
PREPARATIONS FOR THE IWASAWA MAIN CONJECTURE

SHILIN LAI

This is the notes for a talk given at the Princeton number theory working group, intended to set up the
necessary background for Wiles’ proof of the Iwasawa Main Conjecture for GL(1) using Hida families. It is
based very closely on the notes of Chris Skinner’s 2009 CMI summer school lecture.

We will use the following notations:

– p is an odd prime.
– Q(µp∞) =

⋃
n≥0 Q(µpn).

– Q∞ ⊆ Q(µp∞) is the unique Zp-extension of Q.
– Qn is the unique Z/pnZ-extension of Q in Q∞.
– χ : GQ → Z×p is the p-adic cyclotomic character.

– ω : GQ → µp−1 ⊆ Z×p is the Teichmüller character.

– Γ = Gal(Q∞/Q)
∼−→ (1 + pZp), ∆ = Gal(Q(µp)/Q)

∼−→ µp−1.
– γ ∈ Γ is a fixed topological generator.
– Λ = Zp[[Γ]]

∼−→ Zp[[T ]], where the isomorphism sends γ to 1 + T .
– ∗ denotes the Pontrjagin dual.

1. Statement of the IMC

1.1. Characters. LetW be the open disc around 1 of radius 1 defined over Qp. It is the rigid analytic space
associated to Λ. Given an integer k and a p-th power root of unity ζ, let φk,ζ = ζχk(γ) ∈ W(Qp[ζ]), also
viewed as the homomorphism Λ→ Qp[ζ] sending γ to ζχk. These are the arithmetic points of W.

Let Ψ : GQ → Λ× be the projection to Γ followed by the inclusion. This is a p-adic family of characters
over W. For each φ ∈ W(Q̄p), write Ψφ = φ ◦Ψ for its specialization at φ. If φ = φk,ζ is arithmetic, then

Ψk,ζ := φk,ζ ◦Ψ = ψζω
−kχk

where ψζ : GQ → Zp[ζ]× is the finite order character defined by projection to Γ followed by sending γ to ζ.
More generally, we want to carry around a Dirichlet character ψ, viewed as a character GQ → Q̄×p . Let

Oψ = Zp[ψ], Fψ = Qp[ψ], and Λψ = Λ ⊗Zp Oψ, then we can view ψΨ : GQ → Λ×ψ as a p-adic family of

characters over WOψ . We will denote the conductor of ψ by Nψ and factorize it as N
(p)
ψ Nψ,p, where the first

term is prime to p, and the second term is a power of p.

1.2. p-adic L-functions.

Theorem 1.1. Suppose ψ is odd. There exists Lψ ∈ Frac(Λψ) such that if k ≥ 0, then

φk,ζ(Lψ) = L{p}(0, ψΨk,ζ) := L(0, ψΨk,ζ)(1− ψψζω−k(p)pk)

Moreover, Lψ ∈ Λψ unless ψ = ω−1ψξ for some ξ, in which case (ξχ(γ)γ − 1)Lψ ∈ Λψ.

This is a modified version of the classical Kubota-Leopoldt p-adic L-function. We will let hψ denote the
denominator of Lψ, so

hψ =

{
ξχ(γ)γ − 1 if ψ = ω−1ψξ

1 otherwise

and let gψ = hψLψ ∈ Λψ. If one formally specializes at k = −1, then the existence of the denominator
recovers the pole of the classical L-function at 1 when the character is trivial.

1



2 SHILIN LAI

1.3. Some results on Λ-modules. Let O be a finite extension of Zp of residue class degree f , ramification
index e, and uniformizer $. Let ΛO = Λ⊗Zp O ' O[[T ]]. The usual classification theorem of Λ-modules up
to pseudo-isomorphisms still hold for ΛO, with essentially the same proof:

Proposition 1.2. Let M be a ΛO-module of finite type, then there exists irreducible polynomials f1, · · · , fn,
possibly 0, such that

0→ N →M →
n∏
i=1

ΛO/(fi)→ N ′ → 0

where N and N ′ have finite orders. Furthermore, the principal ideal (
∏
i fi) ⊆ ΛO depends only on M .

The principal ideal is called the characteristic ideal of M , denoted by Ch(M). If M is ΛO-torsion, then
Ch(M) 6= 0. Assuming this, let f ∈ ΛO is any generator of Ch(M), we can apply the Weierstrass prepration
theorem to factor it as $µg(T )u, where u is a unit, and g(T ) is a polynomial of degree λ. The values µ and
λ are called the µ- and λ-invariants of M , respectively. They control the sizes of certain quotients of M .

Proposition 1.3. Let M be a torsion ΛO-module. Let ωn = γp
n − 1, then for a fixed n0 � 1 and n� n0,

#
(
M/

ωn
ωn0

M
)

= pµfp
n+λefn+O(1)

Proof. We have an exact sequence

0→M/N →
∏
i

ΛO/(fi)→ N ′ → 0

Choose n0 sufficiently large so that ωn0 contains all p-power roots of unities roots of all fi. This is possible
since an element of ΛO can have at most finitely many zeroes on W. For any n ≥ n0, let νn = ωn/ωn0

.
Multiply the exact sequence by νn and apply the snake lemma. Observe that νn is injective on the middle
term and N ′ has finite size. It follows that

#(M/νnM +N) =
∏
i

#ΛO/(νn, fi)

The proposition now follows from an explicit calculation of the terms on the right. �

Remark 1.4. With a more careful analysis, done in Chapter V of [NSW08], one can give explicit bounds on
n and n0, and in fact show that the O(1) error term stabilizes.

Finally, if M is a discrete Λ-module such that M∗ is torsion, then we define Ch(M) := Ch(M∗).

1.4. p-adic Selmer groups. For k ≥ 0, define

Sel(ψχ−k) = H1
ur(Q, Fψ/Oψ(ψχ−k))

= ker
(
H1(Q, Fψ/Oψ(ψχ−k))→

∏
`

H1(I`, Fψ/Oψ(ψχ−k))
)

Sel∞(ψ) = H1
ur(Q,Λ

∗
ψ(ψΨ−1))

Remark 1.5. For the given module, H1
ur = H1

f , the Bloch–Kato Selmer group.

Further define

X(ψχ−k) = Sel(ψχ−k)∗, X∞(ψ) = Sel(ψ)∗

so X∞(ψ) is a compact Λψ-module. We have the following control theorem, which explains exactly how
X∞(ψ) is a p-adic interpolation of the various X(ψχ−k).

Theorem 1.6. Suppose ψ is odd and k ≥ 0. We have a natural map

(X∞(ψ)⊗Oψ Oψ[ζ])/(γ − ζχk(γ))(X∞(ψ)⊗Oψ Oψ[ζ])→ X(ψΨ−1
k,ζ)

If for every ` 6= p, the order of ψ|I` is either 1 or not a power of p, then the map is bijective unless k = 0,
ψ|GQp

= ψζ |GQp
, in which case it is surjective with kernel Oψ.
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This theorem is mostly straightforward computations, except for the final part identifying the kernel as
exactly Oψ, which was done in [Gre73]. It is equivalent to the non-vanishing of certain p-adic regulators.
Through the IMC, this is also equivalent to the simplicitly of certain zeroes of Lψ.

The Selmer group we have defined is based on a cyclotomic deformation of the character. It is equal to
the version defined by taking the limit of finite level Selmer groups as one climbs the cyclotomic tower:

Proposition 1.7. There are canonical isomorphisms of Λψ-modules

Sel∞(ψ) ' lim−→
n

Sel(Qn, Fψ/Oψ(ψ)) ' Sel(Q∞, Fψ/Oψ(ψ))

Proof. This follows from Shapiro’s lemma. Some details can be found in sections 3.1 and 3.2 of [SU14]. �

It is also related to the classical definition of Iwasawa using inverse limits of ideal class groups:

Proposition 1.8. Let L be a field such that ψ factors through Gal(L/Q). Let L∞ = LQ∞ be the cyclotomic
Zp-extension of L. If p does not divide the degree of the tame part of L over Q, then as Λψ-modules,

X∞(ψ)ι ' Gal(E∞/L∞)ψ ' lim←−
n

Cl(Ln)ψ

where E∞ is the maximal unramified abelian extension of L∞, and ι indicate that g ∈ Γ now acts as g−1.

Proof. The inflation-restriction sequence gives

0→ H1(∆ψ, Fψ/Oψ(ψ))→ H1(Q∞, Fψ/Oψ(ψ))→ H1(L∞, Fψ/Oψ(ψ))∆ψ → H2(∆ψ, Fψ/Oψ(ψ))

where ∆ψ = Gal(L∞/Q∞), which naturally equals to the part of Gal(L/Q) not wildly ramified at p. By
hypothesis, p - ∆ψ, so the first and last term vanish, so

H1(Q∞, Fψ/Oψ(ψ))
∼−→ H1(L∞, Fψ/Oψ(ψ))∆ψ

Finally, repeating the same analysis with the local Galois groups shows that

Sel∞(ψ) ' H1
ur(L∞, Fψ/Oψ(ψ))∆ψ ' lim−→

n

H1
ur(Ln, Fψ/Oψ(ψ))∆ψ

Taking Pontrjagin dual gives the desired conclusion. �

We collect some deeper facts about X∞(ψ).

Theorem 1.9 (Iwasawa). (1) X∞(ψ) is a finitely generated torsion Λ-module.

(2) If p - N (p)
ψ , then X∞(ψ) has no non-zero finite Λ-submodule.

Proof. The finitely generated part follows very easily from a version of Nakayama’s lemma for Λ-modules
and the control theorem. The torsion part is also a consequence of the control theorem since it is equivalent
to cerrtain specializations being finite. In fact, it will follow from our proof of Theorem 1.11.

The hypothesis of the second part is used when we apply Proposition 1.8. Once we remove the character,
the statement (and in fact also the first part of the theorem) becomes equivalent to the weak Leopoldt’s
conjecture, which is known for cyclotomic Zp-extensions. The details can be found in Section X.3 of [NSW08].
See also Section 1.3 of [PR95]. �

1.5. Main Conjecture and reduction.

Theorem 1.10 (IMC). Let ψ be an odd character, then as fractional ideals of Λψ,

Ch
(

Sel∞(ψ)
)

Ch
(
H0(Q,Λ∗ψ(ψ−1χΨ))

)−1
= (Lψ−1)

An easy computation shows that the theorem is equivalent to the statement Ch(Sel∞(ψ)) = (gψ−1). This
will not be proven in this set of notes. Instead, we show that one divisibility is enough:

Theorem 1.11 (Iwasawa). Let K = Q(µN ). Define Λ-modules

I−alg(K) =
∏
ψ odd

Ch(Sel∞(ψ)), I−an(K) =

( ∏
ψ odd

gψ

)
where the products are over odd characters of Gal(K/Q). Then I−alg(K) and I−an(K) have the same µ- and
λ-invariant.
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Proof. Fix n� n0 � 0, where we will impose conditions on their sizes as we go. Let O = Oψ[µpn ]. On the
analytic side,

#ΛO/(νn, I
−
an(K)) =

∏
ζpn=1,ζp

n0 6=1

#ΛO/(γ − ζ, I−an(K))

=
∏
ψ odd

∏
ζpn=1,ζp

n0 6=1

#ΛO/φ0,ζ(gψ)

= #O/(hn/hn0
)Nψ,p

where hn is the minus part of the class group of Kn = KQn. The last equality follows from the analytic
class number formula.

On the algebraic side, we use Theorem 1.6

X−alg(K)O/νnX
−
alg(K)O =

∏
ψ odd

X∞(ψ)O/νnX∞(ψ)O

'
∏
ψ odd

∏
ζpn=1,ζp

n0 6=1

X∞(ψ)O/(γ − ζ)X∞(ψ)O

'
∏
ψ odd

∏
ζpn=1,ζp

n0 6=1

(X(ψψ−1
ζ )⊗Oψ O)

where we need to make sure n0 is large enough so that the exceptional case in the control theorem does
not occur. A similar inflation-restriction argument to the proof of Proposition 1.8 shows that rationally,
X(ψψ−1

ζ ) is a component of the ideal class group of Kn up to a bounded error term. It follows that

#X−alg(K)O/νnX
−
alg(K)O = #O/(hn/hn0

)Nψ,p · pO(1)

Finally, choosing n and n0 such that Proposition 1.3 applies gives the required result, since the λ- and
µ-invariants are coefficients of terms of different growth rate. �

1.6. Arithmetic consequences. We state two immediate consequences of the main conjecture.

Corollary 1.12. If ψ is an odd primitive Dirichlet character of conductor N such that p - ϕ(N), then

#Cl(Q(µN )⊗Oψ)ψ = # Sel(ψ) = #Oψ/(wψQ(µN )L(0, ψ−1))

Corollary 1.13. If k ≥ 2 is even and p− 1 - k, then

#H1
f (Q,Qp/Zp(1− k)) = #Zp/(ζ(1− k))

Proof. The first corollary is the specialization at φ0,ψ and requires Proposition 1.8. The second corollary is
the specialization at φk−1,ωk−1 . �

2. Hida Family

We will give a brief introduction to Hida families in this section. The main reference is [Hid93]. Let
Mk(N, ξ,A) be the space of classical modular forms of weight k, level Γ1(N), character ξ, and coefficient ring
A. Let Sk(N, ξ,A) be the subspace of cusp forms.

2.1. Ordinary projector. For a fixed N , define the Hecke operator

Up =
[
Γ1(Npr)

(
1 0
0 p

)
Γ1(Npr)

]
=

p−1∑
a=0

∣∣∣
k

(
1 a
0 p

)
acting on Mk(Γ1(Npr),O), for some finite extension O of Zp. On q-expansion, we have

Up

( ∞∑
n=0

anq
n
)

=

∞∑
n=0

anpq
n

It preserves p-integrality, so all of its eigenvalues are p-integral. Therefore, the limit

eord = lim
n→∞

Un!
p
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exists and defines an idempotent operator in the Hecke algebra T(Γ1(Npr),O). Forms in its image are said
to be ordinary. In particular, if f is an eigenform, then it is ordinary if and only if its Up-eigenvalue has
p-valuation 0. Moreover, Up decreases the level at p, so

Mord
k (Γ1(Npr),O) = Mord

k (Γ1(Np),O)

A fundamental property of ordinary forms is

Theorem 2.1 (Hida). Let ψ be a character of (Z/NpαZ)×. Suppose O contains the image of ψ. The value

rankOM
ord
k (Npα, ψω−k,O)

is independent of k if k ≥ 2. The same statement holds with Mord
k replaced by Sord

k .

Proof. This is Theorem 1 of 7.2 in [Hid93]. Its proof uses the control theorem for Hida families. However,
we need to first establish that the ranks are bounded, which is proven using cohomological methods. �

2.2. Λ-adic forms. Let ψ be an odd Dirichlet character as before, with conductor Nψ = Npr, where p - N .
Let I be a complete local finite integral Λψ-algebra, corresponding to a rigid analytic space V, which is a
finite cover of W.

Definition 2.2. An I-adic modular form of character ψ is a formal q-expansion

f =

∞∑
n=0

anq
n, an ∈ I

such that for each point φ ∈ V lying above an arithmetic point φk,ζ ∈ W with k � 0 and |ζ − 1|p � 1,

fφ =

∞∑
n=0

φ(an)qn ∈Mk+1(Npmax(r,t+1), ψψζω
−k, φ(I))

We say the form f is ordinary or a Hida family if all of its specializations are ordinary. It is cuspidal if all of
its specializations are cuspidal.

An example which will be used later is the Eisenstein family

Eψ =
1

2
gψ + hψ

∞∑
n=1

( ∑
d|n

(d,Nψp)=1

∏
`e||d

ψΨ(Fre`)
)
qn

where Fr` is the arithmetic Frobenius at `. Its specializations are classical Eisenstein series

φk,ζ(Eψ) = φk,ζ(hψ)
(1

2
L(−k, ψψζω−k) +

∞∑
n=1

σ
1,ψψζω

−k

k (n)qn
)

where for a character ϕ,

σ1,ϕ
k (n) =

∑
d|n

(d,Nψp)=1

ϕ(d)dk

Let M(ψ, I) be the space of all I-adic forms. Similarly define Mord(ψ, I), S(ψ, I), and Sord(ψ, I).

Theorem 2.3 (Wiles). The spaces Mord(ψ, I) and Sord(ψ, I) are free of finite rank over I.

Proof. This is a consequence of the boundedness part of Theorem 2.1. �

For ` - Np, we have Hecke operators T` acting on the I-adic forms, defined by interpolating the usual T`
action on q-expansions

an(T`f) =
∑
d|(`,n)

[ω−1(d)d]d−1ψ(d)a`n/d2(f)

where [z] denote the multiplicative element in Λ which equals to z. Similarly, we have U` for `|Np. In
particular, the ordinary projector eord is still defined, which projects M(ψ, I) onto Mord(ψ, I). We define the
I-adic Hecke algebra Tord(ψ, I) to be the I-subalgebra of EndI(S

ord(ψ, I)) generated by the Hecke operators
T` and U`. By the previous theorem, Tord(ψ, I) is a finite I-algebra. It can also be constructed as an inverse
limit of the usual Hecke algebras acting on modular forms of bounded weight.

The importance of Hida family lies in the following control theorem.
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Theorem 2.4 (Hida). (1) Any classical modular form lies in a Λ-adic family.
(2) Any normalized classical eigenform of level divisible by p is the specialization of a normalized I-adic

eigenform, for a suitable I.
(3) If k ≥ 2 and ζ is a primitive pt-th root of unity, then for any point φ of V lying above φk,ζ ,

Mord(ψ, I)⊗I,φ Q̄p 'Mord
k (Npt+1, ψψζω

−k, Q̄p)

The same statement holds for cusp forms.

This implies the exact statement of Theorem 2.1.

2.3. Λ-adic Galois representations.

Theorem 2.5 (Hida, Wiles). Let f be a normalized cuspidal I-adic eigenform with character ψ, then there
exists a Galois representation ρf : GQ → GL2(Frac(I)) such that

(1) ρf is continuous with respect to the usual topology of I.
(2) ρf is irreducible.
(3) det ρf = ψΨ.
(4) ρf is unramified away from Np and Tr ρf (Fr`) = a`(f) for all ` - Np.
(5) If f is ordinary, then

ρf |GQp
∼
(
α−1
p ψΨ ∗

0 αp

)
where αp is unramified and αp(Frp) = ap(f).

The construction and first 4 properties were proven by Hida in [Hid86], where he also showed that φ(ρf ) =
ρfφ if the weight of φ is at least 2. The final property was shown by Wiles in [Wil88], where the construction
was also generalized to arbitrary totally real fields.
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