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Fundamental Lemma Motivic integration Definitions

Background

Let G be a reductive group over Q (think SL2(Q)).

Problem

Decompose the representation R = L2(G (Q)\G (A)) with the right
regular G (A)-action.

If G = SL2, then this contains the study of modular forms and
Maass forms.

The main tool is the trace formula.
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Trace formula

Let f ∈ C∞c (G (A)), then we can consider the trace of f .

Spectral expansion: if R =
⊕

π m(π) · π, then

TrR(f ) =
∑
π

m(π) Tr π(f )

Geometric expansion: R(f ) is an integral operator, and

TrR(f ) =

∫
G(Q)\G(A)

∑
γ∈G(Q)

f (x−1γx)dx

=
∑
{γ}

vol(G (Q)γ\G (A)γ)

∫
G(A)γ\G(A)

f (x−1γx)dx

where the sum is over conjugacy classes in G (Q), and a subscript
γ indicates the centralizer of γ in that group.
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Comparison gives∑
π

m(π) Tr π(f ) =
∑
{γ}

vol(G (Q)γ\G (A)γ)O(G , γ, f )

where O(G , γ, f ) is the orbit integral

O(G , γ, f ) =

∫
G(A)γ\G(A)

f (x−1γx)dx

=
∏
v

∫
G(Qv )γ\G(Qv )

fv (x−1γx)dx

=
∏
v

O(G , γ, fv )
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Stabilization

The individual terms of both sides of the trace formula are stable
under conjugation by G (Q) (i.e. “invariant”), but not by G (Q̄)
(i.e. not “stable”). This causes issues.

Group terms together so that they are stably invariant.

Geometric side: stable orbit integral

SO(G , γ, fv ) =
∑
γ′∼γ
O(G , γ′, fv )

Conjugacy classes in a stable conjugacy class are classified by
the cohomology set H1(F ,Gγ).

Spectral side: L-packets...
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Endoscopy

Principle: unstable orbit integrals can be represented as stable
orbit integrals of G and smaller groups.

Theorem-like object

There is a natural finite abelian group structure on H1(F ,Gγ).

A character κ determines a reductive group H, and there is a
map ν from semisimple stable conjugacy classes of H to
semisimple stable conjugacy classes of G .

Given fG ∈ C∞c (G (Qp)), there exists fH ∈ C∞c (H(Qp)) such
that for all regular semisimple γ ∈ H(Qp),

∆(γ)Oκ(G , ν(γ), fG ) = SO(H, γ, fH)

where Oκ(γ) =
∑

γ′∼γ κ(γ′)O(γ′).
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Fundamental lemma: vague statement

Suppose G extends to a smooth group scheme over Zp. One
version of the fundamental lemma is

Lemma

1H(Zp) is the transfer of 1G(Zp).

We will now state in more explicit terms a Lie algebra variant of
this statement.
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Fundamental Lemma: somewhat more precise statement

Fix a local field F and an unramified reductive group G over F .

Let H be an endoscopic group for G . There is a map ν from
semisimple stable conjugacy classes of h(F ) to semisimple stable
conjugacy classes of g(F ).

Let γH ∈ h(F ), then there is a canonical choice of γ0 in the stable
conjugacy class ν(γH), as well as a character κ on H1(F ,Gγ0).

Define

Oκ(G , γ0) =
∑
γ∼γ0

κ(γ)

∫
G(F )γ\G(F )

1g(OF )((Ad g−1)γ)dg

and SO = O1, then for a specified r depending on G , κ, γ,

FL : Oκ(G , γ0) = qrSO(H, γ)
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Transfer Principle

Main Theorem

For p sufficiently large depending on G , if the fundamental lemma
holds for F = Fp((t)), then it holds for F = Qp.

Famously, Ngô established the premise of the theorem.

Consequences

Hales: We get fundamental lemma for F = Qp for all p.

Waldspurger: The group version also holds.
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Principle

Theorem (Ax–Kochen–Eřsov)

Let ϕ be a first order sentence in the language of valued fields,
then for p sufficiently large, ϕ holds in Fp((t)) if and only if ϕ
holds for Qp.

We need to extend this to account for integration.

Wishful Thinking

Let K be a Henselian local field. Suppose f : Kn → Q is a
“first-order definable” function, then

∫
Kn f (x)dx only depends on

the residue field of K , provided it has a sufficiently large
characteristics.
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Main ideas

If p is large enough relative to a fixed set of formulae, then
operations over Qp and Fp((t)) both look like k((t)) for any
field k of characteristic 0. Model theory makes this precise.

Model-theoretic techniques can be applied to break up k((t))n

into well-understood pieces or “cells”.

Define formal volume/integration over cells valued in some
formal ring with a symbol L to stand for p.
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Specification

Definition

The Denef–Pas language has three sorts: valued field, residue field,
and valuation group. It contains

Rings over Z[[t]]: (0, 1,+,−,×,Z[[t]]) in the valued field
variables.

Rings over Q in the residue field variables.

Ordered group: (0,+,−, <) in the valuation group variables.

Unary function ord from valued field to valuation group.

Unary function ac from valued field to residue field.

A model of this is a triple of set (K , k,Z ) with interpretations for
above symbols.
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Interpretation

Three models: (k((t)), k ,Z), (Qp,Fp,Z), (Fp((t)),Fp,Z)

Qp is a Z[[t]]-algebra by sending t to p.

ac(x) is the leading term of a formal Laurent series resp.
p-adic expansion.

Q in the residue field language is interpreted in Fp as follows:
if r ∈ Q is not defined in Fp, then interpret it as 0.

A formula ϕ in LDP with (m, n, r) free variables defines
XK ,ϕ ⊆ Km × kn × Z r .

Can view ϕ as a functor

Xϕ : {k field of char 0} → {subsets of k((t))m × kn × Zr}
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Specialization I

Also have notion of morphisms Xϕ → Xϕ′ , defined using graphs.

Corollary of Ax–Kochen–Eřsov

If ϕ and ϕ′ define the same functor, then

XK ,ϕ = XK ,ϕ′

for K = Qp or Fp((t)) if p is sufficiently large.

If f : Xϕ → Xϕ′ is a definable morphism, then it specializes to
algebraic maps

fK : XK ,ϕ → XK ,ϕ′

for K = Qp or Fp((t)) if p is sufficiently large.
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Functions

There are three types of Functions on Xϕ:

1 Motive-valued Functions: definable subsets of Xϕ × kn.

2 Z-valued Functions: definable morphisms Xϕ → Z .

3 Residue-dependent Functions: formal symbols Lα for α of the
previous type.

They satisfy various relations like

L− 1 = Xϕ × (k − {0})

Forms a ring C(Xϕ).
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Specialization II

Given f ∈ C(Xϕ), we can interpret it as an actual function
XK ,ϕ → Q for K a local field, p �ϕ,f 1

1 Y ⊆ Xϕ × kn gives x 7→ #π−1
K (x), where π : Y → X is the

projection morphism.

2 α : Xϕ → Z gives αK : XK ,ϕ → Z.

3 L gives p.

Corollary of Ax–Kochen–Eřsov

This is independent of a presentation of f .
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Motivic integration

Formalism:

For each ϕ, construct a subset IC(Xϕ) of integrable Functions.

For each morphism f : Xϕ → Xϕ′ , construct a pushforward
f! : IC(Xϕ)→ IC(Xϕ′).

Let ∗ be the one-point functor. Given ϕ and f ∈ IC(Xϕ),
define µ(f ) = p!(f ), where p : Xϕ → ∗.

Specialization:

Integrable Functions f should have integrable specialization
fK : XK ,ϕ → Q.

Functions on ∗ specializes to rational numbers, and we need

µ(f )K =

∫
XK ,ϕ

fK (x)dx
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Transfer

Theorem (Cluckers–Loeser)

Let f be a function on Xϕ, then for p sufficiently large, fQp ≡ 0 if
and only if fFp((t)) ≡ 0.

Remark

A sentence ϕ is a function on ∗. It specializes to 1 if ϕ holds and 0
otherwise, so this recovers Ax–Kochen–Eřsov.

This combined with the previous slide gives a transfer principle for
theorems involving integrals in this framework.
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About the proof

Induct on the number of valued field variables.

Base case:

Transfer: Ax–Kochen–Eřsov+ε

Specialization: by definition

Inductive step uses Denef–Pas cell decomposition: if
Xϕ ⊆ Km × kn × Z r , then there is a morphism

Xϕ → Km−1 × kn
′ × Z r ′

Fibres are definable disjoint unions of balls in K .

Hard part: Fubini-type theorems for motivic integrals
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Inductive step uses Denef–Pas cell decomposition: if
Xϕ ⊆ Km × kn × Z r , then there is a morphism

Xϕ → Km−1 × kn
′ × Z r ′

Fibres are definable disjoint unions of balls in K .

Hard part: Fubini-type theorems for motivic integrals
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Work left

Fix a local field F and an unramified reductive group G over F .

Let H be an endoscopic group for G . There is a map ν from
semisimple stable conjugacy classes of h(F ) to semisimple stable
conjugacy classes of g(F ).

Let γH ∈ h(F ), then there is a canonical choice of γ0 in the stable
conjugacy class ν(γH), as well as a character κ on H1(F ,Gγ0).

Define

Oκ(G , γ0) =
∑
γ∼γ0

κ(γ)

∫
G(F )γ\G(F )

1g(OF )((Ad g−1)γ)dg

and SO = O1, then for a specified r depending on G , κ, γ,

FL : Oκ(G , γ0) = qrSO(H, γ)
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Easy data

Field extensions of a fixed degree n are represented by a
minimal polynomial and an n-tuple of numbers.

There is a uniform way of describing unramified extensions
and the Frobenius action.

Groups are Zariski closed subsets of matrix groups, classified
by root data plus Frobenius action.

Same for Lie algebras

Endoscopic data are expressed in terms of root data.

Semisimplicity corresponds to diagonalizability over a bounded
field extension.

The map ν is algebraic if we represent stable conjugacy classes
by their characteristic polynomials (and generalizations).
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The integral

The integrand is clearly constructible.

Domain of integration is a conjugacy class, which is
constructible in G .

However, need to be careful with measure.

Key point: motivic integration specializes to the Serre
canonical measure, which must be the G -invariant measure up
to a factor which can be computed.
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Galois cohomology

Endoscopy requires the identification

Theorem (Tate–Nakayama, Kottwitz)

H1(G ,T ) ' π0(T̂ Γ)∗.

Defining this essentially comes down to defining local duality

inv◦^: H1(G ,T )× H1(G ,X ∗(T ))→ Q/Z

i.e. for each pair of non-negative integers a, b, a formula Da,b(t, t ′)
stating that

1 t is a cocyle in Z 1(G ,T ), t ′ is a cocyle in Z 1(G ,X ∗(T )).

2 inv(t ^ t ′) = a
b
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Brauer group

Let E be a finite extension over which T splits, then

t ^ t ′ ∈ Z 2(Gal(E/F ),E×)

Recall the construction of the invariant map:

H2(E/F ,E×)
inf←−− H2(Fr/F ,F

×
r )

val−−→ H2(Fr/F ,Z) ' Hom(Gal(Fr/F ),Q/Z) ' Q/Z

Choose an explicit cocycle α representing a
b ∈ H2(Fr/F ,Z). Given

c ∈ H2(E/F ,E×), inv(c) = a
b is equivalent to

(∃c ′, b1, b2)(inf(c ′) = cb1 ∧ val(c ′) = αb2)



Fundamental Lemma Motivic integration Definitions

Brauer group

Let E be a finite extension over which T splits, then

t ^ t ′ ∈ Z 2(Gal(E/F ),E×)

Recall the construction of the invariant map:

H2(E/F ,E×)
inf←−− H2(Fr/F ,F

×
r )

val−−→ H2(Fr/F ,Z) ' Hom(Gal(Fr/F ),Q/Z) ' Q/Z

Choose an explicit cocycle α representing a
b ∈ H2(Fr/F ,Z). Given

c ∈ H2(E/F ,E×), inv(c) = a
b is equivalent to

(∃c ′, b1, b2)(inf(c ′) = cb1 ∧ val(c ′) = αb2)



Fundamental Lemma Motivic integration Definitions

Brauer group

Let E be a finite extension over which T splits, then

t ^ t ′ ∈ Z 2(Gal(E/F ),E×)

Recall the construction of the invariant map:

H2(E/F ,E×)
inf←−− H2(Fr/F ,F

×
r )

val−−→ H2(Fr/F ,Z) ' Hom(Gal(Fr/F ),Q/Z) ' Q/Z

Choose an explicit cocycle α representing a
b ∈ H2(Fr/F ,Z). Given

c ∈ H2(E/F ,E×), inv(c) = a
b is equivalent to

(∃c ′, b1, b2)(inf(c ′) = cb1 ∧ val(c ′) = αb2)



Fundamental Lemma Motivic integration Definitions

References

R. Cluckers, F. Loeser.
Constructible motivic functions and motivic integration.
Invent. Math., 173 (2008), no. 1, 23–121.

R. Cluckers, F. Loeser.
Constructible exponential functions, motivic Fourier transform
and transfer principle.
Ann. of Math. (2), 171 (2010), no. 2, 1011–1065.

R. Cluckers, Hales, T, F. Loeser.
Transfer principle for the fundamental lemma.
On the stabilization of the trace formula, 309–347.
Stab. Trace Formula Shimura Var. Arith. Appl., 1 Int. Press,
Sommerville, MA, 2011.


	Fundamental Lemma
	Motivic integration
	Definitions

