
NON-VANISHING OF GLOBAL THETA LIFTS AND L-FUNCTIONS

SHILIN LAI

This is the notes for a talk given at the student-organized theta correspondence seminar. The goal is to state
various results on the non-vanishing of global theta lifts, in particular on the relation to special values of
L-functions. The local aspects of the theory were covered in a previous talk.

1. General results

We will state the non-vanishing conjectures quite generally, following [GQT14]. Let F be a number field,
and let E be an extension of F of degree d ∈ {1, 2}. Fix an additive character ψ : F\AF → C×. Let
ϵE/F : F×\A×

F → C× be the character attached to the extension E/F .
If G is an algebraic group, A(G) ⊇ Acusp(G) will denote the space of automorphic (resp. cuspidal auto-

morphic) forms on [G] := G(F )\G(AF ). If G = Mpn is the metaplectic group, then A(Mpn) denotes the
space of automorphic forms on [Mpn] := Spn(F )\Mp(AF ) where the centre acts by the non-trivial character.
The cuspidal subspace Acusp(Mpn) can be defined by the usual condition since the cover splits canonically
over the unipotent radical of any parabolic subgroup of Spn.

Fix a sign ϵ ∈ {±1}. Let Wn be a (−ϵ)-Hermitian space of dimension n, and let Vm,r be an ϵ-Hermitian
space of dimension m and Witt index r. In particular, we have a decomposition Vm,r = Vm0,0 ⊕ V r2,1, where
m = m0 + 2r. Moreover, in the skew-symmetric case (E = F , ϵ = −1), we have m0 = 0, m = 2r. The above
data determines a dual reductive pair (G,H), which is shown in the following table, where we define ϵ0 = ϵ
if E = F and 0 otherwise.

ϵ0 G(Wn) H(Vm,r) χV
0 Un Um χV |A×

F
= ϵmE/F

−1
n even On Sp2r 1
n odd On Mp2r

1
m even Spn Om ( ·

disc(V )

)
m odd Mpn Om

The big metaplectic group for a pair as above is Mp(Wn ⊗E Vm,r). It has a Weil representation ωψ, which
can be realized on S(X(AF )), where X is a maximal isotropic subspace of Wn ⊗E Vm,r.

We make some comments on splitting the metaplectic cover. In the paper [Kud94], given a Hecke character
χV : E×\A×

E → C× satisfying certain conditions depending on Vm,r, Kudla wrote down an explicit splitting
ιχV

: G ↪→ Mp(Wn ⊗E Vm,r). Via this, we can define the Weil representation ωψ,χV
:= ωψ ◦ ιχV

on G. We
use the following choices for χV :

χV =


Any character such that χV |A×

F
= ϵmE/F if ϵ0 = 0

The quadratic character attached to disc(V ) if ϵ0 = 1

Trivial character if ϵ0 = −1

An analogous choice of data for W determines a Weil representation ωψ,χW
on H.

With these choices, we can define

ωψ,χW ,χV
= ωψ,χV

⊗ ωψ,χW
: G(AF )×H(AF ) → GL(S(X(AF )))

There is an intertwining operator ωψ,χW ,χV
→ A(G×H) given by the usual theta kernel

θψ,χW ,χV
(ϕ; g, h) =

∑
v∈X(F )

ωψ,χW ,χV
(g, h)ϕ(v)

1
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Let π ⊆ Acusp(G) be a cuspidal automorphic representation of G. For any f ∈ π, define

θψ,χW ,χV
(ϕ, f)(h) =

∫
G(F )\G(AF )

θψ,χW ,χV
(ϕ; g, h)f(g)dg

Since f is rapidly decreasing, this integral converges. The big theta lift of π from G to H is then

Θψ,χW ,χV
(π) = {θψ,χW ,χV

(ϕ, f) |ϕ ∈ ωψ,χW ,χV
, f ∈ π}

In the sequel, we will often drop the auxiliary data from the notation if they are not essential.

Questions

– When is the the lift non-trivial?
– When is the the lift cuspidal?

The answer to the second question is partially given by the Rallis tower property, which is a global version
of the first occurrence properties discussed last time. To set it up, we consider a tower of spaces

Vm0,0 ⊆ · · · ⊆ Vm−2,r−1 ⊆ Vm,r ⊆ Vm+2,r+1 ⊆ Vm+4,r+2 ⊆ · · ·

where each space is the direct sum of the previous space and a split-space of dimension 2. Observe that the
character χV can be used for all spaces in this tower. We will fix the choices of auxiliary data and write Θn,r′

for the theta lift to the space with Witt index r′.

Theorem 1.1 (Rallis). Let π ⊆ Acusp(G), then

– Θn,n(π) ̸= 0.
– Suppose r is the first occurrence, i.e.

r = min{r′ |Θn,r′(π) ̸= 0} ≤ n

then Θn,r(π) is cuspidal, and Θn,r′(π) ̸= 0 for any r′ > r.

As we will see, the proof follows from a calculation of the constant terms of the theta kernel, entirely
analogously to what was done for the Shimura correspondence. This reduces the second problem to the first
one, which is resolved by the following much more substantial theorem.

Theorem 1.2 (Rallis, Kudla–Rallis, etc.). If Θ(π) is cuspidal, then it is non-zero if and only if

Local obstruction: The local theta lifts Θv(πv) ̸= 0 for all v (with compatible auxiliary data).
Global obstruction: Non-vanishing of L-value: let s0 = m−n−ϵ0

2 , then

– If s0 ≥ 0: L
(
s0 +

1
2 , π × χV

)
̸= 0.

– If s0 < 0: L(s, π × χV ) has a pole at −s0 + 1
2 .

In the case of the Shimura lift, G = O3, H = Mp2, and ϵ = −1. The lifts are all cuspidal except for
the case of trivial representation case, which is consistent with the first occurrence theorem. Moreover, the
relevant L-value is indeed the central value, as observed before. In face, the proof will also follow the same
strategy, but there will be many more analytic and representation-theoretical difficulties.

2. Rallis tower property

The first main theorem was proven by Rallis [Ral84, Theorem I.2.1] in the symplectic-orthogonal case.
The unitary case is the same, and we will sketch the computations there. In what follows, both spaces will
be Hermitian, and the symplectic form on Wn ⊗ Vm,r is defined by

(w1 ⊗ v1, w2 ⊗ v2) :=
1

2
TrE/F (δ⟨w1, w2⟩⟨v1, v2⟩)

where δ ∈ E is a fixed element such that TrE/F (δ) = 0.
The key formula relates the constant term of a theta lift along a maximal parabolic subgroup to the theta

lift to a smaller group. In our case, G = U(Wn) and H = U(Vm,r). The maximal parabolic subgroups of H
are stabilizers of isotropic subspaces. Fix a decomposition

Vm,r = X ⊕ I ⊕ Y
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where X ⊕Y is a complete polarization of a (2i)-dimensional split subspace, and I = (X ⊕Y )⊥ ≃ Vm−2i,r−i.
Let P = MN be the stabilizer of X, where M = U(I) × GL(X) is a Levi subgroup, and N = N1N2 is the
unipotent radical, with

N1 = Hom(Y, I), N2 = {β ∈ Hom(Y,X) | TrE/F ⟨y, β(y)⟩ = 0 for all y ∈ Y }
With respect to dual bases of X and Y , the condition for N2 is exactly that the matrix of β is skew Hermitian.
The embeddings into U(Vm,r) can be expressed in matrix forms as

m(a, h) =

a h
(a∗)−1

 , n1(α) =

1 −α∗ − 1
2α

∗α
1 α

1

 n2(β) =

1 0 β
1 0

1


where a ∈ GL(X), h ∈ U(I), α ∈ N1, β ∈ N2, and ∗ represents taking adjoint.

We will use the mixed Schrödinger model for the Weil representation. Let X0 ⊕ Y0 be a polarization of
Wn ⊗E I, then the Weil representation ωI on U(Wn)× U(I) can be realized on S(X0(AF )). A polarization
of the symplectic space Wn ⊗E Vm,r is (X0 ⊕ (Wn ⊗E Y )) ⊕ (Y0 ⊕ (Wn ⊗E X)), so we can realize the Weil
representation for U(Wn)×U(Vm,r) on

S((Wn ⊗E Y )(AF )⊕X0(AF )) ≃ S
(
(Wn ⊗E Y )(AF ),S(X0(AF ))

)
Elements in the Siegel parabolic fixing Y0 ⊕ (Wn ⊗E X) have simple actions on this space. In particular,
taking into account the choice of splitting, we have

ω(g, 1)ϕ(v) = ωI(g)(ϕ(g
−1v)) g ∈ U(Wn)

ω(1, a)ϕ(v) = χW (det(a)) |det(a)|n/2 · ϕ((a∗)−1v) a ∈ GL(X) ⊆M

ω(1, β)ϕ(v) = ψ
(
1
2 (v, β(v))

)
ϕ(v) β ∈ N2

ω(1, α)ϕ(v) = HeisI(α(v))ϕ(v) α ∈ N1

where v ∈ (Wn⊗EY )(AF ), and HeisI denotes the Heisenberg representation ofWn⊗EI. With these formulae,
we can compute the constant term of theta lifts.

Proposition 2.1. Let f ∈ Acusp(G), then for all h ∈ U(I)(AF ),∫
N(F )\N(AF )

θn,r(ϕ, f)(nh)dn = θn,r−i(ϕ(0), f)(h)

Proof. We first expand some definitions.∫
[N ]

θn,r(ϕ; g, nh)dn =

∫
[N1]

∫
[N2]

∑
x0∈X0

∑
y∈Wn⊗EY

ω(g, n2n1h)ϕ(y, x0)dn2dn1

=

∫
[N1]

∑
x0∈X0

∑
y∈Wn⊗EY

∫
[N2]

ω(g, n2n1h)ϕ(y, x0)dn2dn1

=

∫
[N1]

∑
x0∈X0

∑
y∈Wn⊗EY

ω(g, n1h)ϕ(y, x0)

∫
[N2]

ψ
(1
2
(y, n2(y))

)
dn2dn1

where the sums are over the F -points of the vector spaces. For the final integral to be non-zero, we need
(y, n2(y)) = 0 for all n2 ∈ N2. Let S ⊆ Wn ⊗E Y denote the subset of all such y, then we can rewrite the
final expression as ∫

[N1]

∑
x0∈X0

∑
y∈S

ω(g, n1h)ϕ(y, x0)dn1

This used the normalization of the Haar measure giving [N2] volume 1.
The group R = U(Wn)×GL(Y ) acts on S. We now study its orbit. For this, it is convenient to choose a

basis f1, · · · , fi for Y . Write y ∈Wn ⊗E Y as w1 ⊗ f1 + · · ·+ wi ⊗ fi, then for β ∈ N2,

(y, β(y)) =
1

2
TrE/F

(
δ

∑
1≤a,b≤i

⟨wa, wb⟩⟨β(fb), fa⟩
)

= δ
∑

1≤a,b≤i

⟨wa, wb⟩⟨β(fb), fa⟩
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The condition on y is therefore equivalent to requiring ⟨wa, wb⟩ = 0 for all 1 ≤ a, b ≤ i. The orbits of R on S
are labelled by the dimension of ⟨w1, · · · , wi⟩. More precisely, for each d ≤ min(i, rank(Wn)), fix an isotropic
subspace Td ⊆Wn of dimension d with basis (w1, · · · , wd). The orbit corresponding to d can be represented
by w1 ⊗ f1 + · · ·+ wd ⊗ fd. Let O denote this set of representatives, then we can re-write the sum as∑

y∈O

∑
(γ1,γ2)∈R(F )/Ry(F )

∫
[N1]

∑
x0∈X0

ω(g, n1h)ϕ((γ1, γ2)y, x0)dn1

where Ry denotes the stabilizer of y in R. Let Pd = MdNd be the parabolic subgroup of U(Wn) fixing
the isotropic subspace Td, then Ry = NdLd, where Ld ⊆ GL(Y ) consists of block lower triangular matrices
corresponding to the partition (d, i− d).

It’s easy to see using the expressions for the Weil representation that GL(Y )(F ) embedded into P as
before acts by translation. On the other hand, U(Wn)(F ) acts by translation in the first variable and another
Weil representation on the second variable. Since we are summing over x0 ∈ X0(F ), the result is invariant
in the second variable by the invariance property of the theta kernel. Therefore, the entire group R acts by
translation in the above expression, and∫

[N ]

θn,r(ϕ; g, nh)dn =
∑
y∈O

∑
γ1∈Nd(F )\G(F )

∑
γ2∈Ld\GL(Y )

∫
[N1]

∑
x0∈X0

ω(γ1g, n1γ2h)ϕ(y, x0)dn1

where we have further used the commutation relation γn1(β)γ
−1 = n1(β ◦ γ∗). The action of N1 is entirely

on the space S(X0(AF )) and expressed using the Heisenberg representation. To make it explicit, choose a
decomposition Wn = Td ⊕ T ′

d ⊕ Σ, where Td ⊕ T ′
d is a split subspace, and Σ is its orthogonal complement.

Using the Schrödinger model with X0 = (Σ⊗E I)+ ⊕Td⊗E X for some polarization of Σ⊗E I, we can easily
compute that∫

[N1]

∑
x0∈X0

ω(γ1g, n1γ2h)ϕ(y, x0)dn1 =
∑
x0∈X0

ω(γ1g, n1γ2h)ϕ(y, x0)

∫
[N1]

ψ
(
2(x0|Td⊗EX , n1(y))

)
dn1

This integral vanishes unless x0 ∈ (Σ⊗E I)+, so we have∫
[N ]

θn,r(ϕ; g, nh)dn =
∑
y∈O

∑
γ1∈Nd(F )\G(F )

∑
γ2∈Ld\GL(Y )

∑
x0∈(Σ⊗EI)+

ω(γ1g, n1γ2h)ϕ(y, x0)

Therefore the constant term we are trying to evaluate is equal to∑
y∈O

∫
[G]

f(g)
∑

γ1∈Nd(F )\G(F )

∑
γ2∈Ld\GL(Y )

∑
x0∈(Σ⊗EI)+

ω(γ1g, γ2h)ϕ(y, x0)dg

=
∑
y∈O

∑
γ2∈Ld\GL(Y )

∫
Nd(AF )\G(AF )

∫
[Nd]

f(ug)
∑

x0∈(Σ⊗EI)+

ω(ug, γ2h)ϕ(y, x0)du

 dg

The term y = 0 is exactly equal to the desired right hand side, so we just need to show the terms corresponding
to dimensions at least 1 all vanish. Since f is cuspidal, it is enough to show that the sum pairing against f(ug)
does not depend on u, which is another computation using the formulae for the Weil representation. □

The second part of the theorem, namely the non-vanishing of theta lifts to larger groups, follows immedi-
ately. It remains to prove that Θn,n(π) ̸= 0.

Proposition 2.2. Let f ∈ Acusp(G). If∫
G(F )\G(AF )

θn,n(ϕ; g, h)f(g)dg = 0

for all ϕ ∈ ω, then f = 0.

Proof. Let V = X ⊕ Y ⊕ I be as before, with dimX = dimY = n and dim I = m0. Let P = MN be the
Levi decomposition of the corresponding parabolic subgroup. Choose dual bases for Y and X, then in the
decomposition N = N1N2 as before, we have

N2 = Skewn := {B ∈Mn,n | B̄t = −B}
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This is self-dual with respect to the trace pairing. We can represent y ∈ Wn ⊗E Y as an n × n matrix
whose columns are vectors of Wn with respect to some basis. Let JW be the matrix of the skew Hermitian
form δ⟨−,−⟩Wn

. We will compute the Fourier expansion of θn,n along the unipotent subgroup N2 with the
character JW .

θn,n(ϕ; g, h)
N2,JW =

∫
[Skewn]

θn,n(ϕ; g, n2(β)h)ψ(−Tr(JWβ))dβ

=

∫
[Skewn]

∑
x0∈X0

∑
y∈Wn⊗EY

ω(g, n2(β)h)ϕ(y, x0)ψ(−Tr(JWβ))dβ

=
∑
x0∈X0

∑
y∈Wn⊗EY

ω(g, h)ϕ(y, x0)

∫
[Skewn]

ψ
(
Tr(ytJW yβ)− Tr(JWβ)

)
dβ

The integral vanishes unless ytJW y = JW , which is the defining relation for U(W ). We view U(W ) as a
subset of Wn ⊗E Y this way, then we have

θn,n(ϕ; g, h)
N2,JW =

∑
y∈U(W )

∑
x0∈X0

ω(g, h)ϕ(y, x0)

By choosing ϕ to not depend on x0, we can view it as a Schwartz function on (Wn ⊗E X)(AF ). After
unwinding the embedding of G(AF ) into this space, the above expression is the G(F )-average of ϕ|G(AF ).

Let ⟨−,−⟩ be the standard inner product on C∞
c (G(F )\G(AF )), then by assumption, ⟨f, θn,n(ϕ;−, h)⟩ = 0,

so ⟨f, θn,n(ϕ; g, h)N2,JW ⟩ = 0. But by the above computation, this implies ⟨f,−⟩ vanishes on a dense subset
of C∞

c (G(F )\G(AF )), which implies f = 0. □

3. Rallis inner product formula

We now begin proving the second main theorem, so suppose Θn,r(π) is cuspidal, which always happen by
some r by the previous section, and we drop the subscripts in this section. The main tool here is the Rallis
inner product formula, which we saw in the talks on Shimura correspondence.

Theorem 3.1 (Rallis, Kudla–Rallis, etc.). Let f1, f2 ∈ π and ϕ1, ϕ2 ∈ ω. Let s0 = m−n−ϵ0
2 , then

⟨θ(ϕ1, f1), θ(ϕ2, f2)⟩ = c ·

{
Vals=s0+ 1

2
L(s, π × χV )

∏
v Z

∗(s0, ϕ1,v ⊗ ϕ2,v, f1,v, f2,v) if s0 ≥ 0

Ress=−s0+ 1
2
L(s, π × χV )

∏
v Z

∗
v (−s0, ϕ1,v ⊗ ϕ2,v, f1,v, f2,v) if s0 < 0

where Val refers to the constant term in the Laurent expansion at the point, c is a constant depending on our
set-up, and Z∗

v are the normalized local zeta integrals arising from doubling, more precisely

Z∗
v (s, g,Φv, f1,v, f2,v) =

1

Lv(s, πv × χV,s)

∫
G(Fv)

Φv(gv, 1) · ⟨πv(gv)f1,v, f2,v⟩dgv

Remark 3.2. The normalization is not such that the product is finite, but instead, at almost all places, Z∗ is
a product of local L-factors attached to Hecke characters, so the analytic properties are still well-understood.

The proof uses the doubling method. Let W−
n be the same space Wn with the form multiplied by −1, so

G(Wn) is canonically identified with G(W−
n ). Let W =Wn ⊕W−

n be the double of W , with the polarization
W =W∆

n ⊕W∇
n , whose terms are the graphs of the identity and the negative map Wn →Wn. We have the

following see-saw diagram

G(W) H(Vm,r)×H(Vm,r)

G(Wn)×G(W−
n ) ∆H(Vm,r)
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In broad strokes, there are three steps in the proof

⟨θ(ϕ1, f1), θ(ϕ2, f2)⟩
(?1)
=

∫
[G(Wn)×G(W−

n )]

θH,G(W)(δ(ϕ1 ⊗ ϕ2), 1)(g1, g2)f1(g1)f2(g2)χ
−1
V (deg g2)dg1dg2

(?2)
=

∫
[G(Wn)×G(W−

n )]

E
(
s0,Φ

n,r(δ(ϕ1 ⊗ ϕ2))
)
f1(g1)f2(g2)χ

−1
V (deg g2)dg1dg2

(?3)
= L

(
s0 +

1

2
, π × χV

)
·
∏
v

Z∗
v (s0, ϕ1, ϕ2, f1, f2)

This is obviously wrong, because the end result is different from what was claimed. We now look at them in
detail, starting from the end.

3.1. Doubling integral. The third step is the doubling method, which was explained in detail last time. It
is also the only correct step. The key property it satisfies is that the form

Z∗
v : I

G(Wn)(Fv)
Q(Fv)

(s0, χV,v)⊗ πv ⊗ (π∨
v · χ−1

V,v) → C

is non-zero [Yam14, Theorem 5.2]. We saw last time how this implies a close relation with the non-vanishing
of the local theta correspondence, so a proof of the global non-vanishing theorem is taking shape.

3.2. Siegel–Weil formula. The second step is the Siegel–Weil formula describing the theta lift of the trivial
representation of H(Vm,r) as an Eisenstein series. More specifically, E is attached to the Siegel parabolic
subgroup Q fixing W∆

n . To add some explanation, recall that we saw an intertwining operator last time

Φn,r : ωψ,W,χV
= S

(
(W∇

n ⊗E Vm,r)(AF )
)
→ I

G(Wn)
Q (s0, χV ), φ 7→ (g 7→ ω(g)φ(0))

which just comes from an explicit description of the Schrödinger model. This makes it believable that the
theta lift of the trivial representation locally generates the same representations as the Siegel Eisenstein series.
Of course, a lot of work is needed to understand the decomposition of the principal series at the special point.

Globally, a more serious issue appears, namely the integral defining the theta lift need not converge at all.
A related issue is that the Eisenstein series may have a pole at the point of evaluation. The regularization
process used to circumvent them has been resolved through the works of many people. The introduction of
[GQT14] has a good survey. In fact, this is where the point of evaluation switches from s0 +

1
2 to −s0 + 1

2 .

3.3. See-saw. If everything converges, then the first step is entirely formal, but due to the analytic difficulties
just discussed, some care is necessary. First we should be more precise about Weil representations.

Let Wn ⊗E Vm,r = X ⊕ Y be a polarization. On the space W ⊗E Vm,r, both X ⊕ X and W∇
n ⊗E Vm,r

are maximal isotropic subspaces, so the Weil representation on Mp(W ⊗E Vm,r) can be realized on both
S((W∇

n ⊗E Vm,r)(AF )) and S((X ⊕X)(AF )) ≃ S(X(AF ))⊗ S(X(AF )). The intertwining operator is given
by the partial Fourier transform

δ : ϕ1 ⊗ ϕ2 7→
(
(x, y) 7→

∫
X(AF )

ϕ1(u+ x)ϕ2(u− x)ψ(2⟨u, y⟩)du
)
∈ S((Wn ⊗E Vm,r)(AF ))

Observe that the Weil representation for G(Wn)×H(Vm,r) is defined on S(X(AF )). One can check that, as
representations of G(AF )×G(AF ), δ intertwines

δ : ωψ,Wn,χV
⊠
(
ω∨
ψ,Wn,χV

· (χV ◦ det)
)
→ ωψ,W,χV

|G×G

where we added subscripts to differentiating between Wn and W. This was done by Kudla [Kud94] in the
symplectic-orthogonal case and Harris–Kudla–Sweet [HKS96] in the unitary case.

Let f1, f2 ∈ π, then by assumption, θ(ϕ, fi) is cuspidal for i = 1, 2. A formal change of order of integration
gives the formula

⟨θG,H(ϕ1, f1), θG,H(ϕ2, f2)⟩ =
∫
[G(Wn)×G(W−

n )]

θH,G(W)(δ(ϕ1 ⊗ ϕ2), 1)(g1, g2)f1(g1)f2(g2)dg1dg2

where θH,G(W)(−, 1) is the theta lift of the trivial representation of H to G(W), and δ is applied to be able
to work in the more convenient Schrödinger model for this pair. Of course, this manipulation does not make
sense, and the regularization process used to prove the regularized Siegel–Weil formula also gives a correct
manipulation here.
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4. Non-vanishing theorems

We are now ready to discuss the second main theorem. From the Rallis inner product formula, we clearly
need the following local ingredient.

Theorem 4.1. The normalized local zeta integral

Z∗
v (s0;ϕv, f1,v, f2,v) : I

G(Wn)(Fv)
Q(Fv)

(s0, χV,v) → π∨
v ⊗ (πv · χV,v)

does not vanish on the image of S((W∇
n ⊗E Vm,r)(AF )) under Φn,r if and only if the local theta lift Θv(πv)

is non-trivial.

Remark 4.2. This is not entirely known if v is a real place, due to the more complicated structures of the
principal series. Proposition 11.6 of [GQT14] contains more details and references.

We also need to know the analytic behaviour of classical L-functions. Through the doubling method, this
can be deduced from the analytic behaviour of certain Siegel Eisenstein series, which was also important in
the statements and proofs of the regularized Siegel–Weil formulas. We recall two fundamental facts, whose
proofs can be found in [GPSR87].

Proposition 4.3 (Piatetski-Shapiro–Rallis). Let π be a cuspidal automorphic form on G(Wn), and let χ be
a finite order character of E×\A×

E.

– L(s, πχ) converges absolutely if Re(s) > n+ϵ0+1
2 .

– If χ is not conjugate self-dual, then L(s, π × χ) is entire. Otherwise, L(s, π) can have poles only at

1

2
+ {1 ≤ j ≤ 2(n+ ϵ0) | j ≡ δ (mod 2)}

where δ = n if E = F and ϵδE/F = χ|A×
F
if E ̸= F .

In particular, note that the possible locations of poles are exactly the special points showing up in the main
non-vanishing theorems. In fact, consider the theta lift from G(Wn) to a Witt tower Vm0,0 ⊆ Vm0+2,1 ⊆ · · · .
We have the following regions:

Vm0,0 ⊆ · · · ⊆ V ?
n+ϵ0−1,−︸ ︷︷ ︸

First term range

⊆ V ?
n+ϵ0,−︸ ︷︷ ︸

Centre/Boundary

⊆ V ?
n+ϵ0+1,− ⊆ · · · ⊆ V ?

2(n+ϵ0),−︸ ︷︷ ︸
Second term range/Converget range

⊆ V ?
2(n+ϵ0)+1,− ⊆ · · ·︸ ︷︷ ︸
Convergent range

where we have used − to replace either the dimension or the Witt index, and ? denotes a space which may
not exist for parity reasons. There are qualitative differences in the proof of the Siegel–Weil formula between
the regions, with the convergent range corresponding to when the un-regularized theta integral converges
absolutely. Another observation is that the possible poles control both the first term range and the second
term/convergent range.

Proof of Theorem 1.2. If the theta lift is non-zero, then the theorem follows immediately from the Rallis
inner product formula. In the other direction, first observe that the range of absolute convergence exactly
coincides with the range where we know the theta lift is automatically non-vanishing by the Rallis tower
property, so we may suppose that m ≤ 2(n+ ϵ0).

The local hypothesis implies (up to the difficulty at real places) that the local zeta integrals are non-zero,
so the inner product of the theta lift is entirely controlled by the analytic behaviour of L(s, π×χV ). If we are
in the first term range, then since the L-function can have at most a simple pole, it being non-holomorphic
at −s0 + 1

2 is exactly equivalent to its residue at −s0 + 1
2 is non-zero, so the theta lift is non-trivial.

Otherwise, we are in the second term or convergent range. We need to show that the L-function is
holomorphic at s0+

1
2 . By the cuspidality assumption, all lower theta lifts are trivial. In particular, the theta

lifts to the first term range are trivial. This does not imply holomorphicity immediately since it could be
trivial due to local obstructions. Instead, suppose the L-function has a pole there, then there exists a space
V ′
2(n+ϵ0)−m,− in the first term range such that the theta lift of π from G to H ′ is non-trivial. This space

cannot be in the Witt tower for V , so there exists a place where they belong to different local Witt towers.
But now we have non-trivial local theta lifts to two different Witt towers, occurring at dimensions m and
2(n+ ϵ0)−m. This contradicts the lower bound of the conservation relation [SZ15]. □
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