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Gan–Gross–Prasad conjecture

Basic setting:

K/Q imaginary quadratic field.

Vn ⊆ Vn+1 Hermitian spaces over K of dimensions n and
n + 1 respectively.

H = U(Vn), G = U(Vn)×U(Vn+1) unitary groups.

∆ : H ↪→ G diagonal embedding.

Local problem

Fix a place v of Q.

Global problem

Given π ∈ A(G ), is the automorphic period
∫
[H] φ(h)dh non-zero

for any φ ∈ π?
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K/Q imaginary quadratic field.

Vn ⊆ Vn+1 Hermitian spaces over K of dimensions n and
n + 1 respectively.

H = U(Vn), G = U(Vn)×U(Vn+1) unitary groups.

∆ : H ↪→ G diagonal embedding.

Local problem

Fix a place v of Q. Given πv = πn,v ⊠ πn+1,v ∈ Irr(Gv ), compute
dimCHomHv (πv , 1).

Global problem

Given π ∈ A(G ), is the automorphic period
∫
[H] φ(h)dh non-zero

for any φ ∈ π?



Local answer

Multiplicity one theorem (Aizenbud–Gourevitch–Rallis–Schiffmann,
Sun–Zhu)

dimCHomHv (πv , 1) ≤ 1.

Local Gan–Gross–Prasad conjecture (Beuzart-Plessis, Xue)

As πn,v and πn+1,v run over the members of their Vogan
L-packets, there exists a unique pair such that the above
multiplicity space is 1-dimensional. This pair can be specified using
certain local ε-factors.
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Local answer: archimedean case

We can be explicit when v = ∞ and π∞ is in the discrete series.

H∞ = U(Vn)∞ ≃ U(p, q), p + q = n.

Discrete series are indexed by Harish-Chandra parameters

(a1 > · · · > ap; b1 > · · · > bq)

ai , bj ∈ Z+ n−1
2 , ai ̸= bj . Its infinitesimal character is

(a1, · · · , ap, b1, · · · , bq) (unordered).
Vogan L-packets are indexed by infinitesimal characters

Size 2n(
n
p

)
representations on U(p, q)

Elements indexed by characters of (Z/2Z)n
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Local answer: archimedean case (cont.)

Two L-packets on U(Vn) and U(Vn+1) with infinitesimal characters

(b1 > · · · > bn−1), (a1 > · · · > an)

Distinguished pair from the local GGP conjecture described by
weight interlacing, which can be drawn as a tableau.

Examples

a1 > b1 > a2 > a3 > b2 > b3 > a4 can be represented by

a1
a2
a3
a4

b1b2b3

Shaded squares satisfy ai > bj .
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Combinatorial recipe (Atobe)

1 Count the parity of the number of shaded squares in each row
and column.

2 Flip the sign of every second row and every second column.

3 The negative signs of each row/column form the first part of
the Harish-Chandra parameters.

Examples

−
+
−
+

−+−

(1)
=⇒ (−,+,−), (−,+,−,+)

(2)
=⇒ (−,−,−), (−,−,−,−)

(3)
=⇒ U(3, 0)×U(4, 0)
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Global answer

Theorem (W. Zhang, Beuzart-Plessis–Liu–Zhang–Zhu)

Given (tempered stable) π =
⊗′

v πv ∈ A(G ), the period integral∫
[H] φ(h)dh is non-zero for some φ ∈ π if and only if

πv is the distinguished element of the L-packet in the sense of
the local GGP conjecture; and

L(12 , π) ̸= 0.

Moreover, there is a formula of the form

L
(1
2
, π

)
=

∣∣∣∣∣
∫
[H]

φ(h)dh

∣∣∣∣∣
2

· (local factors) · (other L-values)

This gives an integral representation for certain Rankin–Selberg
L-functions over K . The archimedean shape of the integral
depends on weight interlacing.



Global answer

Theorem (W. Zhang, Beuzart-Plessis–Liu–Zhang–Zhu)

Given (tempered stable) π =
⊗′

v πv ∈ A(G ), the period integral∫
[H] φ(h)dh is non-zero for some φ ∈ π if and only if

πv is the distinguished element of the L-packet in the sense of
the local GGP conjecture;

and

L(12 , π) ̸= 0.

Moreover, there is a formula of the form

L
(1
2
, π

)
=

∣∣∣∣∣
∫
[H]

φ(h)dh

∣∣∣∣∣
2

· (local factors) · (other L-values)

This gives an integral representation for certain Rankin–Selberg
L-functions over K . The archimedean shape of the integral
depends on weight interlacing.



Global answer

Theorem (W. Zhang, Beuzart-Plessis–Liu–Zhang–Zhu)

Given (tempered stable) π =
⊗′

v πv ∈ A(G ), the period integral∫
[H] φ(h)dh is non-zero for some φ ∈ π if and only if

πv is the distinguished element of the L-packet in the sense of
the local GGP conjecture; and

L(12 , π) ̸= 0.

Moreover, there is a formula of the form

L
(1
2
, π

)
=

∣∣∣∣∣
∫
[H]

φ(h)dh

∣∣∣∣∣
2

· (local factors) · (other L-values)

This gives an integral representation for certain Rankin–Selberg
L-functions over K . The archimedean shape of the integral
depends on weight interlacing.



Global answer

Theorem (W. Zhang, Beuzart-Plessis–Liu–Zhang–Zhu)

Given (tempered stable) π =
⊗′

v πv ∈ A(G ), the period integral∫
[H] φ(h)dh is non-zero for some φ ∈ π if and only if

πv is the distinguished element of the L-packet in the sense of
the local GGP conjecture; and

L(12 , π) ̸= 0.

Moreover, there is a formula of the form

L
(1
2
, π

)
=

∣∣∣∣∣
∫
[H]

φ(h)dh

∣∣∣∣∣
2

· (local factors) · (other L-values)

This gives an integral representation for certain Rankin–Selberg
L-functions over K . The archimedean shape of the integral
depends on weight interlacing.



Global answer

Theorem (W. Zhang, Beuzart-Plessis–Liu–Zhang–Zhu)

Given (tempered stable) π =
⊗′

v πv ∈ A(G ), the period integral∫
[H] φ(h)dh is non-zero for some φ ∈ π if and only if

πv is the distinguished element of the L-packet in the sense of
the local GGP conjecture; and

L(12 , π) ̸= 0.

Moreover, there is a formula of the form

L
(1
2
, π

)
=

∣∣∣∣∣
∫
[H]

φ(h)dh

∣∣∣∣∣
2

· (local factors) · (other L-values)

This gives an integral representation for certain Rankin–Selberg
L-functions over K . The archimedean shape of the integral
depends on weight interlacing.



Galois representation

Fix a prime p which is ordinary for π = π∨
n ⊠ πn+1 and splits in K .

Theorem (Morel, Skinner)

There is a conjugate self-dual Galois representation
ρn : GalK → GLn(Q̄p) attached to πn such that ρn|GalKp is upper

triangular for p|p.

Choose a basis {v1, · · · , vn} for ρn so that ρn|GalKp is upper

triangular. By conjugate self-duality, ρn|GalKp̄ is lower triangular

with respect to the dual basis.

Let ρ = ρ∨n ⊗ ρn+1. It is conjugate self-dual of weight −1 with a
basis {v∨i ⊗ wj}.



Galois representation

Fix a prime p which is ordinary for π = π∨
n ⊠ πn+1 and splits in K .

Theorem (Morel, Skinner)

There is a conjugate self-dual Galois representation
ρn : GalK → GLn(Q̄p) attached to πn such that ρn|GalKp is upper

triangular for p|p.

Choose a basis {v1, · · · , vn} for ρn so that ρn|GalKp is upper

triangular. By conjugate self-duality, ρn|GalKp̄ is lower triangular

with respect to the dual basis.

Let ρ = ρ∨n ⊗ ρn+1. It is conjugate self-dual of weight −1 with a
basis {v∨i ⊗ wj}.



Galois representation

Fix a prime p which is ordinary for π = π∨
n ⊠ πn+1 and splits in K .

Theorem (Morel, Skinner)

There is a conjugate self-dual Galois representation
ρn : GalK → GLn(Q̄p) attached to πn such that ρn|GalKp is upper

triangular for p|p.

Choose a basis {v1, · · · , vn} for ρn so that ρn|GalKp is upper

triangular. By conjugate self-duality, ρn|GalKp̄ is lower triangular

with respect to the dual basis.

Let ρ = ρ∨n ⊗ ρn+1. It is conjugate self-dual of weight −1 with a
basis {v∨i ⊗ wj}.



Galois representation

Fix a prime p which is ordinary for π = π∨
n ⊠ πn+1 and splits in K .

Theorem (Morel, Skinner)

There is a conjugate self-dual Galois representation
ρn : GalK → GLn(Q̄p) attached to πn such that ρn|GalKp is upper

triangular for p|p.

Choose a basis {v1, · · · , vn} for ρn so that ρn|GalKp is upper

triangular. By conjugate self-duality, ρn|GalKp̄ is lower triangular

with respect to the dual basis.

Let ρ = ρ∨n ⊗ ρn+1. It is conjugate self-dual of weight −1 with a
basis {v∨i ⊗ wj}.



Panchishkin condition

The Hodge–Tate weights of ρ can be computed from the
infinitesimal character of π∞.

At p, we have a Panchishkin subspace

ρ□ = ⟨v∨i ⊗ wj | ai > bj⟩ ⊆ ρ

At p̄, use conjugate self-duality to define

ρc□ = ⟨vi ⊗ w∨
j | ai < bj⟩ ⊆ ρc

So weight interlacing determines the correct local conditions at p.
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Selmer group

If □ and △ are two weight interlacing relations, we can use them
to define a Selmer group

H1
□,△(K , ρ)

with unramified local conditions away from p, Greenberg condition
defined using ρ□ at p, and Greenberg condition defined using ρc△
at p̄.

If □ is the actual weight interlacing of π∞, then H1
□,□(K , ρ) is the

Bloch–Kato Selmer group for ρ.
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p-adic deformations

We can vary π in a Hida family with n+(n+1) = 2n+1 variables.

Using pseudo-representations, can form big Galois representation ρ
valued in an ordinary big Hecke algebra I, so we can define big
Selmer groups

H1
□,△(K ,ρ)

Key point

The family ρ covers all weight interlacing relations, so H1
□,□(K ,ρ)

should have arithmetic significance for all possible □.
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Iwasawa main conjecture

Given a weight interlacing relation □, it determines an integral
representation of L-functions and a self-dual Selmer condition.

Expectation (Iwasawa main conjecture)

For any □,
1 There should be a p-adic L-function L□ interpolating the

algebraic part of the central L-values at all specializations of ρ
which has archimedean weight interlacing □.

2 charI(H
2
□(K ,ρ)) = (L□).

3 Neither side of the above equality is zero.

Warning

Part (3) cannot be true for all □ for sign reasons.
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Global root number

Conjugate self duality =⇒ global root number ε = εf ε∞ = ±1

Assuming p split and ordinary, εf is constant in Hida families.
Archimedean ε∞ depends only on weight interlacing.

ε = +1 Coherent case: expectation from last slide should
hold, so have coherent main conjecture

charIH
2
□(K ,ρ)

?
= (L□)

?
̸= 0

ε = −1 Incoherent case: L(12 , π) = 0 for all π in the family.
Expect an incoherent main conjecture (Perrin-Riou)



Global root number

Conjugate self duality =⇒ global root number ε = εf ε∞ = ±1

Assuming p split and ordinary, εf is constant in Hida families.
Archimedean ε∞ depends only on weight interlacing.

ε = +1 Coherent case: expectation from last slide should
hold, so have coherent main conjecture

charIH
2
□(K ,ρ)

?
= (L□)

?
̸= 0

ε = −1 Incoherent case: L(12 , π) = 0 for all π in the family.
Expect an incoherent main conjecture (Perrin-Riou)



Global root number

Conjugate self duality =⇒ global root number ε = εf ε∞ = ±1

Assuming p split and ordinary, εf is constant in Hida families.
Archimedean ε∞ depends only on weight interlacing.

ε = +1 Coherent case: expectation from last slide should
hold, so have coherent main conjecture

charIH
2
□(K ,ρ)

?
= (L□)

?
̸= 0

ε = −1 Incoherent case: L(12 , π) = 0 for all π in the family.
Expect an incoherent main conjecture (Perrin-Riou)



Global root number

Conjugate self duality =⇒ global root number ε = εf ε∞ = ±1

Assuming p split and ordinary, εf is constant in Hida families.
Archimedean ε∞ depends only on weight interlacing.

ε = +1 Coherent case: expectation from last slide should
hold, so have coherent main conjecture

charIH
2
□(K ,ρ)

?
= (L□)

?
̸= 0

ε = −1 Incoherent case: L(12 , π) = 0 for all π in the family.

Expect an incoherent main conjecture (Perrin-Riou)



Global root number

Conjugate self duality =⇒ global root number ε = εf ε∞ = ±1

Assuming p split and ordinary, εf is constant in Hida families.
Archimedean ε∞ depends only on weight interlacing.

ε = +1 Coherent case: expectation from last slide should
hold, so have coherent main conjecture

charIH
2
□(K ,ρ)

?
= (L□)

?
̸= 0

ε = −1 Incoherent case: L(12 , π) = 0 for all π in the family.
Expect an incoherent main conjecture (Perrin-Riou)



Incoherent main conjecture

Conjecture

The compact Selmer group H1
□(K ,ρ) has rank 1, and it contains a

special class z such that

charI

(
H1
□(K ,ρ)

I · z

)2

= charIH
2
□(K ,ρ)tors



Wall crossing

What happens when a pair of weight orders are reversed?

□

×

△

Interlacing relations □ and △ have opposite signs.

Selmer condition decreases at p and increases at p̄.

Lemma

Suppose □ is the coherent interlacing relation. If z△ exists, then
the incoherent main conjecture for △ is equivalent to the coherent
main conjecture for □.
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Upshot

For a given Hida family ρ, we have
(2n+1

n

)
different main

conjectures, indexed by weight interlacing relations.

The incoherent main conjectures require the construction of
special classes in Galois cohomology.

Each such special class also implies results on several coherent
main conjectures

×

, × ,

×
,

· · ·

Need explicit reciprocity laws and arithmetic interpretation of
integral representations to relate motivic p-adic L-functions to
analytic p-adic L-functions.

cf. Loeffler–Zerbes GSp4 ×GL2 ×GL2
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integral representations to relate motivic p-adic L-functions to
analytic p-adic L-functions.
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n = 1

H = U(V1) = (K×)Norm=1, G ≈ (K×)Norm=1 ×GL2

π ≈ χ× f , χ anticyclotomic character of weight (ℓ,−ℓ), f modular
form of weight k.

Infinitesimal characters: χ⇝ (ℓ), f ⇝
(
k−1
2 ,−k−1

2

)
.

p ordinary for f and splits in K .

Ordinary filtration

0 → T−
f → Tf → T+

f → 0

Selmer conditions:

rel : no condition

ord : ordinary Selmer condition

str : strict, i.e. localization = 0
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Weight interlacing

Three weight interlacing relations

ε∞

Selmer condition

ℓ > k−1
2

+1

(str,rel)

|ℓ| < k−1
2

−1

(ord,ord)

ℓ < −k−1
2

+1

(rel,str)

The coherence of each case depends on the finite part εf . This is
related to the Heegner hypothesis.
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Heegner points

Heegner hypothesis

ℓ|Nf =⇒ ℓ splits in K

This implies εf = +1.

ℓ > k−1
2 |ℓ| < k−1

2 ℓ < −k−1
2

Special class is big Heegner point zHeeg (Howard).

Incoherent main conjecture is Perrin-Riou’s main conjecture.

Two coherent main conjectures are BDP main conjectures,
related by a complex conjugation.
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No Heegner points

Now suppose εf = −1.

ℓ > k−1
2 |ℓ| < k−1

2 ℓ < −k−1
2

Special class constructed in recent work of Kim Tuan Do.

Construction not geometric, splits up Selmer classes from the
diagonal cycle on a triple product.

Coherent main conjecture interpolates rank 0 BSD for modular
forms twisted by finite order anticyclotomic characters.
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n = 2

There are 10 interlacing relations, or 6 up to complex conjugation.

(ah,ah)

(hol,gen)

(cpt,ah)

(ah,gen)

(cpt,cpt)

(cpt,gen)

(hol,hol)

(ah,gen)

(cpt, hol)

(hol,gen)


