SOME GENERIC NON-VANISHING RESULTS FOR L-VALUES

SHILIN LAI

We look at some results of Rohrlich and Cornut-Vatsal on the generic order of vanishing of $L\left(\frac{1}{2}, f \times \chi\right)$ as χ varies over families of finite order characters.

1. Rohrlich's Results

This section concerns the following two theorems.
Theorem 1.1. [Roh89] Let π be a unitary cuspidal automorphic form on GL_{2}, then there exists infinitely many Dirichlet characters χ such that $L\left(\frac{1}{2}, \pi \times \chi\right) \neq 0$. The same holds if we specify the primes dividing the conductor of χ.

Theorem 1.2. [Roh84] Let f be a weight 2 modular form. Given a fixed finite set of primes P away from the level of f, for all but finitely many Dirichlet characters χ unramified away from $P, L(f \times \chi, 1) \neq 0$.

The idea of proof for both of them is to study the average $\frac{1}{|X|} \sum_{\chi \in X} L\left(s_{0}, \pi \times \chi\right)$ for X a suitable family of characters. Using analytic methods, we show that this average is non-zero, which is enough for the first theorem. For the second one, we in addition choose X to be a Galois orbit of a character and use the algebraicity of the central value.

The first theorem holds with $\frac{1}{2}$ replaced by any complex number and GL_{2} replaced by GL_{1}. The proof is essentially the same. It also holds with \mathbf{Q} replaced by any number field, but this requires some new ideas in choosing the correct family and is the main innovation in [Roh89]. In the second theorem, we can replace by any even weight modular form, since Shimura's algebraicity theorem still holds. We can also allow P to contain primes dividing the level of f. The only change in the proof is a more complicated expression relating the root numbers of f and $f \times \chi$. There are also p-adic approaches of deducing the "all but finitely many" result from "infinitely many" result, cf. [Gre83].
1.1. Approximate functional equation. The basic tool we will use is the approximate functional equation, which we will derive roughly following [$\operatorname{Har} 02$]. Let $L(s, \pi)$ be the usual automorphic L-function without the factor at infinity, normalized so that it has centre $\frac{1}{2}$. It has a Dirichlet series $L(s, \pi)=\sum_{n=1}^{\infty} a_{n} n^{-s}$. Let $\tilde{\pi}$ be the contragredient of π, then $L(s, \tilde{\pi})=\sum_{n=1}^{\infty} \overline{a_{n}} n^{-s}$. Finally, if χ is a Dirichlet character, then $L(s, \pi \times \chi)=\sum_{n=1}^{\infty} a_{n} \chi(n) n^{-s}$.

Let $L\left(s, \pi_{\infty}\right)$ be the archimedean factor. Since π_{∞} is unitary, we have two cases

$$
L\left(s, \pi_{\infty}\right)= \begin{cases}\Gamma_{\mathbf{R}}(s+\mu) \Gamma_{\mathbf{R}}(s-\mu) & 0 \leq \operatorname{Re}(\mu)<\frac{1}{2} \\ \Gamma_{\mathbf{R}}\left(s+\frac{k-1}{2}\right) \Gamma_{\mathbf{R}}\left(s+\frac{k+1}{2}\right) & \pi_{\infty} \text { is a discrete series }\end{cases}
$$

In this notation, the Selberg $\frac{1}{4}$-conjecture states that $\operatorname{Re}(\mu)=0$. If π is the automorphic representation associated to a cusp form f of weight k, then $a_{n}=a_{f}(n) n^{-\frac{k-1}{2}}$, so the Ramanujan conjecture now states that $\left|a_{p}\right| \leq 2$.

We have a functional equation

$$
L\left(s, \pi_{\infty}\right) L(s, \pi)=\epsilon(\pi) N(\pi)^{\frac{1}{2}-s} L\left(1-s, \tilde{\pi}_{\infty}\right) L(1-s, \tilde{\pi})
$$

where N is the conductor of π, and $\epsilon(\pi)$ is a complex number of modulus 1 . We symmetrize the Γ-factors by setting

$$
F\left(s, \pi_{\infty}\right)=\frac{1}{2}+\frac{1}{2} \cdot \frac{L\left(\frac{1}{2}+s, \pi_{\infty}\right)}{L\left(\frac{1}{2}-s, \tilde{\pi}_{\infty}\right)}
$$

then $\overline{F\left(s, \pi_{\infty}\right)}=F\left(\bar{s}, \tilde{\pi}_{\infty}\right)$, and the functional equation can be rewritten as

$$
F\left(s, \pi_{\infty}\right) L\left(\frac{1}{2}+s, \pi\right)=\epsilon(\pi) N(\pi)^{-s} F\left(-s, \tilde{\pi}_{\infty}\right) L\left(\frac{1}{2}-s, \tilde{\pi}\right)
$$

Let u and σ be positive real numbers. Formally by the residue theorem, we have

$$
\begin{aligned}
L\left(\frac{1}{2}, \pi\right) & =\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} L\left(\frac{1}{2}+s, \pi\right) F\left(s, \pi_{\infty}\right) u^{-s} \frac{d s}{s}-\frac{1}{2 \pi i} \int_{-\sigma-i \infty}^{-\sigma+i \infty} L\left(\frac{1}{2}+s, \pi\right) F\left(s, \pi_{\infty}\right) u^{-s} \frac{d s}{s} \\
& =\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} L\left(\frac{1}{2}+s, \pi\right) F\left(s, \pi_{\infty}\right) u^{-s} \frac{d s}{s}+\frac{\epsilon(\pi)}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} L\left(\frac{1}{2}+s, \tilde{\pi}\right) F\left(s, \tilde{\pi}_{\infty}\right)\left(\frac{1}{u N(\pi)}\right)^{-s} \frac{d s}{s}
\end{aligned}
$$

Define a function

$$
I(x)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} F\left(s, \pi_{\infty}\right) x^{-s} \frac{d s}{s}
$$

It's easy to check that the similarly defined integral using $\tilde{\pi}_{\infty}$ is just $\bar{I}(x)$. We can now shift each contour so σ is sufficiently large, then we can expand the L-value into its Dirichlet series and integrate term by term. This gives the approximate functional equation, with a parameter u

$$
L\left(\frac{1}{2}, \pi\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{n}} I(n u)+\epsilon(\pi) \sum_{n=1}^{\infty} \frac{\overline{a_{n}}}{\sqrt{n}} \bar{I}\left(\frac{n}{u N(\pi)}\right)
$$

For the above manipulation to work, we need to know that $F\left(s, \pi_{\infty}\right)$ is entire in the region $\operatorname{Re}(s) \geq-\sigma$, and that everything has moderate growth in vertical strips. The holomorphicity hold automatically if π_{∞} is a discrete series. Otherwise we need $\sigma<\frac{1}{2}-\mu$. Stirling's approximation gives estimates for $F\left(s, \pi_{\infty}\right)$ in vertical strips, and convexity bound is enough for $L(s, \pi)$. From these, we have the estimates

$$
I(x)=F\left(0, \pi_{\infty}\right)+O_{\sigma}\left(x^{\sigma}\right), \quad I(x)=O_{\sigma}\left(x^{-N}\right)
$$

as $x \rightarrow 0$ and $x \rightarrow \infty$ respectively, for any $\sigma<\frac{1}{2}-\mu$ and $N>0$. Both constants can be made explicit. In particular, $|I(x)|$ is bounded.
1.2. Averaging. Let X be a finite set of Dirichlet characters. We want to study

$$
L_{\mathrm{av}}(\pi):=\frac{1}{|X|} \sum_{\chi \in X} L\left(\frac{1}{2}, \pi \times \chi\right)
$$

The goal is to bound this away from zero for suitably chosen X. Twisting by a finite order character does not change the archimedean local factor, so using the approximate functional equation, we can rewrite the average as

$$
L_{\mathrm{av}}(\pi)=\sum_{n=1}^{\infty} \frac{a_{n}}{\sqrt{n}}\left(\frac{1}{|X|} \sum_{\chi \in X} \chi(n)\right) I(n u)+\sum_{n=1}^{\infty} \frac{\overline{a_{n}}}{\sqrt{n}}\left(\frac{1}{|X|} \sum_{\chi \in X} \bar{\chi}(n) \epsilon(\pi \times \chi)\right) \bar{I}\left(\frac{n}{u N(\pi \times \chi)}\right)
$$

Before continuing, we recall how ϵ and N changes under twists. Let q be the conductor of χ and N be the conductor of π. In either of the two theorems, we may assume $(q, N)=1$. Under this assumption,

$$
N(\pi \times \chi)=N q^{2}, \quad \epsilon(\pi \times \chi)=\epsilon(\pi) \chi_{\pi}(q) \chi(N) \frac{G(\chi)^{2}}{q}
$$

where χ_{π} is the central character of π, and $G(\chi)=\sum_{(k, q)=1} \chi(k) e^{2 \pi i k / q}$ is the Gauss sum.
To deal with the coefficients a_{n}, the Ramanujan conjecture would give $\left|a_{n}\right|<_{\epsilon} n^{\epsilon}$ for all $\epsilon>0$. This is not known for cuspidal Maass forms, so we will use the following estimates

$$
\sum_{n \leq x}\left|a_{n}\right|^{2} \ll \epsilon_{\epsilon} x^{1+\epsilon}, \quad\left|a_{n}\right| \ll_{\epsilon} n^{\frac{1}{4}+\epsilon}
$$

for all $\epsilon>0$. The first comes from the Rankin-Selberg method, and it gives $\left|a_{n}\right| \ll_{\epsilon} n^{\frac{1}{2}+\epsilon}$, which we will see later is not good enough. The second sharper estimate for the individual terms comes from symmetric square functoriality. An easy corollary of the results is that

$$
\frac{\left|a_{n}\right|}{\sqrt{n}} \ll \epsilon_{\epsilon} n^{-\frac{1}{4}+\epsilon}, \quad \sum_{n \leq x} \frac{\left|a_{n}\right|}{\sqrt{n}}<_{\epsilon} x^{\frac{1}{2}+\epsilon}
$$

We now suppose X consist entirely of characters with conductor q and study the asymptotic behaviour of $L_{\mathrm{av}}(\pi)$ as $q \rightarrow \infty$. Let $u=q^{-\gamma}$ for some $\gamma>0$. This determines the lengths of the two sums. Define

$$
\chi_{\mathrm{av}}(n)=\frac{1}{|X|} \sum_{\chi \in X} \chi(n), \quad \tilde{\chi}_{\mathrm{av}}(n)=\frac{1}{|X|} \sum_{\chi \in X} \bar{\chi}(n) \epsilon(\pi \times \chi)
$$

The main term of the expression for $L_{\mathrm{av}}(\pi)$ will be $I(0) \neq 0$. The error has four components

$$
\begin{aligned}
\left|L_{\mathrm{av}}(\pi)-I(0)\right| & \ll \sum_{2 \leq n \leq q^{a}}\left|\chi_{\mathrm{av}}(n)\right| \frac{\left|a_{n}\right|}{\sqrt{n}}|I(n u)|+\sum_{1 \leq n \leq q^{b}}\left|\tilde{\chi}_{\mathrm{av}}(n)\right| \frac{\left|a_{n}\right|}{\sqrt{n}}\left|I\left(\frac{n}{u N q^{2}}\right)\right|+\sum_{\mathrm{tail}}+|I(0)-I(u)| \\
& \ll \epsilon \sum_{2 \leq n \leq q^{a}}\left|\chi_{\mathrm{av}}(n)\right| n^{-\frac{1}{4}+\epsilon}+\max _{n}\left|\tilde{\chi}_{\mathrm{av}}(n)\right| q^{b\left(\frac{1}{2}+\epsilon\right)}+\sum_{\mathrm{tail}}+q^{-\sigma \gamma}
\end{aligned}
$$

where $a, b>0$ are cut-off exponents to be chosen later, and σ is a sufficiently small real number depending on π_{∞} (which can be made absolute using progresses on the Selberg conjecture). The final term is $o(1)$, and the parameters we have left are a, b, γ, ϵ.

We use the trivial estimates $\left|\chi_{\mathrm{av}}(n)\right|,\left|\tilde{\chi}_{\mathrm{av}}(n)\right| \leq 1$ for the tail. Recall that $I(x)$ decays faster than any polynomial in x, so for any $N>0$, we have

$$
\begin{aligned}
\sum_{\text {tail }} & \lll N u^{-N} \sum_{n>q^{a}} n^{-\frac{1}{4}-N+\epsilon}+q^{2 N} u^{N} \sum_{n>q^{b}} n^{-\frac{1}{4}-N+\epsilon} \\
& \ll{ }_{N} q^{\frac{3}{4} a+(\gamma-a) N+a \epsilon}+q^{\frac{3}{4} b+(2-\gamma-b) N+b \epsilon}
\end{aligned}
$$

This tends to zero for some choice of N if $a>\gamma$ and $b>2-\gamma$.
Now we are left with estimating the character average $\chi_{\mathrm{av}}(n)$ and the twisted character average $\tilde{\chi}_{\mathrm{av}}(n)$. First observe that $\chi_{\mathrm{av}}(n)=1$ whenever $n \equiv 1(\bmod q)$, so the first main term cannot be too long. For it to decay with q, we also need that $\chi_{\mathrm{av}}(n)=0$ for small n. The second main term also cannot be too long, so we expect a, b, γ all close to 1 . The key feature there is that $\tilde{\chi}_{\mathrm{av}}(n)$ actually tends to 0 uniformly in n as $q \rightarrow \infty$, using additional cancellation from Kloosterman sums.
1.3. Second term. In this section, we reduce the estimation of $\tilde{\chi}_{\mathrm{av}}$ to the estimation of χ_{av}. This is independent of the choice of X. Given n coprime to q, recall that

$$
\tilde{\chi}_{\mathrm{av}}(n)=\frac{1}{|X|} \sum_{\chi \in X} \bar{\chi}(n) \epsilon(\pi \times \chi)=\frac{\epsilon(\pi) \chi_{\pi}(q)}{q|X|} \sum_{\chi \in X} \chi\left(n^{\prime}\right) G(\chi)^{2}
$$

where n^{\prime} is chosen such that $n n^{\prime} \equiv N(\bmod q)$.
We expand the Gauss sum

$$
G(\chi)^{2}=\sum_{1 \leq j, k \leq q} \chi(j k) e^{\frac{2 \pi i(j+k)}{q}}=\sum_{c=1}^{q} \chi(c) K(1, c ; q)
$$

where $K(1, c ; q)$ is the Kloosterman sum $\sum_{k=1}^{q} e^{\frac{2 \pi i}{q}\left(k+c k^{-1}\right)}$. Averaging over X, we get that

$$
\left|\tilde{\chi}_{\mathrm{av}}(n)\right| \leq \frac{1}{q} \sum_{c=1}^{q}\left|\chi_{\mathrm{av}}\left(n^{\prime} c\right)\right| \cdot|K(1, c ; q)|
$$

The Weil bound gives $|K(1, c ; q)| \ll_{\epsilon} q^{\frac{1}{2}+\epsilon}$. In the next section, we will show that $\sum_{c=1}^{q}\left|\chi_{\mathrm{av}}(c)\right|<_{\epsilon} q^{\epsilon}$ for some choices of X. In both cases, ϵ is any positive real number, so combining them gives the estimate

$$
\left|\tilde{\chi}_{\mathrm{av}}(n)\right| \lll q^{-\frac{1}{2}+\epsilon}
$$

Therefore, the second main term is bounded by $q^{\frac{1}{2}(b-1)+\epsilon}$. This imposes the condition $b<1$, which combined with $2-\gamma<b$ implies $\gamma>1$.
1.4. First term. In what follows, fix P to be a finite set of primes not containing any bad prime for π and restrict the prime divisors of q to P. Further fix a number field F. Let χ be a character of conductor q. We will take the family

$$
X=\left\{\chi^{\sigma} \mid \sigma \in \operatorname{Gal}(F(\chi) / F)\right\}
$$

When applied to the second theorem, F will be the field generated by the Fourier coefficients of f, and this ensures $L(f \times \chi, 1)=0 \Longrightarrow L\left(f \times \chi^{\sigma}, 1\right)=0$. For application to the first theorem, we can just take $F=\mathbf{Q}$, and in fact the larger family of all characters of conductor q work, with a simpler proof.

The first term has length q^{a}, where $a>\gamma>1$. We split it into a full period and the remainder term.

$$
\sum_{2 \leq n \leq q^{a}}\left|\chi_{\mathrm{av}}(n)\right| n^{-\frac{1}{4}+\epsilon}=\sum_{2 \leq n \leq q}\left|\chi_{\mathrm{av}}(n)\right| n^{-\frac{1}{4}+\epsilon}+\sum_{q<n<q^{a}}\left|\chi_{\mathrm{av}}(n)\right| n^{-\frac{1}{4}+\epsilon}
$$

Call them \sum_{I} and $\sum_{I I}$. To estimate $\sum_{I I}$, we group it by periods

$$
\sum_{I I} \leq q^{-\frac{1}{4}+\epsilon} \sum_{q<n<q^{a}}\left|\chi_{\mathrm{av}}(n)\right| \leq q^{-\frac{1}{4}+\epsilon+(a-1)} \sum_{n=1}^{q}\left|\chi_{\mathrm{av}}(n)\right|
$$

Suppose the sum is $O_{\epsilon}\left(q^{\epsilon}\right)$ for any $\epsilon>0$, then for $a<1+\frac{1}{4}$, we have $\sum_{I I}$ to tend to 0 as $q \rightarrow \infty$. For \sum_{I}, we need to deal with small n terms, and we will prove that $\chi_{\mathrm{av}}(n)=0$ if $2 \leq n \leq q^{\delta}$ for some constant δ depending only on P, so $\sum_{I}<_{\epsilon} q^{-\frac{1}{4} \delta+\epsilon} \sum_{n=1}^{q}\left|\chi_{\mathrm{av}}(n)\right|<_{\epsilon^{\prime}} q^{-\frac{1}{4} \delta+\epsilon^{\prime}}$ by the same lemma. Therefore, we are reduced to proving the following lemma in algebraic number theory.

Lemma 1.3. Let P be a finite set of primes. Let X be the set of characters of conductor q, with the prime divisors of q lying in P. Then
(1) There exists $\delta>0$ depending only on P such that $\chi_{\mathrm{av}}(n)=0$ if $2 \leq n \leq q^{\delta}$.
(2) For all $\epsilon>0, \sum_{n=1}^{q}\left|\chi_{\mathrm{av}}(n)\right| \ll_{\epsilon} q^{\epsilon}$.

Proof. Factor $\chi=\prod_{p \in P} \chi_{p}$, where χ_{p} has conductor p^{a}. We can extend χ_{p} to a character of \mathbf{Z}_{p}^{\times}which is trivial on $1+p^{a} \mathbf{Z}_{p}$. Moreover for notational simplicity, suppose $p \neq 2$. Given n, we can write $n=\xi(1+p)^{u}$ where $u \in \mathbf{Z}_{p}$ and ξ is a $(p-1)$-th root of unity. Then $\chi_{p}\left((1+p)^{u}\right)$ is a p-power root of unity. Let p^{μ} be its exact order, so $\chi_{p}\left((1+p)^{u p^{\mu}}\right)=1$, which implies $v_{p}(u) \geq a-(\mu+1)$. It follows that $v_{p}(n-\xi) \geq a-\mu$.

We will show that if μ is too large, then $\chi_{\mathrm{av}}(n)=0$. Let $\chi(n)=\zeta \in F(\chi)$, then $\chi_{\mathrm{av}}(n)=\operatorname{Tr}_{F(\chi) / F} \zeta$. Consider the sub-extension $F(\zeta) / F\left(\zeta^{p}\right)$. By considering the cyclotomic \mathbf{Z}_{p}-tower over F, we see that there exists a constant $C_{p, F}$ such that if the p-part of the order of ζ is at least $p^{C_{p, F}}$, then this extension is nontrivial. But then $\operatorname{Tr}_{F(\zeta) / F\left(\zeta^{p}\right)} \zeta=0$, so $\chi_{\text {av }}(n)=0$. Now suppose $\mu>v_{p}(\ell-1)$ for all $\ell \in P$, then the p-part of the order of ζ comes entirely from $\chi_{p}(n)$. If in addition $\mu>C_{p, F}$, then the above argument shows that $\chi_{\mathrm{av}}(n)=0$. This proves the assertion.

Therefore, we get a constant C depending on P and F such that if $\chi_{\mathrm{av}}(n) \neq 0$, then there exists a root of unity $\xi \in \mathbf{Z}_{p}$ such that $v_{p}(n-\xi) \geq a-C$. But $\xi^{p-1}-1=0$, so we can use basic results in Diophantine approximation to bound n from below. Explicitly, if $n \neq 1$, then

$$
|n-\xi|_{p} \geq\left|n^{p-1}-1\right|_{p} \geq\left|n^{p-1}-1\right|^{-1} \geq n^{-p}
$$

Doing this for each $p \in P$ shows that if $\chi_{\mathrm{av}}(n) \neq 0$, then

$$
\prod_{p \in P}|n-\xi|_{p} \leq \prod_{p \in P} p^{-a_{p}+C}=D_{F} q^{-1}, \quad D_{F}=\prod_{p \in P} p^{C}
$$

and on the other hand

$$
\prod_{p \in P}|n-\xi|_{p} \geq \prod_{p \in P} n^{-p}=n^{-\gamma}, \quad \gamma=\sum_{p \in P} p
$$

Combining those two inequalities shows that any $\delta<\gamma^{-1}$ works for the first statement.
For the second statement, we need to count the number of $n \leq q$ such that n is close to a root of unity in $\prod_{p \in P} \mathbf{Z}_{p}$. There are $\prod_{p \in P}(p-1)$ roots of unities. Around each of them, there are $\prod_{p \in P} p^{C}$ possibilities, so we see that the total number is in fact bounded above by a constant depending only on F and P, and independent of q.

2. CORNUT-VATSAL'S WORK

(To be added...)

References

[Gre83] Ralph Greenberg. On the Birch and Swinnerton-Dyer conjecture. Invent. Math., 72(2):241-265, 1983.
[Har02] Gergely Harcos. Uniform approximate functional equation for principal L-functions. Int. Math. Res. Not., (18):923-932, 2002.
[Roh84] David E. Rohrlich. On L-functions of elliptic curves and cyclotomic towers. Invent. Math., 75(3):409-423, 1984.
[Roh89] David E. Rohrlich. Nonvanishing of L-functions for GL(2). Invent. Math., 97(2):381-403, 1989.

