Weight interlacing and Iwasawa theory

Shilin Lai

Princeton University

ICTS, August 2022

Gan-Gross-Prasad conjecture

Basic setting:

- K / \mathbf{Q} imaginary quadratic field.
- $V_{n} \subseteq V_{n+1}$ Hermitian spaces over K of dimensions n and $n+1$ respectively.

Gan-Gross-Prasad conjecture

Basic setting:

- K / \mathbf{Q} imaginary quadratic field.
- $V_{n} \subseteq V_{n+1}$ Hermitian spaces over K of dimensions n and $n+1$ respectively.
- $H=\mathrm{U}\left(V_{n}\right), G=\mathrm{U}\left(V_{n}\right) \times \mathrm{U}\left(V_{n+1}\right)$ unitary groups.
- $\Delta: H \hookrightarrow G$ diagonal embedding.

Gan-Gross-Prasad conjecture

Basic setting:

- K/Q imaginary quadratic field.
- $V_{n} \subseteq V_{n+1}$ Hermitian spaces over K of dimensions n and $n+1$ respectively.
- $H=\mathrm{U}\left(V_{n}\right) G=\mathrm{U}\left(V_{n}\right) \times \mathrm{U}\left(V_{n+1}\right)$ unitary groups.
- $\Delta: \overparen{H} \rightarrow G$ diagonal embedding.

Local problem

Fix a place v of \mathbf{Q}. Given $\pi_{n+1, v} \in \operatorname{Irr}\left(\mathrm{U}\left(V_{n+1}\right)_{v}\right)$, how does $\left.\pi_{n+1, v}\right|_{\cup}\left(V_{n}\right)_{v}$ decompose?

Gan-Gross-Prasad conjecture

Basic setting:

- K / \mathbf{Q} imaginary quadratic field.
- $V_{n} \subseteq V_{n+1}$ Hermitian spaces over K of dimensions n and $n+1$ respectively.
- $H=\mathrm{U}\left(V_{n}\right), G=\mathrm{U}\left(V_{n}\right) \times \mathrm{U}\left(V_{n+1}\right)$ unitary groups.
- $\Delta: H \hookrightarrow G$ diagonativeuding.

Local problem

Fix a place v of \mathbf{Q}. Given $\pi_{v}=\pi_{n, v} \boxtimes \pi_{n+1, v} \in \operatorname{Irr}\left(G_{v}\right)$, compute $\operatorname{dim}_{C} \operatorname{Hom}_{H_{v}}\left(\pi_{v}, 1\right)$.

Global problem
Given $\pi \in \mathcal{A}(G)$, is the automorphic period $\int_{[H]} \varphi(h) d h$ non-zero $)$
for any $\varphi \in \pi$?

Local answer

P-adic

Multiplicity one theorem (Aizenbud-Gourevitch-Rallis-Schiffmann,
Sun-Zhu) $\operatorname{dim}_{C} \operatorname{Hom}_{H_{v}}\left(\pi_{v}, 1\right) \leq 1$.

Local answer

Multiplicity one theorem (Aizenbud-Gourevitch-Rallis-Schiffmann, Sun-Zhu)
$\operatorname{dim}_{C} \operatorname{Hom}_{H_{v}}\left(\pi_{v}, 1\right)<1$.
$\pi_{m i v} \otimes T_{n+c, v} \in I_{r r}\left(G_{v}\right)$
p-adic wach.place
Local Gan-Gross-Prasad conjecture (Beuzart-Plessis, Que)
As $\pi_{n, v}$ and $\pi_{n+1, v}$ run over the members of their Vogan L-packets , there exists a unique pair such that th A above multiplicity space is 1-dimensional. This pair ca h be specified using certain local ε-factors.
 inner forms

Local answer: archimedean case

We can be explicit when $v=\infty$ and π_{∞} is in the discrete series.

Local answer: archimedean case

We can be explicit when $v=\infty$ and π_{∞} is in the discrete series.

- $H_{\infty}=\mathrm{U}\left(V_{n}\right)_{\infty} \simeq \mathrm{U}(p, q), p+q=n$.

Logan L-packet contious rep". for all $u(a, b) a+b=n$

Local answer: archimedean case

We can be explicit when $v=\infty$ and π_{∞} is in the discrete series.

- $H_{\infty}=\mathrm{U}\left(V_{n}\right)_{\infty} \simeq \mathrm{U}(p, q), p+q=n$.
- Discrete series are indexer y Harish-Chandra parameters

$$
(\underbrace{a_{1}>\cdots>a_{p} ;} ; b_{1}>\cdots>b_{q})
$$

$$
a_{i}, b_{j} \in \mathbf{Z}+\underline{\underline{\frac{n-1}{2}}, a_{i} \neq b_{j} ~}
$$

Local answer: archimedean case

We can be explicit when $v=\infty$ and π_{∞} is in the discrete series.

- $H_{\infty}=\mathrm{U}\left(V_{n}\right)_{\infty} \simeq \mathrm{U}(p, q), p+q=n . \quad U(2,0) \quad u(0,2)$
- Discrete series are indexed by Harish-Chandra parameters $d \backsim C$.

$$
\left(a_{1}>\cdots>a_{p}, b_{1}>\cdots>b_{0}\right) \quad \text { egg. Hence s }
$$

$a_{i}, b_{j} \in \mathbf{Z}+\frac{n-1}{2}, a_{i} \neq b_{j}$. Its infinitesimal character is $>a_{\text {, }}$ $\left(a_{1}, \cdots, a_{p}, b_{1}, \cdots, b_{q}\right)$ (unordered).

- $\begin{aligned} & \text { ogan L-packets are indexed by infinitesimal characters }\end{aligned}$

Local answer: archimedean case

We can be explicit when $v=\infty$ and π_{∞} is in the discrete series.

- $H_{\infty}=\mathrm{U}\left(V_{n}\right)_{\infty} \simeq \mathrm{U}(p, q), p+q=n$.
- Discrete series are indexed by Harish-Chandra parameters

$$
\left(a_{1}>\cdots>a_{q} ; b_{1}>\cdots>b_{q}\right)
$$

$a_{i}, b_{j} \in \mathbf{Z}+\frac{n-1}{2}, a_{i} \neq b_{j}$. Its infinitesimal character is
$\left(a_{1}, \cdots, a_{p}, b_{1}, \cdots, b_{q}\right)$ (unordered).

- Vogan L-packets are indexed by infinitesimal characters
- Size 2^{n}
- ($\left.\begin{array}{l}n \\ p\end{array}\right)$ representations on U($\left.0, \mathrm{p}\right)$
$\stackrel{\left.\text { Elements indexed by characters of }(\mathbf{Z} / 2 \mathbf{Z})^{n}\right)}{ }$

$$
\begin{aligned}
& \text { ens indexed by characters of }(\mathbf{Z} / 2 Z)^{n} \text { additive } \mathbb{C} \\
& \text { defends on choice of character }
\end{aligned}
$$

Local answer: archimedean case (cont.)
Two L-packets or $\frac{U\left(V_{n}\right)}{I} n d\left(V_{n+1}\right)$ with infinitesimal characters

$$
\begin{array}{cc}
\left(b_{1}>\cdots>b_{n}\right), & \left(a_{1}>\cdots>a_{n}\right) \\
2+\frac{n-1}{2} & 2+\frac{n}{2}
\end{array}
$$

Local answer: archimedean case (cont.)

Two L-packets on $\mathrm{U}\left(V_{n}\right)$ and $\mathrm{U}\left(V_{n+1}\right)$ with infinitesimal characters

$$
\left(b_{1}>\cdots>b_{n-1}\right), \quad\left(a_{1}>\cdots>a_{n}\right)
$$

Distinguished paik from the local GGP conjecture described by weight inierlacing, which can be drawn as a tableau.

Local answer: archimedean case (cont.)

Two L-packets on $\mathrm{U}\left(V_{n}\right)$ and $\mathrm{U}\left(V_{n+1}\right)$ with infinitesimal characters

$$
\left(b_{1}>\cdots>b_{n-1}\right), \quad\left(a_{1}>\cdots>a_{n}\right)
$$

Distinguished pair from the local GGP conjecture described by weight interlacing, which can be drawn as a tableau.

Examples

$a_{1}>b^{2}>a_{3}>b_{2}>b_{3}>a_{4}$ can be represented by

Shaded squares satisfy $a_{i}>b_{j}$.

Combinatorial recipe (Atobe)

(1) Count the parity of the number of shaded squares in each row and column.
(2) Flip the sign of every second row and every second column.
(3) The negative signs of each row/column form the first part of the Harish-Chandra parameters.

Combinatorial recipe (Atobe)

(1) Count the parity of the number of shaded squares in each row and column.
(2) Flip the sign of every second row and every second column.
(3) The negative signs of each row/column form the first part of the Harish-Chandra parameters.

Examples

$$
a_{1}>b_{1}>a_{2}>b_{2}>a_{3}>b_{3}>a_{4}
$$

Global answer

$$
U\left(v_{n}\right) \times U\left(v_{n+1}\right)
$$

Theorem (W. Zhang, Beuzart-Plessis-Liu-Zhang-Zhu)

Given (tempered stable) ${ }^{\circ}$ $\int_{[H]} \varphi(h) d h$ is non-zero for some $\varphi \in \pi$ if and only if

Global answer

Theorem (W. Zhang, Beuzart-Plessis-Liu-Zhang-Zhu)

Given (tempered stable) $\pi=\bigotimes_{v}^{\prime} \pi_{v} \in \mathcal{A}(G)$, the period integral $\int_{[H]} \varphi(h) d h$ is non-zero for some $\varphi \in \pi$ if and only if

- π_{v} is the distinguished element of the L-packet in the sense of the local GGP conjecture; $\int_{[H]} \in \operatorname{Hom}_{H}(\pi, \underline{1})$

$$
=\operatorname{Bom}_{H_{v}}\left(\pi_{v}, \frac{1}{}\right)
$$

Global answer

Theorem (W. Chang, Beuzart-Plessis-Liu-Zhang-Zhu)

Given (tempered stable) $\pi=\bigotimes_{v}^{\prime} \pi_{v} \in \mathcal{A}(G)$, the period integral $\int_{[H]} \varphi(h) d h$ is non-zero for some $\varphi \in \pi$ if and only if

- π_{v} is the distinguished element of the L-packet in the sense of the local GGP conjecture; and
- $L\left(\frac{1}{2}, \pi\right) \neq 0$. Ronkin-Sellberg $G \operatorname{Ln}(K) \times G L_{n+1}(K)$

Global answer

Theorem (W. Zhang, Beuzart-Plessis-Liu-Zhang-Zhu)

Given (tempered stable) $\pi=\bigotimes_{v}^{\prime} \pi_{v} \in \mathcal{A}(G)$, the period integral $\int_{[H]} \varphi(h) d h$ is non-zero for some $\varphi \in \pi$ if and only if

- π_{v} is the distinguished element of the L-packet in the sense of the local GGP conjecture; and
- $L\left(\frac{1}{2}, \pi\right) \neq 0$.

Moreover, there is a formula of the form

$$
L\left(\frac{1}{2}, \pi\right)=\left|\int_{[H]} \varphi(h) d h\right|^{2} \cdot \underbrace{(\text { local factors })} ; \begin{gathered}
\left.\begin{array}{c}
\text { tabelian } \\
\text { other } L \text {-values }
\end{array}\right) \\
\neq 0
\end{gathered}
$$

Global answer

Theorem (W. Bhang, Beuzart-Plessis-Liu-Zhang-Zhu)

Given (tempered stable) $\pi=\bigotimes_{v}^{\prime} \pi_{v} \in \mathcal{A}(G)$, the period integral $\int_{[H]} \varphi(h) d h$ is non-zero for some $\varphi \in \pi$ if and only if

- π_{v} is the distinguished element of the L-packet in the sense of the local GGP conjecture; and
- $L\left(\frac{1}{2}, \pi\right) \neq 0$. $\quad+\pi=\pi_{f} \nVdash \pi_{\infty}$ ($H=H(Q)$ Moreover, there is a formula of the form

$$
(H)=H(Q)
$$

This gives an integral representation for certain' Aánkin-Selberg L-functions over K. The archimedean shape of the integral depends on weight interlacing.

Galois representation

Fix a prime p which is ordinarv for $\pi=\frac{\pi}{n} \boxtimes \pi_{n+1}$ and splits in K.

Galois representation

Fix a prime p which is ordinary for $\pi \overline{\bar{\vee}} \pi_{n}^{\vee} \boxtimes \pi_{n+1}$ and splits in K.

Theorem (Morel, Skinner)

There is a conjugate self-dual Galois representation
 triangular for $\mathfrak{p} \mid p$.

Galois representation

Fix a prime p which is ordinary for $\pi=\pi_{n}^{\vee} \boxtimes \pi_{n+1}$ and splits in K.

Theorem (Morel, Skinner)

There is a conjugate self-dual Galois representation $\rho_{n}: \mathrm{Gal}_{K} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbf{Q}}_{p}\right)$ attached to π_{n} such that $\left.\rho_{n}\right|_{\mathrm{Gal}_{\kappa_{\mathrm{p}}}}$ is upper triangular for $\mathfrak{p} \mid p$.

Choose a basis $\left\{v_{1}, \cdots, v_{n}\right\}$ for ρ_{n} so that $\left.\rho_{n}\right|_{\text {Gal }_{\kappa_{p}}}$ is upper triangular. By conjugate self-duality, $\rho_{n} \mid G_{\underbrace{}_{K_{\bar{~}}}}$ is lower triangular with respect to the dual basis.

Galois representation

\#no discrete señes.

Fix a prime p which is ordinary for $\pi=\pi_{n}^{\vee} \boxtimes \pi_{n+1}$ and splits in K.

Theorem (Morel, Skinner)

There is a conjugate self-dual Galois representation $\rho_{n}: \mathrm{Gal}_{K} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbf{Q}}_{p}\right)$ attached to π_{n} such that $\left.\rho_{n}\right|_{\mathrm{Gal}_{\kappa_{\mathrm{p}}}}$ is upper triangular for $\mathfrak{p} \mid p$.

Choose a basis $\left\{v_{1}, \cdots, v_{n}\right\}$ for ρ_{n} so that $\left.\rho_{n}\right|_{\text {Gal }_{\kappa_{p}}}$ is upper triangular. By conjugate self-duality, $\left.\rho_{n}\right|_{\text {Gal }_{\kappa_{\bar{p}}}}$ is lower triangular with respect to the dual basis.
Let $\rho=\rho_{n}^{\vee} \otimes \rho_{n+1}^{(-)}$. It is conjugate self-dual of weight -1 with a basis $\left\{v_{i}^{\vee} \otimes w_{j}\right\} .1 \leqslant こ \leq n$

$$
1 \underline{z} \leq n+1
$$

Panchishkin condition

The Hodge-Tate weights of ρ can be computed from the infinitesimal character of π_{∞}.

Panchishkin condition

The Hodge-Tate weights of ρ can be computed from the

Panchishkin condition

The Hodge-Tate weights of ρ can be computed from the infinitesimal character of π_{∞}.

At \mathfrak{p}, we have a Panchishkin subspace

$$
\rho_{\square}=\left\langle v_{i}^{\vee} \otimes w_{j} \mid a_{i}>b_{j}\right\rangle \subseteq \rho
$$

At $\overline{\mathfrak{p}}$, use conjugate self-duality to define

$$
\rho_{\square}^{c}=\left\langle v_{i} \otimes w_{j}^{\vee} \mid a_{i}<b_{j}\right\rangle \subseteq \rho^{c}
$$

Panchishkin condition

The Hodge-Tate weights of ρ can be computed from the infinitesimal character of π_{∞}.

At \mathfrak{p}, we have a Panchishkin subspace

$$
\rho_{\square}=\left\langle v_{i}^{\vee} \otimes w_{j} \mid a_{i}>b_{j}\right\rangle \subseteq \rho
$$

At $\overline{\mathfrak{p}}$, use conjugate self-duality to define

$$
\rho_{\square}^{c}=\left\langle v_{i} \otimes w_{j}^{\vee} \mid a_{i}<b_{j}\right\rangle \subseteq \rho^{c}
$$

So weight interlacing determines the correct local conditions at p.

Selmer group

If \square and \triangle are two weight interlacing relations, we can use them to define a Selmer group

$$
H_{\square, \triangle}^{1}(K, \rho)
$$

with unramified local conditions away from p, Greenberg condition defined using ρ_{\square} at p, and Greenberg condition defined using ρ_{\triangle}^{c} at $\overline{\mathfrak{p}}$.

$$
\begin{aligned}
& \text { Greanbery condition: } H^{\prime}\left(G_{Q_{p}}, l\right) \\
& \left.\operatorname{res}_{f} \in \operatorname{ker}^{\prime}\left(G G Q_{p}, Y_{P_{D}}\right)\right)
\end{aligned}
$$

Selmer group

If \square and \triangle are two weight interlacing relations, we can use them to define a Selmer group

$$
H_{\square, \Delta}^{1}(K, \rho)
$$

with unramified local conditions away from p, Greenberg condition defined using ρ_{\square} at \mathfrak{p}, and Greenberg condition defined using ρ_{\triangle}^{c} at $\overline{\mathfrak{p}}$.

If \square is the actual weight interlacing of π_{∞}, then $H_{\square, \square}^{1}(K, \rho)$ is the Bloch-Kato Selmer group for ρ.

p-adic deformations

$\int p$ spAr $\left(U_{n}\right)_{p}=G L_{n}\left(Q_{p}\right)$

We can vary π in a Hida family with $n+(n+1)=2 n+1$ variables.

p-adic deformations

We can vary π in a Hida family with $n+(n+1)=2 n+1$ variables.
Using pseudo-representations, can form big Galois representation ρ valued in an ordinary big Hecke algebra \mathbb{I}, so we can define big Selmer groups

$$
\begin{array}{r}
H_{\square, \Delta}^{1}(K, \rho) \\
\text { filtration }
\end{array}
$$

p-adic deformations

We can vary π in a Hida family with $n+(n+1)=2 n+1$ variables.
Using pseudo-representations, can form big Galois representation ρ valued in an ordinary big Hecke algebra \mathbb{I}, so we can define big Selmer groups

$$
H_{\square, \Delta}^{1}(K, \rho)
$$

Key point

The family ρ covers all weight interlacing relations, so $H_{\square, \square}^{1}(K, \rho)$ should have arithmetic significance for all possible \square.

Iwasawa main conjecture

Given a weight interlacing relation \square, it determines an integral representation of L-functions and a self-dual Selmer condition.

Iwasawa main conjecture

Given a weight interlacing relation \square, it determines an integral representation of L-functions and a self-dual Selmer condition.

Expectation (Iwasawa main conjecture)

For any \square,
(1) There should be a p-adc L-function \mathcal{L} interpolating the algebraic part of the central L-values at all specializations of ρ which has archimedean weight interlacing \square.
(2) $\left.\operatorname{char}_{\mathbb{I}}(K, \rho)\right)=\left(\mathcal{L}^{\square}\right)$.
(3) Neither side of the above equality is zero.

Iwasawa main conjecture

Given a weight interlacing relation \square, it determines an integral representation of L-functions and a self-dual Selmer condition.

Expectation (Iwasawa main conjecture)

For any \square,
(1) There should be a p-adic L-function \mathcal{L}^{\square} interpolating the algebraic part of the central L-values at all specializations of ρ which has archimedean weight interlacing \square.
(2) $\operatorname{char}_{\mathbb{I}}\left(H_{\square}^{2}(K, \rho)\right)=\left(\mathcal{L}^{\square}\right)$.

Neither side of the above equality is zero.

Warning

Part (3) cannot be true for all \square for sign reasons.

Global root number

Conjugate self duality \Longrightarrow global root number $\varepsilon=\varepsilon_{f} \varepsilon_{\infty}= \pm 1$

Global root number

Conjugate self duality \Longrightarrow global root number $\varepsilon=\underbrace{\varepsilon_{f} \varepsilon_{\infty}}= \pm 1$
Assuming p split and ordinary ε_{f} is constant in Hida families.
Archimedean ε_{∞} depends only on weight interlacing.

Global root number

Conjugate self duality \Longrightarrow global root number $\varepsilon=\varepsilon_{f} \varepsilon_{\infty}= \pm 1$
Assuming p split and ordinary, ε_{f} is constant in Hida families. Archimedean ε_{∞} depends only on weight interlacing.
$\varepsilon=+1$ Coherent case: expectation from last slide should hold, so have coherent main conjecture

$$
\operatorname{char}_{\mathbb{I}} H_{\square}^{2}(K, \rho) \stackrel{?}{=}\left(\mathcal{L}^{\square}\right) \stackrel{?}{\neq 0}
$$

Global root number

Conjugate self duality \Longrightarrow global root number $\varepsilon=\varepsilon_{f} \varepsilon_{\infty}= \pm 1$
Assuming p split and ordinary, ε_{f} is constant in Hida families. Archimedean ε_{∞} depends only on weight interlacing.
$\varepsilon=+1$ Coherent case: expectation from last slide should hold, so have coherent main conjecture

$$
\operatorname{char}_{\mathbb{I}} H_{\square}^{2}(K, \rho) \stackrel{?}{=}\left(\mathcal{L}^{\square}\right) \stackrel{?}{\neq 0}
$$

$\varepsilon=-1$ Incoherent case: $L\left(\frac{1}{2}, \pi\right)=0$ for all π in the family

Global root number

Conjugate self duality \Longrightarrow global root number $\varepsilon=\varepsilon_{f} \varepsilon_{\infty}= \pm 1$
Assuming p split and ordinary, ε_{f} is constant in Hida families. Archimedean ε_{∞} depends only on weight interlacing.
$\varepsilon=+1$ Coherent case: expectation from last slide should hold, so have coherent main conjecture

$$
\operatorname{char}_{\mathbb{I}} H_{\square}^{2}(K, \rho) \stackrel{?}{=}\left(\mathcal{L}^{\square}\right) \stackrel{?}{\neq 0}
$$

$\varepsilon=-1$ Incoherent case: $L\left(\frac{1}{2}, \pi\right)=0$ for all π in the family. Expect an incoherent main conjecture (Perrin-Riou)

Incoherent main conjecture

Conjecture

The compact Selmer group $H_{\square}^{1}(K, \rho)$ has rank 1, and it contains a special class \mathbf{z} such that

$$
\operatorname{char}_{\mathbb{I}}\left(\frac{H_{\square}^{1}(K, \rho)}{\mathbb{I} \mathbb{z}}\right)^{2}=\operatorname{char}_{\mathbb{I}} H_{\square}^{2}(K, \rho)_{\text {tors }}
$$

Wall crossing

What happens when a pair of weight orders are reversed?

Wall crossing

What happens when a pair of weight orders are reversed?

Wall crossing

What happens when a pair of weight orders are reversed?

- Interlacing relations \square and \triangle have opposite signs. $\left\lvert\, \begin{gathered}\square \\ \text { non } \\ \text { res }\end{gathered}\right.$
- Selmer condition decreases at \mathfrak{p} and increases at $\overline{\mathfrak{p}}$.

Lemma

Suppose \square is the coherent interlacing relation. z_{\triangle} exists, then the incoherent main conjecture for \triangle is equivalito the coherent main conjecture for \square.

Upshot

- For a given Hida family ρ, we have $\binom{2 n+1}{n}$ different main conjectures, indexed by weight interlacing relations.

Upshot

- For a given Hida family $\boldsymbol{\rho}$, we have $\binom{2 n+1}{n}$ different main conjectures, indexed by weight interlacing relations.
- The incoherent main conjectures require the construction of special classes in Galois cohomology.

Upshot

- For a given Hida family $\boldsymbol{\rho}$, we have $\binom{2 n+1}{n}$ different main conjectures, indexed by weight interlacing relations.
- The incoherent main conjectures require the construction of special classes in Galois cohomology.
- Each such special class also implies results on several coherent main conjectures

Upshot

- For a given Hid family ρ, we have $\binom{2 n+1}{n}$ different main conjectures, indexed by weight interlacing relations.
- The incoherent main conjectures require the construction of special classes in Galois cohomology.
- Each such special class also implies results on several coherent main conjectures

- Need explicit reciprocity laws and arithmetic interpretation of integral representations to relate motivic p-adic L-functions to analytic p-adic L-functions.

Upshot

- For a given Hida family ρ, we have $\binom{2 n+1}{n}$ different main conjectures, indexed by weight interlacing relations.
- The incoherent main conjectures require the construction of special classes in Galois cohomology.
- Each such special class also implies results on several coherent main conjectures

- Need explicit reciprocity laws and arithmetic interpretation of integral representations to relate motivic p-adic L-functions to analytic p-adic L-functions.
- cf. Loeffler-Zerbes $\mathrm{GSp}_{4} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$

$n=1$

$H=\mathrm{U}\left(V_{1}\right)=\left(K^{\times}\right)^{\text {Norm=1 }}, G \approx\left(K^{\times}\right)^{\text {Norm=1 }} \times \mathrm{GL}_{2} \quad U(2)$
$\pi \approx \underline{\chi} \times \underline{f}, \chi$ anticyclotomic character of weight $(\ell,-\ell), f$ modular form of weight k.
Infinitesimal characters: $\chi \rightsquigarrow(\ell), f \rightsquigarrow\left(\frac{k-1}{2},-\frac{k-1}{2}\right)$.

$n=1$

$H=\mathrm{U}\left(V_{1}\right)=\left(K^{\times}\right)^{\text {Norm=1 }}, G \approx\left(K^{\times}\right)^{\text {Norm=1 }} \times \mathrm{GL}_{2}$
$\pi \approx \chi \times f, \chi$ anticyclotomic character of weight $(\ell,-\ell), f$ modular form of weight k.
Infinitesimal characters: $\chi \rightsquigarrow(\ell), f \rightsquigarrow\left(\frac{k-1}{2},-\frac{k-1}{2}\right)$.
p ordinary for f and splits in K.
Ordinary filtration

$$
0 \rightarrow T_{f}^{-} \rightarrow T_{f} \rightarrow T_{f}^{+} \rightarrow 0
$$

$n=1$

$H=\mathrm{U}\left(V_{1}\right)=\left(K^{\times}\right)^{\text {Norm=1 }}, G \approx\left(K^{\times}\right)^{\text {Norm=1 }} \times \mathrm{GL}_{2}$
$\pi \approx \chi \times f, \chi$ anticyclotomic character of weight $(\ell,-\ell), f$ modular form of weight k.
Infinitesimal characters: $\chi \rightsquigarrow(\ell), f \rightsquigarrow\left(\frac{k-1}{2},-\frac{k-1}{2}\right)$.
p ordinary for f and splits in K.
Ordinary filtration

$$
0 \rightarrow T_{f}^{-} \rightarrow T_{f} \rightarrow T_{f}^{+} \rightarrow 0
$$

Selmer conditions:

$$
\begin{aligned}
& \text { rel : no condition } \\
& \text { ord : ordinary Selmer condition } \\
& \text { str : strict, i.e. localization }=0
\end{aligned}
$$

Weight interlacing

$$
\varepsilon=\varepsilon_{f} \varepsilon_{\infty}
$$

Three weight interlacing relations

$$
\begin{array}{ccc}
\square & \square & \square \\
& \ddots>\frac{k-1}{2} & |\ell|<\frac{k-1}{2} \\
\varepsilon_{\infty} & +1 & -1
\end{array}
$$

Selmer condition (str,rel) (ord,ord) (rel,str)

Weight interlacing

Three weight interlacing relations

$$
\begin{array}{ccc}
& \square & \square \\
\ell>\frac{k-1}{2} & |\ell|<\frac{k-1}{2} & \ell<-\frac{k-1}{2} \\
\varepsilon_{\infty} & +1 & -1
\end{array}
$$

Selmer condition (str,rel) (ord,ord) (rel,str)

The coherence of each case depends on the finite part ε_{f}. This is related to the Heegner hypothesis.

Heegner points

Heegner hypothesis

$\ell \mid N_{f} \Longrightarrow \ell$ splits in K
This implies $\varepsilon_{f}=+1$.

Heegner points

Heegner hypothesis
$\ell \mid N_{f} \Longrightarrow \ell$ splits in K

- Incoherent main conjecture is Perrin-Riou's indain conjecture.
- Two coherent main conjectures are BDP main conjectures, related by a complex conjugation.

No Heegner points

Now suppose $\varepsilon_{f}=-1$.

No Heegner points

Now suppose $\varepsilon_{f}=-1$.

$$
\begin{gathered}
\square \\
\ell>\frac{k-1}{2} \\
\varepsilon=-1
\end{gathered}
$$

- Special class constructed in recent workof Kim Tuan Do.
- Construction not geometric, splits up Selmer classes from the diagonal cycle on a triple product.
- Coherent main conjecture interpolates rank 0 BSD for modular forms twisted by finite order anticyclotomic characters.

$$
n=2
$$

There are 10 interlacing relations, or 6 up to complex conjugation.

