of integral ideals of L = Q(
√
d1,
√
d2) whose

norm to K is µOK . Using the correspondence between quadratic forms and ideal classes, the left hand side
can be manipulated into the following expression

ρ(n) =
∑

[ai]∈CKi

#{λ ∈ a1a2/UK1
UK2

: NL/Kλ = Na1Na2µ}

where Ki = Q(
√
di), CKi

is the class group of Ki, UKi
is the group of units of OKi

, and a1a2 is the set of
Z-linear combinations of α1α2 for αi ∈ ai.

Let U+
K denote the totally positive units of K, and C+

K denote the narrow class group. We want to define

maps δi : U+
K/NL/KUL → CKi

. Consider the following exact sequence arising from Galois cohomology of
cyclic extensions

1→ H1(L/K,UL)→ Iσ=1
L /K× → Cσ=1

L → H2(L/K,UL)→ H2(L/K,L×)

where IL are the ideals of L, and σ ∈ Gal(L/K) is the non-trivial element. Observe that NL/K : CL → CK
is surjective since L/K is ramified at infinity. But NL/K : CL → C+

K cannot be surjective χ is non-trivial

(by class field theory). Hence C+
K 6= CK , i.e. K has a totally positive fundamental unit ε. By the Hasse

norm theorem, ε ∈ NL/KL
×. Furthermore, L/K is unramified at finite places, so Iσ=1

L = IK . The relevant
piece of the sequence simplifies to

IK → Cσ=1
L → U+

K/NL/KUL → 1

Let δi be a section of the second arrow followed by norm down to CK1
and CK2

. If a is an ideal in K, then
NL/Ki

(aL) can be generated by integers, so it is principal. Therefore, δi is well-defined.
Now consider the following diagram

0→ U+
K/NL/KUL

(δ1,δ2)−−−−→ CK1
× CK2

→ CL
NL/K−−−−→ C+

K

χ−→ {±1} → 0
9



Observe that if u ∈ U+
K , then by construction, δ1(u)L · δ2(u)L = a1+σ1a1+σ2 for some a ∈ Cσ=1

L (these are
called ambiguous ideals). But then (1 + σ1 + 1 + σ2)a = NL/Qa, so δ1(u)L · δ2(u)L is principal. From this,
it is clear that the diagram is a complex.

The complex is exact at C+
K by the definition of χ. By a careful study of the maps CKi

→ CL using genus
theory, one can show that the complex is exact at CK1

× CK2
. Let Q = [UL : µLUK ] = [NL/KUL : U2

K ],

then it follows from the analytic class number formula that hL = 1
2Qh1h2hK . We have [UK : U+

K ] = 2

and h+
K = 2hK , so the Euler characteristic of the complex is 1. Since exactness is proven at every second

term, this proves the complex is exact. Using the exact sequence, one can show that ρ(n) = r(µ) by sending
(a1, a2, λ) to λa−1

1 a−1
2 .
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