
SOME GENERIC NON-VANISHING RESULTS FOR L-VALUES
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We look at some results of Rohrlich and Cornut–Vatsal on the generic order of vanishing of L
(
1
2 , f × χ

)
as

χ varies over families of finite order characters.

1. Rohrlich’s Results

This section concerns the following two theorems.

Theorem 1.1. [Roh89] Let π be a unitary cuspidal automorphic form on GL2, then there exists infinitely
many Dirichlet characters χ such that L

(
1
2 , π×χ

)
̸= 0. The same holds if we specify the primes dividing the

conductor of χ.

Theorem 1.2. [Roh84] Let f be a weight 2 modular form. Given a fixed finite set of primes P away from
the level of f , for all but finitely many Dirichlet characters χ unramified away from P , L(f × χ, 1) ̸= 0.

The idea of proof for both of them is to study the average 1
|X|

∑
χ∈X L(s0, π × χ) for X a suitable family

of characters. Using analytic methods, we show that this average is non-zero, which is enough for the first
theorem. For the second one, we in addition choose X to be a Galois orbit of a character and use the
algebraicity of the central value.

The first theorem holds with 1
2 replaced by any complex number and GL2 replaced by GL1. The proof is

essentially the same. It also holds with Q replaced by any number field, but this requires some new ideas in
choosing the correct family and is the main innovation in [Roh89]. In the second theorem, we can replace
by any even weight modular form, since Shimura’s algebraicity theorem still holds. We can also allow P to
contain primes dividing the level of f . The only change in the proof is a more complicated expression relating
the root numbers of f and f × χ. There are also p-adic approaches of deducing the “all but finitely many”
result from “infinitely many” result, cf. [Gre83].

1.1. Approximate functional equation. The basic tool we will use is the approximate functional equation,
which we will derive roughly following [Har02]. Let L(s, π) be the usual automorphic L-function without
the factor at infinity, normalized so that it has centre 1

2 . It has a Dirichlet series L(s, π) =
∑∞

n=1 ann
−s.

Let π̃ be the contragredient of π, then L(s, π̃) =
∑∞

n=1 ann
−s. Finally, if χ is a Dirichlet character, then

L(s, π × χ) =
∑∞

n=1 anχ(n)n
−s.

Let L(s, π∞) be the archimedean factor. Since π∞ is unitary, we have two cases

L(s, π∞) =

{
ΓR(s+ µ)ΓR(s− µ) 0 ≤ Re(µ) < 1

2

ΓR(s+ k−1
2 )ΓR(s+ k+1

2 ) π∞ is a discrete series

In this notation, the Selberg 1
4 -conjecture states that Re(µ) = 0. If π is the automorphic representation

associated to a cusp form f of weight k, then an = af (n)n
− k−1

2 , so the Ramanujan conjecture now states
that |ap| ≤ 2.

We have a functional equation

L(s, π∞)L(s, π) = ϵ(π)N(π)
1
2−sL(1− s, π̃∞)L(1− s, π̃)

where N is the conductor of π, and ϵ(π) is a complex number of modulus 1. We symmetrize the Γ-factors
by setting

F (s, π∞) =
1

2
+

1

2
·
L( 12 + s, π∞)

L( 12 − s, π̃∞)

then F (s, π∞) = F (s̄, π̃∞), and the functional equation can be rewritten as

F (s, π∞)L
(1
2
+ s, π

)
= ϵ(π)N(π)−sF (−s, π̃∞)L

(1
2
− s, π̃

)
1
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Let u and σ be positive real numbers. Formally by the residue theorem, we have

L
(1
2
, π

)
=

1

2πi

∫ σ+i∞

σ−i∞
L
(1
2
+ s, π

)
F (s, π∞)u−s ds

s
− 1

2πi

∫ −σ+i∞

−σ−i∞
L
(1
2
+ s, π

)
F (s, π∞)u−s ds

s

=
1

2πi

∫ σ+i∞

σ−i∞
L
(1
2
+ s, π

)
F (s, π∞)u−s ds

s
+

ϵ(π)

2πi

∫ σ+i∞

σ−i∞
L
(1
2
+ s, π̃

)
F (s, π̃∞)

( 1

uN(π)

)−s ds

s

Define a function

I(x) =
1

2πi

∫ σ+i∞

σ−i∞
F (s, π∞)x−s ds

s

It’s easy to check that the similarly defined integral using π̃∞ is just Ī(x). We can now shift each contour so
σ is sufficiently large, then we can expand the L-value into its Dirichlet series and integrate term by term.
This gives the approximate functional equation, with a parameter u

L
(1
2
, π

)
=

∞∑
n=1

an√
n
I(nu) + ϵ(π)

∞∑
n=1

an√
n
Ī
( n

uN(π)

)
For the above manipulation to work, we need to know that F (s, π∞) is entire in the region Re(s) ≥ −σ,

and that everything has moderate growth in vertical strips. The holomorphicity hold automatically if π∞
is a discrete series. Otherwise we need σ < 1

2 − µ. Stirling’s approximation gives estimates for F (s, π∞) in
vertical strips, and convexity bound is enough for L(s, π). From these, we have the estimates

I(x) = F (0, π∞) +Oσ(x
σ), I(x) = Oσ(x

−N )

as x → 0 and x → ∞ respectively, for any σ < 1
2 − µ and N > 0. Both constants can be made explicit. In

particular, |I(x)| is bounded.

1.2. Averaging. Let X be a finite set of Dirichlet characters. We want to study

Lav(π) :=
1

|X|
∑
χ∈X

L
(1
2
, π × χ

)
The goal is to bound this away from zero for suitably chosen X. Twisting by a finite order character does
not change the archimedean local factor, so using the approximate functional equation, we can rewrite the
average as

Lav(π) =

∞∑
n=1

an√
n

(
1

|X|
∑
χ∈X

χ(n)

)
I(nu) +

∞∑
n=1

an√
n

(
1

|X|
∑
χ∈X

χ̄(n)ϵ(π × χ)

)
Ī
( n

uN(π × χ)

)
Before continuing, we recall how ϵ and N changes under twists. Let q be the conductor of χ and N be the
conductor of π. In either of the two theorems, we may assume (q,N) = 1. Under this assumption,

N(π × χ) = Nq2, ϵ(π × χ) = ϵ(π)χπ(q)χ(N)
G(χ)2

q

where χπ is the central character of π, and G(χ) =
∑

(k,q)=1 χ(k)e
2πik/q is the Gauss sum.

To deal with the coefficients an, the Ramanujan conjecture would give |an| ≪ϵ nϵ for all ϵ > 0. This is
not known for cuspidal Maass forms, so we will use the following estimates∑

n≤x

|an|2 ≪ϵ x
1+ϵ, |an| ≪ϵ n

1
4+ϵ

for all ϵ > 0. The first comes from the Rankin–Selberg method, and it gives |an| ≪ϵ n
1
2+ϵ, which we will

see later is not good enough. The second sharper estimate for the individual terms comes from symmetric
square functoriality. An easy corollary of the results is that

|an|√
n

≪ϵ n
− 1

4+ϵ,
∑
n≤x

|an|√
n

≪ϵ x
1
2+ϵ
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We now suppose X consist entirely of characters with conductor q and study the asymptotic behaviour of
Lav(π) as q → ∞. Let u = q−γ for some γ > 0. This determines the lengths of the two sums. Define

χav(n) =
1

|X|
∑
χ∈X

χ(n), χ̃av(n) =
1

|X|
∑
χ∈X

χ̄(n)ϵ(π × χ)

The main term of the expression for Lav(π) will be I(0) ̸= 0. The error has four components

|Lav(π)− I(0)| ≪
∑

2≤n≤qa

|χav(n)|
|an|√
n
|I(nu)|+

∑
1≤n≤qb

|χ̃av(n)|
|an|√
n

∣∣∣∣I( n

uNq2

)∣∣∣∣+∑
tail

+ |I(0)− I(u)|

≪ϵ

∑
2≤n≤qa

|χav(n)|n− 1
4+ϵ +max

n
|χ̃av(n)| qb(

1
2+ϵ) +

∑
tail

+q−σγ

where a, b > 0 are cut-off exponents to be chosen later, and σ is a sufficiently small real number depending
on π∞ (which can be made absolute using progresses on the Selberg conjecture). The final term is o(1), and
the parameters we have left are a, b, γ, ϵ.

We use the trivial estimates |χav(n)| , |χ̃av(n)| ≤ 1 for the tail. Recall that I(x) decays faster than any
polynomial in x, so for any N > 0, we have∑

tail
≪N u−N

∑
n>qa

n− 1
4−N+ϵ + q2NuN

∑
n>qb

n− 1
4−N+ϵ

≪N q
3
4a+(γ−a)N+aϵ + q

3
4 b+(2−γ−b)N+bϵ

This tends to zero for some choice of N if a > γ and b > 2− γ.
Now we are left with estimating the character average χav(n) and the twisted character average χ̃av(n).

First observe that χav(n) = 1 whenever n ≡ 1 (mod q), so the first main term cannot be too long. For it
to decay with q, we also need that χav(n) = 0 for small n. The second main term also cannot be too long,
so we expect a, b, γ all close to 1. The key feature there is that χ̃av(n) actually tends to 0 uniformly in n as
q → ∞, using additional cancellation from Kloosterman sums.

1.3. Second term. In this section, we reduce the estimation of χ̃av to the estimation of χav. This is
independent of the choice of X. Given n coprime to q, recall that

χ̃av(n) =
1

|X|
∑
χ∈X

χ̄(n)ϵ(π × χ) =
ϵ(π)χπ(q)

q |X|
∑
χ∈X

χ(n′)G(χ)2

where n′ is chosen such that nn′ ≡ N (mod q).
We expand the Gauss sum

G(χ)2 =
∑

1≤j,k≤q

χ(jk)e
2πi(j+k)

q =

q∑
c=1

χ(c)K(1, c; q)

where K(1, c; q) is the Kloosterman sum
∑q

k=1 e
2πi
q (k+ck−1). Averaging over X, we get that

|χ̃av(n)| ≤
1

q

q∑
c=1

|χav(n
′c)| · |K(1, c; q)|

The Weil bound gives |K(1, c; q)| ≪ϵ q
1
2+ϵ. In the next section, we will show that

∑q
c=1 |χav(c)| ≪ϵ qϵ for

some choices of X. In both cases, ϵ is any positive real number, so combining them gives the estimate

|χ̃av(n)| ≪ϵ q
− 1

2+ϵ

Therefore, the second main term is bounded by q
1
2 (b−1)+ϵ. This imposes the condition b < 1, which combined

with 2− γ < b implies γ > 1.
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1.4. First term. In what follows, fix P to be a finite set of primes not containing any bad prime for π and
restrict the prime divisors of q to P . Further fix a number field F . Let χ be a character of conductor q. We
will take the family

X = {χσ |σ ∈ Gal(F (χ)/F )}
When applied to the second theorem, F will be the field generated by the Fourier coefficients of f , and this
ensures L(f ×χ, 1) = 0 =⇒ L(f ×χσ, 1) = 0. For application to the first theorem, we can just take F = Q,
and in fact the larger family of all characters of conductor q work, with a simpler proof.

The first term has length qa, where a > γ > 1. We split it into a full period and the remainder term.∑
2≤n≤qa

|χav(n)|n− 1
4+ϵ =

∑
2≤n≤q

|χav(n)|n− 1
4+ϵ +

∑
q<n<qa

|χav(n)|n− 1
4+ϵ

Call them
∑

I and
∑

II . To estimate
∑

II , we group it by periods∑
II

≤ q−
1
4+ϵ

∑
q<n<qa

|χav(n)| ≤ q−
1
4+ϵ+(a−1)

q∑
n=1

|χav(n)|

Suppose the sum is Oϵ(q
ϵ) for any ϵ > 0, then for a < 1 + 1

4 , we have
∑

II to tend to 0 as q → ∞. For
∑

I ,

we need to deal with small n terms, and we will prove that χav(n) = 0 if 2 ≤ n ≤ qδ for some constant δ

depending only on P , so
∑

I ≪ϵ q
− 1

4 δ+ϵ
∑q

n=1 |χav(n)| ≪ϵ′ q
− 1

4 δ+ϵ′ by the same lemma. Therefore, we are
reduced to proving the following lemma in algebraic number theory.

Lemma 1.3. Let P be a finite set of primes. Let X be the set of characters of conductor q, with the prime
divisors of q lying in P . Then

(1) There exists δ > 0 depending only on P such that χav(n) = 0 if 2 ≤ n ≤ qδ.
(2) For all ϵ > 0,

∑q
n=1 |χav(n)| ≪ϵ q

ϵ.

Proof. Factor χ =
∏

p∈P χp, where χp has conductor pa. We can extend χp to a character of Z×
p which is

trivial on 1 + paZp. Moreover for notational simplicity, suppose p ̸= 2. Given n, we can write n = ξ(1 + p)u

where u ∈ Zp and ξ is a (p− 1)-th root of unity. Then χp((1 + p)u) is a p-power root of unity. Let pµ be its

exact order, so χp((1 + p)up
µ

) = 1, which implies vp(u) ≥ a− (µ+ 1). It follows that vp(n− ξ) ≥ a− µ.
We will show that if µ is too large, then χav(n) = 0. Let χ(n) = ζ ∈ F (χ), then χav(n) = TrF (χ)/F ζ.

Consider the sub-extension F (ζ)/F (ζp). By considering the cyclotomic Zp-tower over F , we see that there
exists a constant Cp,F such that if the p-part of the order of ζ is at least pCp,F , then this extension is non-
trivial. But then TrF (ζ)/F (ζp) ζ = 0, so χav(n) = 0. Now suppose µ > vp(ℓ− 1) for all ℓ ∈ P , then the p-part
of the order of ζ comes entirely from χp(n). If in addition µ > Cp,F , then the above argument shows that
χav(n) = 0. This proves the assertion.

Therefore, we get a constant C depending on P and F such that if χav(n) ̸= 0, then there exists a root
of unity ξ ∈ Zp such that vp(n − ξ) ≥ a − C. But ξp−1 − 1 = 0, so we can use basic results in Diophantine
approximation to bound n from below. Explicitly, if n ̸= 1, then

|n− ξ|p ≥
∣∣np−1 − 1

∣∣
p
≥

∣∣np−1 − 1
∣∣−1 ≥ n−p

Doing this for each p ∈ P shows that if χav(n) ̸= 0, then∏
p∈P

|n− ξ|p ≤
∏
p∈P

p−ap+C = DF q
−1, DF =

∏
p∈P

pC

and on the other hand ∏
p∈P

|n− ξ|p ≥
∏
p∈P

n−p = n−γ , γ =
∑
p∈P

p

Combining those two inequalities shows that any δ < γ−1 works for the first statement.
For the second statement, we need to count the number of n ≤ q such that n is close to a root of unity

in
∏

p∈P Zp. There are
∏

p∈P (p− 1) roots of unities. Around each of them, there are
∏

p∈P pC possibilities,
so we see that the total number is in fact bounded above by a constant depending only on F and P , and
independent of q. □
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2. Cornut–Vatsal’s work

(To be added...)

References

[Gre83] Ralph Greenberg. On the Birch and Swinnerton-Dyer conjecture. Invent. Math., 72(2):241–265, 1983.
[Har02] Gergely Harcos. Uniform approximate functional equation for principal L-functions. Int. Math. Res. Not., (18):923–932,

2002.
[Roh84] David E. Rohrlich. On L-functions of elliptic curves and cyclotomic towers. Invent. Math., 75(3):409–423, 1984.

[Roh89] David E. Rohrlich. Nonvanishing of L-functions for GL(2). Invent. Math., 97(2):381–403, 1989.


