HILBERT’S TENTH PROBLEM

SHILIN LAI

ABSTRACT. Hilbert’s tenth problem asks for a “process” to decide if a Diophantine equation has integer
solutions. This turned out to be impossible by the works of Davis—Putnam-Robinson and Matiyasevich.
The talk will start with a basic introduction to computation theory, formalizing the notion of “process”. It
will then sketch the main ideas of the negative solution to Hilbert’s tenth problem, which shows the much
stronger conclusion that in some sense, Diophantine equations can simulate all computations.

This is the expanded version of the notes for my talk given at the Princeton Graduate Students’ Seminar. We
follow the survey article [Dav73], except rearranging its content to better reflect the history of the solution.

0. BACKGROUND

Most of number theory began with the study of a problem of the following form:
“Given a polynomial P(z1,- -+ ,x,) with integer coefficients, does it have integer roots?”
Hilbert’s tenth problem asks for a general procedure to solve this problem. Note that he did not ask
if such a procedure exists: there was no formal notion of an undecidable problem, and there might not
have been the expectation that such a problem existed. In fact, Hilbert later proposed the more ambi-
tious Entscheidungsproblem, which asked for a general procedure to decide the validity of any (first-order)
mathematical statement. From a modern point of view at least, this is too good to exist.

In the 1930s, Church and Turing independently proposed models of computation and showed that the
Entscheidungsproblem cannot be solved. The theorem of Davis—Putnam—Robinson—Matiyasevich is that
even when restricted to the class of Diophantine equations, there is still no decision algorithm, which seems
plausible once one accept that undecidable problems exist.

1. COMPUTABILITY

We will think of a computation problem as a partial function f : N°— — N, where k € N is the number
of inputs. For the purpose of this talk, 0 € N. Further recall that a common notation for n ¢ dom(f) is
f(n) 1. It is useful to think that f(n) 1 corresponds to a computation which does not terminate.

Let Py be the set of all partial functions N*—— N and P, = Ugk>o Pr- A model of computation specifies
a subset of P, as the computable functions. The model we will use is the subset of recursive functions

Definition 1. The set R of (partial) recursive functions is the smallest subset of P,, such that
Basic functions: The following functions are in R:
—zero:N—= N, n—0
—succ: N> N, n—n+1
~ Pr NF 5 N, (ng,---,ng) = n;
Composition: If f: N*—— N and g1, -+, g, : NN—— N are all in R, then so is
fO (917' o 7gk) : Nl_—> N7 n— f(gl(ﬂ)v o 7gk(ﬁ))
Primitive recursion: If f : N*—— N and g : N**2— — N are both in R, then so is
f(n) if ngy1 =0

recsy : NV — 5 N, (0, np41) =)
: g(n,ngy1,recy g(n, ngy1 — 1)) otherwise
Unbounded minimization: If f: N*+!— — Nis in R, then so is

m if f(n,m) =0 and f(n,m') >0 for all m' <m

o N~ N, n— .
1 otherwise

1

Remark. If unbounded minimization is not allowed, then the resulting functions are called primitive recursive.
They are all total functions. When intersected with Py, they are the “slowly-growing” ones among all total
recursive functions.

Functions in R obviously should be computable by any reasonable definition. Conversely, we have the
following vague statement

Church—Turing Thesis. Any reasonable definition of computability can only produce functions in R.

Another model of computation is the Turing machine, which more closely resembles a typical procedural
programming language. One of the observations which led to the Church—Turing thesis was that R is exactly
the set of functions that can be computed on a Turing machine. This is not conceptually hard to prove, but
it is very technical. We will later encounter some ideas which were used in its proof. For now, here is a very

basic example of constructing recursive functions.
Example 2. The following is a prototype for conditional expressions. Given f : N — N which is known to
be total, define
1 if f(n)=0
iff:N——= N, n— u)
0 otherwise

If f is computable, then if; should also be computable. Indeed, define g : N — N using primitive recursion
by g(0) =1, g(n+ 1) = zero(n), then if; = go f.

From now on, to describe a function in R, we will only describe an algorithm in the intuitive sense. For
each such algorithm, it is theoretically easy to write down the proper description showing that it is in R.

Definition 3. Let S C N,
— If the function
0 ifnes
T ifngsS
is in R, then S is recursively enumerable/semi-decidable.
— If the function

ES:Nk——>N,n|—>{

1 ifnesS

Is:NF— =N, n—
s = {0 ifn¢s

is in R, then S is decidable/computable.

Remark. An equivalent condition for being recursively enumerable is that there exists an algorithm which,
when given n € N as an input, outputs the n-th member of S, ordered by size. This explains its name.

Example 4.

— The set of primes is decidable by the Church—Turing thesis.

— Exercise: decidable sets are semi-decidable.
Harder exercise: S C N* is decidable if and only if S and N¥\S are both semi-decidable.

— Key example: Let P € Z[ay, -+ ,an, %1, "+ ,Tp]. Thinkofay,--- ,a, as parameters and 1, - - , T,
as variables. Define its solvable set

solp ={(a1, - ,a,) €N | (Fzy, - ,2m € N)(P(a1, -+ ,an, 21, ,Tm) = 0)}

where by abuse of notation we do not mark the parameters.

For each P, solp is semi-decidable. Indeed, fix a computable listing of N, then given ay, - - - , am,
test each element of the list to see if the Diophantine equation is satisfied. The key point is that
if (a1, - ,a;,) € solp, then the process terminates, and otherwise the process does not, which is
represented by undefined value.

If Hilbert’s tenth problem has a solution, then solp is decidable for all P. This does not follow
immediately from definition since Hilbert’s tenth problem asks for solutions in Z, as opposed to N.
To fix this, replace each x; with Zf‘:1 y?j and observe that every natural number is a sum of four
integer squares.

2

The following theorem is arguably the foundational result of computation theory
Theorem 5 (Church, Turing). Not all semi-decidable sets are decidable.

Proof. This is a consequence of the celebrated theorem that the halting problem is undecidable. The proof
uses the diagonal argument, which we informally sketch now.

First observe that R NPy is countable, and in fact there exists an algorithm listing its elements. Let ¢,
be the n-th function in this list. We define the halting set

H = {n|pn(n) is defined}

This is semi-decidable, since Ey = zero o (n — ¢,(n)). Suppose N\H is semi-decidable, then there exists
n such that ¢, = Enyg. Evaluate both sides at n. If ¢, (n) is defined, then n € H, so Ex\g is undefined.
Conversely, if ,(n) is undefined, then Exy\g = 0 is defined. This is a contradiction, so N\H is not semi-
decidable. It follows that H is not decidable.]

With the appropriate definitions at hand, we can state the main theorem.

Theorem 6 (Davis-Putnam-Robinson-Matiyasevich). If S C N" is semi-decidable, then there exists a
polynomial P such that solp = S. In particular, Hilbert’s tenth problem has no solution.

Corollary 7. There exists a Diophantine equation which has a solution if and only if ZFC is inconsistent.

2. NORMAL FORMS
From now, all quantifiers are over N.

Definition 8.

— A set S C N" is Diophantine if it is solp for some P.
— A function f : N*— — N is Diophantine if the graph of f (namely the set {(n, f(n))|n € dom(f)})
is Diophantine.

The goal is therefore to prove that the semi-decidable sets are all Diophantine. Observe that syntactically,
Diophantine sets take the form

{a e N"[(B2, 2m)(Pla, z) = 0)}

We call predicates of the form P(x) = 0 polynomial predicates. Another way of phrasing the main theorem
is that all semi-decidable sets can be formed by existential quantifiers applied to a polynomial predicate.

The proof has two steps: first prove a weaker normal form statement allowing more logical opera-
tions, in particular including universal quantifiers; then show that all operations involved are Diophantine-
constructible. But universal quantifiers are not inherently computable, since they involve checking an infinite
number of cases, so we must restrict them to be bounded.

Definition 9. The set of bounded elementary predicates is the smallest subset of all first-order predicates
containing all polynomial predicates and closed under A, V, existential quantifier (3x), and bounded universal
quantifier (Ve,x) :== (Vz)((y > z) vV —).

Observe that all Diophantine predicates are bounded elementary.
Theorem 10 (Davis). Any semi-decidable set can be defined using a bounded elementary predicate.

Proof. This is Lemma 4 in Section 3 of [Davb3], where it is proven as a corollary to works of Godel and
Kleene. The proof applies structural induction to show that the graphs of all recursive functions can be
put into the required form, i.e. given a recursive function f : N”— — N, there exists a bounded elementary
predicate Py of arity n+1 such that P(z,y) <= f(z) =y. This is enough: suppose S C N" and Graph(Eg)
is defined by R(z,y), then S is defined by (Jy)R(z,y).

The basic functions are obvious. For example, the projection proj 1218 defined by the polynomial predicate
a1 — ag = 0, with variables ay,as,a3. For composition, to save notations, we will consider the case of
f: N2~ — N and g1,92 : N— = N. Suppose P(ay,az,a3) is a bounded elementary predicate defining f,
Q1 (a1, a9) defines g1, and Q2(f1, B2) defines ga, then f o (g1,g2) can be defined by

R(a, B) := (Bu, v)(Q1(a, u) A Qa(a, v) A Plu, v, B))

3

For bounded minimization, suppose P(a,b,c) defines the function f : N**'—— N, then
rp(a,c) = P(a,c,0) A (Vecu)(3z)Pa, u,z + 1)

is a predicate defining .

Recursion is much more difficult. Suppose f : N°— — N and ¢ : N**2— — N are defined by bounded
elementary predicates P(z,v) and Q(z,y, z,v) respectively. The idea is that we keep track of the entire
history of the recursion in a sequence, which yields the following

v=recsy(z,y) < (Is € NVT1)(P(z,50) N (Vey2)Q(z, 2+ 1,52, 8.41) A Soq1 = V)

This is not a first-order predicate, since we cannot qualify over sequences of indefinite length. To solve this
issue, we use the device of Godel numbering. More precisely, to a pair of natural numbers (n,p), we can
attach a sequence s(™P?) whose k-th term is n (mod 1+ (k4 1)p). Godel showed using the Chinese remainder
theorem that for any finite sequence, there exists (n, p) € N? such that s(mP) agrees with it. The integer n
will be called the Gddel code for the sequence (note that it depends on p). Moreover, the condition s,(jp -
is equivalent to
(z<14+k+Dp A@dn—a2=d1+ (k+1)p))

which is Diophantine. Therefore, after replacing the quantifier (3s € N¥*1) by (In,p € N) and a predicate

of the form R(s,) by (Ja) (sén’p) = a A R(a)), we get a bounded elementary definition of recy 4. O

Remark. By extending the above proof, the expressions can be simplified further to
{Q € N" | (Hy)(v<yk)(3xlv e ,xm)(P(Qa k7y7x1, e axm) = 0)}

This is the Davis normal form, which was used in the first arrangement of the proof of the DPRM theorem.

Therefore, it remains to emulate the operations A, V, (3z), and (V<,z). The first two are easy: if
S; =solp, for i = 1,2, then
S1 ﬂngsolplepZz, 51U52:Solp1p2
The existential quantifier is part of the Diophantine language. What remains is the bounded universal
quantifier, i.e. we need to prove the following statement: let P be a polynomial, then

{(a,y) € N"" [(V<y2)(Fz € N™)(P(a,, 2,2) = 0)}

is Diophantine. Its proof is divided into two parts: first, Davis-Putnam—Robinson [DPR61] showed that the
statement is true if we allow variables in the exponents; then Matiyasevich [Mat70] showed, based on earlier
works of Robinson [Rob52], that exponentiation is Diophantine.

3. EXPONENTIAL DIOPHANTINE EQUATIONS

For a fixed polynomial P as before, we need to define
y—1
Bla,y) == /\ ((Gz € N")(P(a,y, 2 z) = 0))
z2=0

The idea is to use Godel numbering. Suppose R(a, y) holds, then for each variable x;, we get a sequence :vl(-z),

0 < z < y such that P(a,y,2,2*)) = 0. Let X; be a Godel code for (xgz))z described earlier, and let Z be a
Godel code for (0,1,--+ ,y—1). Since z-th terms of all sequences are extracted by taking remainders modulo
the same number, we can hope that an equation of the form P(a,y,Z, X) =0 (mod M) for a really large
modulus M is equivalent to the disjunction of the y equations. It is clear that M should grow exponentially
in y, which was why exponential Diophantine equations are needed.

To make the discussion more precise, first make the trivial observation that for fixed a and y, if R(a,y)
holds, then there exists a bound on all variables in a solution, since there are only finitely many of them.

Conversely, if there are bounded solutions, then there are solutions. Therefore,
Bla,y) += (Bu)(V<yz)B<uz € N")(P(a,y,2,2) = 0)
The point is that in the predicate inside (Ju), all variables appearing have an a priori bound.
Let R(a,y, u) be the polynomial obtained from P by taking absolute value of all coefficients of P, replacing

every z with y, and replacing every x; with u. Let Q(a,y,u) = R(a,y,u) +y + v+ 1. Tt is clear that
4

(1) Qa,y,u) > y,u
(2) |P(a,y,2,2)] < Q(a,y,u) if 0 <z; <wand 2 <.

This is an upper bound on all possible values of P. Now consider the following big predicate

y—1 Q(a,y,u)
(az,t)(aleNm)(H(Zﬂ)t:H(1+(z+1)t)m= I1 ¢
2=0 =1

;j\<1+ Z+ 1)t ’]i[Xk—])

AL+ (Z+1)1)|Pla,y, 2. X))

This is equivalent to (V<y,2)(3<uz € N™)(P(a,y, z,z) = 0), the predicate of B(a,y) inside of (Ju). Indeed,
by thinking of X and Z as Gddel codes introduced earlier, we can define

s = 7 (mod 1+ (2 + 1)t), 2 1= s = X; (mod 1+ (2 + 1)¢)

The second term forces ¢ to be sufficiently large and divisible for the argument to work. The first term gives

sgz’t) = 2. The third term forces xz(»z

) < wu for all z <y and k < m. By the Chinese remainder theorem, the
first and last term of the big predicate together are equivalent to P(a,y, z,2*)) =0 (mod 1+ (z + 1)t) for
each z, which, by the choice of @, implies that P(a,y, z,2*)) = 0.

We have therefore eliminated the bounded universal quantifier, at the cost of introducing the construction
y = [li—,(a + bk). The technical heart of [DPR61] is to show that this relation can be defined using

exponential Diophantine equations. First observe that

f[(a+ bk) = (a/b; x) b2l

k=1
Choose M to be larger than the left hand side and coprime to b, say M = b(a + bz)* + 1. Working modulo
M, we may replace § by the minimal non-negative solution to a = ¢b (mod M), reducing the problem to
the construction of the following two functions

| n
rz=mn!l z=
k
Finally, observe the following identities

(=[] o [

if u > 2" and r > (2n)"*!. They are not hard to prove. Now, the relation x = [2] is equivalent to
(qr < p) A (g(x + 1) > p), which is Diophantine. Therefore, the above identities can be used to give the
required exponential Diophantine representations.

4. DIOPHANTINE DEFINITION OF EXPONENTIATION

This is the final step of the proof. The goal is to define the relation z = y* using Diophantine equations.
The proof is very technical, and finally, there is some number theory involved, namely the description of
solutions of the Pell equation.

Definition 11. Let a > 1 and n > 0, then define (p(n,a), ¢(n,a)) by

p(n,a) +q(n,0)vVa2 — 1 = (a+ Va2 — 1)
The following proposition contains some classical properties of the two sequences.

Proposition 12.
(1) The only non-negative integer solutions to x> — (a®> — 1)y* = 1 are of the form (p(n,a),q(n,a)) for
some n > 0.
(2) g(n,a) =n (mod a —1).
(3) If y > 1 and a > y?, then y* = |p(z,ay)/p(z,a)]
5

To use these fact to represent exponentiation, we first need to find a Diophantine predicate which rep-
resents at least exponential growth. This is done starting from the Pell equation by imposing congruence
conditions on ¢(n,a). Define

¥(a,v) = (3,) ((P* = (® = 1)(a = 1)’¢> = 1) A (p,a > 1) Av = ap)
A solution to the first equation has the form (p(n, a), g(n, a)) with the additional constraint that (a—1)|g(n, a),
which implies (a — 1)|n by (2). Therefore, if ¢(a,v) holds, then v > ap(a — 1,a) > a®*. Now by the growth
property of ¢ and (3), the predicate

(Fa,b,c)((z < a) A (y, 2 <b) Ap(b,c) A (e <a) Nz = [p(z,ay)/p(z,y)])
represents x = y* up to some trivial cases which can be coded explicitly. Therefore, it remains to prove that
the function p(n,a) is Diophantine. This is the contribution of Matiyasevich [Mat70].

Theorem 13 (Matiyasevich). Consider the following system of Diophantine equations:
2?2 —(a®>—1)y* =1
u? — (a® —1)? =1

2 -1t =1

w N

ot
e D D D O —

v=ry?

b=1+4+4py =a+qu

~ o~ o~ o~ o~ o~ o~ o~

s=z+(c+1u 6
t=n+4dy 7
y:n-i,-e 8

Given (a,z,n) € N* with a > 1, it can be solved in the other 12 variables if and only if x = p(n,a).

Proof. Exercise. In [Mat93], the author gave some indications of his thought process when he discovered the
equations. The key point is that congruence properties (beyond what was stated above) are used to access
the index n. O

REFERENCES

[Dav53] Martin Davis. Arithmetical problems and recursively enumerable predicates. J. Symbolic Logic, 18:33-41, 1953.

[Dav73] Martin Davis. Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly, 80:233-269, 1973.

[DPR61] Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for exponential diophantine equations. Ann.
of Math. (2), 74:425-436, 1961.

[Mat70] Ju. V. Matijasevi¢. The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR, 191:279-282, 1970.

[Mat93] Yuri V. Matiyasevich. Hilbert’s tenth problem. Foundations of Computing Series. MIT Press, Cambridge, MA, 1993.
Translated from the 1993 Russian original by the author, With a foreword by Martin Davis.

[Rob52] Julia Robinson. Existential definability in arithmetic. Trans. Amer. Math. Soc., 72:437-449, 1952.

