
TWO VARIABLE IWASAWA MAIN CONJECTURE

SHILIN LAI

This is the notes for two consecutive talks given at the number theory working group. The first talk formulates
in some generality a two variable Iwasawa main conjecture for Hida families of modular forms. The second
talk shows how some Eisenstein cases of it relates to certain cyclicity hypotheses on modules coming from
GL(1). The main reference is [FK12], Section 11.

0. Introduction

The purpose of the talks will be to state a two variable main conjecture for modular forms and relate
the Eisenstein part of it to the previous talks. We will vaguely sketch the form of the conjecture now for
motivation. The details will come later.

The Selmer group we consider will be Greenberg’s Selmer group

S = ker
(
H1(GQ,p, H

∗[[Z×p ]])→ H1(Qp, H
∗
sub[[Z×p ]])

)
There will be some way of measuring valuation at a prime p ⊆ h[[Z×p ]], and the main conjecture is that

S∗ ∼p H[[Z×p ]]/(LMK)

for all primes p. Subject to technical hypotheses, the residually irreducible case of this conjecture should
follow from [SU14, Theorem 3.31]. This still leaves the Eisenstein case, among others.

We will prove the ω−1-part of this conjecture for those p such that p ∩ h is contained in an Eisenstein
maximal ideal m, assuming the following two equivalent conditions (assuming a Gorenstein condition)

(1) H−/IH− is generated by (1− T ∗(p)){0,∞} as an h/I-module.
(2) {p, 1− ζpr} generates X as a Λ-module.

where X = lim←−r Cl(Q(µpr ))(p) is the classical Iwasawa module. Observe that the second condition is a

stronger version of the classical cyclicity conjecture for class groups. The method of proof is similar to the
proof of the GL(1)-main conjecture assuming Vandiver’s conjecture using Stickelberger elements.

1. Homological Algebra

In this section, Λ will be a complete Noetherian local ring with a finite residue field k of characteristic p.
Let Q(Λ) be its total ring of fractions. Throughout this talk, (−)∗ = Homcont(−,Qp/Zp).

1.1. Determinant. Following Fukaya–Kato, we will define a map [−] sending torsion Λ-modules of finite
projective dimension to Q(Λ)×/Λ× which is multiplicative in short exact sequences. Given a resolution,

0→ Ln → Ln−1 → · · · → L0 →M → 0

Tensoring by Q(Λ) gives an exact sequence of free modules

0→ Ln ⊗Λ Q(Λ)→ Ln−1 ⊗Λ Q(Λ)→ · · · → L0 ⊗Λ Q(Λ)→ 0

This can be split into multiple 3-term exact sequences 0→ Ki → Li⊗ΛQ(Λ)→ Ki−1 → 0 with Kn = K0 = 0.
Inductively, each Ki is projective, and we can choose splittings Li ⊗Λ Q(Λ) ' Ki ⊕ Ki−1. Therefore, this
gives an isomorphism ⊕

i odd

Li ⊗Λ Q(Λ) '
⊕
i

Ki '
⊕
i even

Li ⊗Λ Q(Λ)

The determinant of this map with respect to a choice of Λ-bases for both sides will be defined to be [M ].

Since each finite free resolution of M is the direct sum of the minimal resolution and shifts of Λ
=−→ Λ, this

is independent of the choice of resolution.

Example 1.1. If Λ is a DVR, then v([M ]) = length(M).

Example 1.2. Let Λ = Zp[[T ]] be the classical Iwasawa algebra.
1



2 SHILIN LAI

(1) Let M = Λ/(ξ), where ξ ∈ Λ is non-zero, then M can be resolved by the complex

0→ Λ
ξ−→ Λ→M → 0

The determinant of M is therefore ξ ∈ Frac(Λ)×/Λ×.
(2) Let k = Fp be the residue field. It has the Koszul resolution

0 Λ Λ2 Λ k 0

(
T
−p
)

(p,T )

It follows that [k] = det
(
T p−1

−p 0

)
= 1 in Frac(Λ)×/Λ×. The finite Λ-modules are all successive

extensions of k, so they all have determinant 1.

It follows from the above computations and multiplicativity that if X is a torsion Λ-module, then ([X]) =
Ch(X), the characteristic ideal of X. This also agrees with the embedding of the determinant module into
Frac(Λ) defined in Section 3 of [PR94].

1.2. Selmer complex. We summarize some results on Nekovář’s Selmer complex from [Nek06]. The original
reason for their introduction was to deal with trivial zeros, but we will use them because they have good
finiteness properties. We will use C• to denote complexes, RΓ to denote the corresponding objects in the
derived category, and H• to denote cohomology.

Suppose G is profinite group, and M is a topological Λ[G]-module. We define C•cont(G,M) to be the
complex of continuous inhomogeneous cochains valued in M . This computes the usual group cohomology
Hi(G,M) if M is finite. In general, the category of topological Λ[G]-modules is not abelian. Nekovář defined
an abelian full subcategory of admissible modules which is stable under subobjects and quotients. It contains
finitely generated Λ-modules and their Pontryagin duals. We can extend C•cont(G,M) to a map

RΓcont(G,−) : D+(ad
Λ[G]Mod)→ D+(ΛMod)

Theorem 1.3 (Proposition 4.2.9 of [Nek06]). Suppose cdp(G) = d <∞ and G satisfies

(F) dimkH
i(U, k) <∞ for all open normal subgroup U E G and all i ≥ 0

Let S ⊆ Λ be multiplicatively closed. Let M ∈ D+(ad
Λ[G]Mod). If M ⊗R S−1R ∈ D

[a,b]
perf (S−1RMod), then

S−1RΓcont(G,M) ∈ D[a,b+d]
perf (S−1RMod).

In particular, the conditions are satisfies if G is the absolute Galois group of a local field or the Galois
group of the maximal extension of a global field unramified away from a finite number of places (assuming
p > 2). This is a generalization of the classical finiteness results in Galois cohomology.

Definition 1.4. Let GQ,p be the Galois group of the maximal extension of Q unramified away from p, Gp be
the absolute Galois group of Qp, and Ip be the inertia group of Gp. Let M be an admissible Λ[GQ,p]-module
with a Gp-stable filtration

0→Msub →M →Mquo → 0

then its Selmer group is

Sel(M ;Msub) = ker
(
H1(GQ,p,M)→ H1(Gp,Mquo)

)
and its complex is

C̃•f (M ;Msub) = Cone
(
C•cont(GQ,p,M)→ C•cont(Gp,Mquo)

)
[−1]

Our definition of the classical Selmer group differs from the one given by Greenberg [Gre94] in that he

took the kernel into H1(Ip,Mquo). The difference injects into H1(Gp/Ip,M
Ip
quo), which will be zero in the

setting of our main results.
The relation between the Selmer group and the Selmer complex is given by the next lemma.

Lemma 1.5. There is an exact sequence

0→ H̃0
f (M ;Msub)→ H0(GQ,p,M)→ H0(GQp

,Mquo)→ H̃1
f (M ;Msub)→ Sel(M ;Msub)→ 0

Proof. By construction, we have an exact triangle

R̃Γf (GQ,p,M ;Msub)→ RΓcont(GQ,p,M)→ RΓcont(Gp,Mquo)

from which the exact sequence follows. �
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The Selmer complex was introduced to have good formal duality properties. We state a special case of
this, which follows from the classical Poitou–Tate duality.

Theorem 1.6 (Proposition 6.7.7 of [Nek06]). Suppose T is a Λ-module of finite type with a continuous
GQ,p-action. Let Tsub be a GQp

-stable submodule, then

R̃Γf (T ;Tsub) ' RHom(R̃Γf (T ∗(1);T ∗quo(1)),Qp/Zp)[3]

as objects of D(ΛMod).

2. Statements

We use the following notations

– p > 2 is prime.
– Λ = Zp[[Z

×
p ]], viewed as the weight variable Iwasawa algebra.

– G∞ = Gal(Q(µp∞)/Q). χ : G∞
∼−→ Z×p is the cyclotomic character.

– GQ,p is the Galois group of the maximal extension of Q unramified away from p.
– Gp is the absolute Galois group of Qp.
– H = lim←−rH

1
ét(X1(pr)/Q̄,Zp)

ord, with a natural action of GQ,p.

– h is the Zp-algebra of dual Hecke operators on H.
– The diamond operators 〈a〉 defines a map Λ→ h.
– I = 〈1− T ∗(`) + `〈`〉−1|` 6= p〉 is the Eisenstein ideal of h.
– The subscript E denotes taking the Eisenstein component.
– ω : (Z/pZ)× → Z×p is the Teichmüller character.

2.1. Algebraic side. Let H = H(1)⊗̂Zp[{±1}]Zp[[G∞]], where {±1} acts on both modules by complex
conjugation. This is a module over h[[G∞]]. Let GQ,p act on H by its usual action on H(1) and by projection
on Zp[[G∞]] (the dual action is denoted by Zp[[G∞]]] in [FK12]). Observe that [σ] 7→ χ(σ)[σ] is a Galois-
equivariant isomorphism Zp[[G∞]]→ Zp(1)[[G∞]], so H is isomorphic as a Zp[[GQ]]-module to its twists.

Recall that H has a GQp
-stable filtration

0→ Hsub → H → Hquo → 0

This gives inclusions Hsub ⊆ H and H∗quo ⊆ H∗.

Definition 2.1. The compact Selmer group is

X = Sel(H∗;H∗quo)∗

The compact Selmer complex is

X′ = RHom(R̃Γf (H∗;H∗quo),Qp/Zp)[2]

Remark 2.2. Our Selmer group is different from the one defined in [FK12] by a twist, namely X = XFK(1).
This causes some differences in eigenspaces what follows.

The shift is such that the interesting cohomology of X′ is in degree 1. The inclusion Hsub ⊆ H satisfies the
Panchishkin condition, defined in [Gre94]. The Selmer group defined above X is a weight-space interpolation
of the classical Selmer group of an ordinary modular form. We recall some results of Kato.

Theorem 2.3 (Kato).

(1) H2(GQ,p,H) is a torsion h[[G∞]]-module.
(2) H1(GQ,p,H) is a torsion-free h[[G∞]]-module of rank 1.
(3) H1(X′) is a torsion h[[G∞]]-module.
(4) The map H1(GQ,p,H)→ H1(Gp,Hquo) is injective.

Proof. The first two statements are interpolated versions of Theorem 12.4 of [Kat04]. They follow axiomati-
cally from the existence of an Euler system with non-torsion base layer [Rub00, Theorem II.3.2], which was
construted by Kato.

For the last two statements, Theorem 1.6 and the definition of the Selmer complex gives the exact sequence

H1(GQ,p,H)→ H1(Gp,Hquo)→ H1(X′)(−1)→ H2(GQ,p,H)→ 0
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Classically, this arises from the comparison of Selmer structures: H1(X′) ≈ X has the Greenberg local
condition at p, and H2(GQ,p,H) is isomorphic to the dual of the Selmer group with the strict local condition
at p. It follows from local duality that H1(Gp,Hquo) is free of rank 1 [PR95, Proposition A.2.3]. Therefore,
under (1) and (2). statements (3) and (4) are equivalent.

To actually prove them, we introduce the Coleman map

Col : H1(Gp,Hquo)→ SΛ[[G∞]]

In our case, because H(1)Frp=1 = 0, there are no denominators, and Col is an isomorphism. Kato’s Euler
system gives an element z ∈ H1(GQ,p,H). A key property is that the Coleman map of the restriction of z is
a p-adic L-function. The corresponding classical L-values are not all zero by a result of Rohrlich [Roh84], so
the image of z is non-trivial. Since both modules are torsion-free, (4) must hold. �

Remark 2.4. (i) Statements (1) and (2) are equivalent statements of the weak Leopoldt conjecture, see
[PR95, Proposition 1.3.2] for further formulations.

(ii) The statement that H1(GQ,p,H) is the “same” as H2(GQ,p,H) is usually called a “main conjecture
without L-functions”. Using (3) and (4), this is equivalent to a usual main conjecture. We will see
more applications of the ideas.

In the formulation of the main conjecture in [FK06] using determinants, we need to know that X has finite
projective dimension, which we will do via X′. They are related by the following lemma.

Lemma 2.5. Suppose that the following two conditions hold

(no-pole)
(
H0(GQ,p,H∗)∗

)
p

= 0

(no-triv-zero)
(
H0(Gp,H∗sub)∗

)
p

= 0

then X′p ' Xp in the derived category.

Proof. It follows from Lemma 1.5 that if (no-pole) and (no-triv-zero) holds, then

H̃0
f (H∗;H∗quo) = 0, H̃1

f (H∗;H∗quo) = Sel(H∗;H∗quo)

The functor Hom(−,Qp/Zp) is the Pontryagin duality, so it is exact. Therefore, the map Xp → X′p is quasi-
isomorphic in degrees 0 and 1. It remains to show that the chomology of X′p is concentrated in degrees 0

and 1. Theorem 1.3 and the definition of R̃Γ shows that it is a priori concentrated in degrees [0, 2]. By

Theorem 1.6, X′ ' R̃Γf (H(1);Hsub(1))[−1], so we just need to show that H̃1
f (H(1);Hsub(1)) = 0. Using

Lemma 1.5 with M = H, this follows from the following two claims

(1) H(1)
Gp
quo = 0.

(2) ker
(
H1(GQ,p,H(1))→ H1(Gp,Hquo(1))

)
= 0.

Since H(1)quo is unramified, taking Ip invariant of H(1)quo kills the G∞ part, so the first statement follows
from the purity of H. The second claim was part (4) of Theorem 2.3. Proposition 3.1.4 of [FK12] gives a
proof using only the dual exponential map. �

Let p be a prime in h[[G∞]], and suppose the following condition holds

(p-Gor) There exists a maximal ideal m ⊆ h such that h ∩ p ⊆ m and hm is Gorenstein.

In particular, Hm is free of rank 2 over hm by the Λ-adic Eichler–Shimura isomorphism, so Hp is free of rank
1 over h[[G∞]]p. Applying Proposition 1.3 with Λ = h[[G∞]] gives the following result.

Lemma 2.6. Suppose (p-Gor) holds, then X′p is a perfect complex in Db(h[[G∞]]p
Mod).

In combination with Lemma 2.5, this yields

Corollary 2.7. Assuming (p-Gor), (no-pole), and (no-triv-zero), then X has finite projective dimension.
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2.2. Analytic side. In the past talks, we saw two constructions of essentially the same p-adic L-function
L ∈ H. The Mazur–Kitagawa p-adic L-function is defined using modular symbols, and the Fukaya–Kato
p-adic L-function is defined as the Coleman map applied to Kato’s Euler system. Given a classical ordinary
cusp form f of weight 2, it determines a cohomology class per(f) ∈ H1(X1(pr)(C),C). For a finite order
character ψ, the interpolation relation is roughly

(L,per(f))(ψ) = G(ψ)L(f, ψ−1, 1)

The fact that the two constructions agree is Kato’s explicit reciprocity law.
Using the Λ-adic Poincaré pairing introduced in Giada’s talk, there is a Hecke-equivariant isomorphism

H ' Homh(H,SΛ), we can also view L as a homomorphism H → SΛ[[G∞]]. The Fukaya–Kato construction

using the Coleman map gives an extension of this to L̃ : H̃DM →MΛ,DM [[G∞]]⊗Λ Q(Λ[[G∞]]). Proposition

4.3.6 of [FK12] gives an explicit formula for L̃({0,∞}) in terms of Eisenstein series.
One may expect that the p-adic L-function should live in h[[G∞]], which can be evaluated on pairs h→ Q̄p

and G∞ → Q̄p, corresponding to f and ψ respectively. If (Gor)p holds, then Hp is free of rank 1 over h[[G∞]]p.
In this case, the choice of a basis is essentially the choice of a p-adic period. Without this hypothesis, we can
construct a p-adic L-function for each component, but they may not necessarily fit together.

2.3. Result. We are ready to state the main conjecture and theorem.

Conjecture 2.8. Assuming (p-Gor), (no-pole), and (no-triv-zero),

[Xp] = [(H/(L)p]

Before stating the main theorem, we introduce some eigenspaces. Let θ : (Z/pZ)× → Z×p be a character.

Recall that Λ = Zp[[Z
×
p ]] ' Zp[[Zp]][(Z/pZ)×] =

∏p−1
i=0 Zp[[Zp]](ωi). If M is a Λ-module, then Mθ = M ⊗Λ

Zp[[Zp]]θ. In particular, all h modules have θ-eigenspaces via Λ → h by diamond operators. Furthermore,
G∞ ' Z×p , so we have a similar decomposition on the cyclotomic variable. We let h[[G∞]]θ,θ′ denote the
eigenspace where Λ→ h acts by θ and G∞ acts by θ′.

Theorem 2.9. Suppose the following hypotheses hold

(wt) θ, θ′ are even, θ 6= 1, ω2

(Cyc-a) (H−/IH−)θ is generated by (1− T ∗(p)){0,∞} as an (h/I)θ-module.

For any prime p of h[[G∞]]θ,θ′ containing the Eisenstein ideal I, Conjecture 2.8 holds.

Proof. We verify here that (no-pole) and (no-triv-zero) are implied by the hypotheses. It follows from
Lemma 3.2 that (p-Gor) holds. The theorem then follows from the much stronger Theorem 2.10.

Recall that σ ∈ Ip acts on Hsub by 〈χ(σ)〉−1, so it acts on H∗sub by ω(σ)χ(σ)−1〈χ(σ)〉[σ]. Suppose a = χ(σ)
is torsion, then the (θ−1, ω)-eigenspace has σ-action equal to multiplication by θ−1ω(a). Since θ is even, this
is non-trivial, so H0(Gp, (H∗sub)θ−1,ω) = 0. This proves the hypothesis (no-triv-zero).

For (no-pole), consider the short exact sequence of h[[GQ,p]]-modules from Section 6.3 of [FK12].

0→ P → Hθ/IHθ → Q→ 0

where P = H−θ /IθH
−
θ . An element σ ∈ Gp acts on Q as 〈χ(σ)〉−1, so as before, it does not contribute to the

component of H0 we want. It acts on P by χ(σ)−1, so the eigenspaces match. Instead, Lemma 3.3 shows
that (Cyc-a) implies Υ is surjective. But Υ is trivial in the coinvariants of Hθ/IHθ by construction, so P
also does not contribute. �

Theorem 2.10. Assuming (wt) and (Cyc-a), we have an isomorphism Xθ,θ′,E ' (H/(L))θ,θ′,E.

3. Proofs

3.1. Baby example. We will begin by looking at why Vandiver’s conjecture, in the weaker form of a cyclicity
statement, directly implies the GL(1)-main conjecture. Recall that in classical Iwasawa theory,

X = lim←−
r

Cl(Q(µpr ))(p)

This is a finitely generated torsion Λ-module. Vandiver’s conjecture states that X+ = 0.
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Theorem 3.1. Let i 6≡ 1 (mod p− 1) be odd. If Vandiver’s conjecture holds, then Xωi ' (Λ/(L))ωi , where
L is a version of the Kubota-Leopoldt p-adic L-function.

Proof. This was first observed by Iwasawa [Iwa69], where he constructed the p-adic L-function using the
Stickelberger elements. The conclusion of the theorem is then an easy consequence of cyclicity and the class
number formula. Theorem 10.16 of [Was97] contains an exposition of the proof. We use a different proof
which reduces it to a “main conjecture without L-functions” and shows that both sides of it are trivial using
Vandiver’s conjecture. Francesc’s talk on Rubin’s main conjecture used the same ideas in the imaginary
quadratic setting.

Let Kn = Q(µpn+1), Ln be the maximal abelian p-extension of Kn unramified everywhere, and Mn be the
same except allowing ramification at p. Let K∞ =

⋃
n≥0Kn, and similarly define L∞ and M∞. Finally, in

this proof, let X = Gal(L∞/K∞) and X = Gal(M∞/K∞). The field diagram is

Q

K0 = Q(µp)

L0

M0

K∞

L∞

M∞

G∞

X

X

This X is the same as the X before. The X is obviously something different, but it can also be interpreted
as the dual of a Selmer group, so it plays the same role as the X from other sections. We will in fact prove
that Xj is isomorphic to Λ modulo a p-adic L-function if j is even. A classical reflection principles argument
(or global duality) relates Xj to X1−j .

Class field theory gives us an exact sequence

lim←−
n

O×Kn,p,1 → lim←−
n

O×Kn,p,1 → Gal(M∞/K∞)→ Gal(L∞/K∞)

where the inverse limits are with respect to norms, and the subscripts 1 denote taking elements which are
congruent to 1 modulo the unique prime above p in the relevant field. In cohomological languages, this is
equivalent to

H1(GQ,p,Zp(1)[[G∞]])→ H1(Gp,Zp(1)[[G∞]])→ X→ H2(GQ,p,Zp(1)[[G∞]])

The Galois action on Zp(1)[[G∞]] is by the canonical projection. The identification of the cohomology groups
with the classical objects were done in my previous talk.

In both my talk and Francesc’s talk, the cyclotomic units were used. Define

zn =
ζapn+1 − 1

ζpn+1 − 1
∈ Kn

where a is a choice of generator for (Z/p2Z)×. It is classical that (zn) ∈ lim←−nO
×
Kn

. Therefore, z = (zn)

defines a class in H1(GQ,p,Zp(1)[[G∞]]). By an abuse of notation, its restriction to the local cohomology
group is also denoted by z. We now have an exact sequence

H1(GQ,p,Zp(1)[[G∞]])/(z)→ H1(Gp,Zp(1)[[G∞]])/(z)→ X→ H2(GQ,p,Zp(1)[[G∞]])

One can modify both ends of the terms so that 0 can be put on both ends. The equality of the characteristic
ideals of the two modified ends is a “main conjecture without L-functions”. We will show that even before
modification, both ends are zero.

Let j be even. We will consider the ωj-eigenspace of this sequence. By Vandiver’s conjecture, the last term
is zero. The first term is a Zp[[G∞]]-module. By Nakayama’s lemma, we just need to prove that z generates



TWO VARIABLE IWASAWA MAIN CONJECTURE 7

it modulo each maximal ideal. This latter module is basically H1(GK0,p, µp) up to some error terms which
can be controlled. But we have an exact sequence

0→ Z
[1

p
, ζp

]×
⊗Z Z/pZ→ H1(GK0,p, µp)→ Cl(Q(µp))[p]→ 0

Take its ωj-component. It is a consequence of Vandiver’s conjecture that the last term vanishes. The
behaviour of (z) in the first term follows from deciding whether a component of a cyclotomic unit is a p-th
power or not, which is in fact also equivalent to Vandiver’s conjecture, see Theorem 8.14 of [Was97].

From this discussion, we get an isomorphism

H1(Gp,Zp(1)[[G∞]]ωj )
∼−→ Xωj

The final ingredient is the Coleman map

Col : H1(Gp,Zp(1)[[G∞]])→ Zp[[G∞]]

first defined in [Col79]. It has kernel and cokernel isomorphic to Zp(1), so when projected to the ωj-
component, it is an isomorphism. The key formula is

Col(z) = L
where L is a p-adic L-function. The theorem follows from this. The formula is usually called an explicit
reciprocity law, because it is a generalization of the works of Artin, Hasse, Iwasawa, and others on explicit
formulae for the local norm residue symbol, see the introduction of [Col79] and [PR94]. In our case, the proof
uses the expression of the zeta values in terms of Benoulli numbers and the definition of the Coleman map
in terms of Coleman power series. �

3.2. Cyclicity assumption. From now on, we assume (wt), but the θ 6= ω2 part will actually be
unnecessary until the final part of the talk, where we will need to compare two different normalizations of
Kato’s Euler system. In any case, if θ = 1 or ω2, there is no Eisenstein component. The condition on the
cyclotomic weight will not enter until the next section.

This secion will prove a few useful equivalent formulations of (Cyc-a), which will be used in the main
proof. We will first look more closely into hypothesis (Cyc-a).

Lemma 3.2. Assuming (Cyc-a), then hθ,E is Gorenstein.

Proof. We have an isomorphism H−E ' Hquo,E from Gyujin’s talks. But Hquo ' SΛ by the Eichler–Shimura
isomorphism, so it is the dualizing module for h. The conclusion follows from Nakayama’s lemma. �

Recall that Sharifi’s conjecture gives explicit isomorphisms H−θ,E ' Xθω−1 . It is therefore of interest to

study the image of (1− T ∗(p)){0,∞}.
Lemma 3.3. If a = (1− T ∗(p)){0,∞} and b = {p, 1− ζpr}, then

$(a) = b, Υ(b) = a

Proof. It is straightforward to calculate from the definition that $(a) = b. For the other direction, we require
some more exact sequences. Gyujin explained that Υ is the connectiong morphism for the restriction map
H2(GQ,p,−)→ H2(Gp,−) applied to the following short exact sequence from the proof of Theorem 2.9.

0→ P(2)→ Hθ/IθHθ(2)→ Q(2)→ 0

Suppose x is a lift of {p, 1−ζpr} to H2(GQ,p, H/IH(2)). The sequence has a canonical splitting locally, and we

can take the image of xp under this map to obtain an element z ∈ H2(Gp,P(2)) ' H0(Gp,P∗(−1))∗
∼−→ P,

where the first identification is by local duality, and the second map is an isomorphism since P(1) is a trivial
GQ,p-module. We now seek to find a good lift x. This requires a study of another extension. We interrupt
the proof to state some properties of this sequence. �

There is a short exact sequence 0→ Q→ E → R→ 0, where the modules are

Q = (Hθ/IθHθ)/P ' H+
θ /IθH

+
θ

E = H̃DM,θ,E/ ker(Hθ,E → Q)

R = H̃DM,θ,E/Hθ,E

The various cohomology groups that appear in the long exact sequence are useful.
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Lemma 3.4. We write Hi(−) for Hi(GQ,p,−).

(1) Q ' hθ/Iθ ' Λθ/(ξ) with σ ∈ GQ,p acting by θ([σ])−1. There are natural isomorphisms

H1(Q(2))
∼−→ Xθω−1(1)

∼−→ H2(Q(2))

(2) R ' Λθ/(ξ) with Galois acting by χ−1, and

H1(R(1)) ' Hom(Q×p ,Zp)⊗R(1), H1(R(2)) ' H1(Zp(1))⊗R(1)

(3) The group Ext1
Zp[[GQ,p]](R,Q) may be naturally identified with H1(Λθ/(ξ)

](1)), which is a quotient

of H1(Λ]θ(1)). The image of 1− ζp∞ under the Kummer map followed by these identifications is the
class of the extension of 0→ Q→ E → R→ 0.

(4) The connecting map of the exact sequence 0 → Q(2) → E(2) → R(2) → 0 sending H1(R(2)) to
H2(Q(2)) sends the Kummer image of p to {p, 1− ζp∞}.

Proof. Gyujin did parts (1) and (2) in his talks. Part (4) is a consequence of part (3). Part (3) comes from
a detailed study of the geometry of cusps initiated by Ohta and its relation with Siegel units. Its proof is in
Section 9.3 of [FK12]. �

Proof of Lemma 3.3 continued. Consider the following diagram

0 P V R 0

0 Hθ/IθHθ F R 0

0 Q E R 0

s

=

=

where F = H̃DM,θ/IθHθ, s is a Gp-stable splitting, and V = F/ ker s. The bottom two rows are GQ,p-
modules, while the top row are Gp-modules.

We have a class [p] ∈ H1(GQ,p,R(2)) ' H1(GQ,p,Zp(1)) ⊗ R(1) given by the cup product {0,∞} ^ p.
After twisting everything by 2, Lemma 3.4 shows that x can be chosen to be the image of [p] under the
connecting map of the middle sequence, so z ∈ H2(Gp,P(2)) is the image of [p] under the connecting map
of the top sequence. Since [p] is defined as a cup product, we have z = z′ ^ p, where z′ is the image of

{0,∞} ∈ H0(Gp,R(1))→ H1(Gp,P(1))

This can be done using the description of the Galois action on F . The result is in fact the cup product of
(1 − T ∗(p)){0,∞} ∈ H0(Gp,P(1)) with the unramified class ν ∈ H1(Gp,Zp). The image of ν ^ p under

H2(Gp,Zp(1))
∼−→ Zp is 1, so we are done. �

We can now state two equivalent conditions to (Cyc-a).

Lemma 3.5. Consider the hypotheses

(Cyc-b) {p, 1− ζpr} generates Xθω−1 as a Λθω−1-module.

(Cyc-c) H2(GQ,p, H̃DM,θ,E(2)) = 0.

then (Cyc-a) =⇒ (Cyc-b), (Cyc-c). If hθ,E is Gorenstein, then (Cyc-b) =⇒ (Cyc-a).

Proof. It was observed in Preston’s talk that if H−/IH− is free of rank 1 over h/I, which is implied by
(Cyc-a), then Fukaya–Kato’s result implies Sharifi’s conjecture rationally. In particular, $ is surjective since
X has µ-invariant 0 [FW79]. It follows from Lemma 3.3 that (Cyc-a) =⇒ (Cyc-b).

To prove (Cyc-c), first observe that

H̃DM,θ/IθH̃DM,θ ' E
under (Cyc-a), so we have an isomorphism

H2(GQ,p, H̃DM,θ,E(2))⊗hθ hθ/Iθ ' H2(GQ,p, E(2))

Lemma 3.4 gives the exact sequence

H1(GQ,p,R(2))→ H2(GQ,p,Q(2))→ H2(GQ,p, E(2))→ 0
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where the boundary map is surjective by (Cyc-b), which we know follows from (Cyc-a), so (Cyc-c) follows.
Finally, assuming hθ,E is Gorenstein, then H−θ /IθH

−
θ is free of rank 1 over hθ/Iθ. Preston’s argument in

his talk showed that Υ is surjective in this case. Therefore, by Lemma 3.3, (Cyc-b) implies (Cyc-a). �

Remark 3.6. It was shown by Wake–Wang-Erickson [WWE18] that Greenberg’s conjecture (X+ is finite)
implies that hθ,E is Gorenstein.

3.3. Sketch of proof. First observe that taking eigenspaces and Eistenstein component are all exact func-
tors, so they commute with cohomology. This will be used without comment.

We can do everything so far with H replaced by H̃DM . Let X̃ denote the corresponding X. There is a
short exact sequence

0→ H → H̃DM → Λ/(ξ)→ 0

where the Galois action on the quotient is by χ−1, so the difference between H and H̃ is the trivial Galois-
module Λ∗[ξ] tensered with (Zp[[G∞]])∗,]. The error terms in the long exact sequence in global cohomology
are therefore related to the Iwasawa cohomology of Qp/Zp. It is a classical result of Iwasawa [Iwa73] that the
weak Leopoldt’s conjecture holds for Zp(1), see also [NSW08, Theorem 10.3.25] and [PR95, Proposition1.3.2]
for a cohomological perspective. Therefore,

H2(GQ(µp∞ ),Qp/Zp) = 0, H1(GQ(µp∞ ),Qp/Zp)+ = 0

By (wt), we have Xθ′ ' X̃θ′ .
We have an exact sequence, analogous to the one used in Theorem 2.3

H1(GQ,p, H̃(1))→ H1(Gp, H̃quo(1))→ X̃→ H2(GQ,p, H̃(1))

Condition (Cyc-c) shows that the final term is trivial when localized to the base level, so by Nakayama’s
lemma, it is trivial.

Fukaya and Kato defined a map

γ 7→ zγ : H̃ → H1(GQ,p, H̃(1))

which interpolates Kato’s Euler system in an ordinary family. Quotienting by z{0,∞} and taking the appro-
priate components give an exact sequence

H1(GQ,p, H̃θ,E(1))/(z{0,∞})→ H1(Gp, H̃quo,θ,E(1))/(z{0,∞})→ X̃θ,E → 0

where by an abuse of notation, we denote the restriction of z{0,∞} by the same symbol. We now show
that the first term is zero. By Nakayama’s lemma, this is equivalent to the base layer of z{0,∞} generates

H1(GQ,p, H̃DM,θ,E(2)). We want to further quotient out by the Eisenstein ideal. There is a spectral sequence

Eij2 = Torhθ−i(H
j(GQ,p, H̃DM,θ,E(2)), hθ/Iθ)⇒ Hi+j(GQ,p, H̃DM,θ,E/IθH̃DM,θ,E(2))

But by (Cyc-c), H2(GQ,p, H̃DM,θ,E(2)) = 0, so the low degree terms give

H1(GQ,p, H̃DM,θ,E(2))⊗hθ hθ/Iθ ' H1(GQ,p, H̃DM,θ/IθH̃DM,θ(2))

Recall that in the proof of Lemma 3.5, we observed that (Cyc-a) implies H̃DM,θ/IθH̃DM,θ = E . We just need
to show that the image of z{0,∞} generate H1(GQ,p, E(2)). From Lemma 3.4, there is an exact sequence

0→ H1(GQ,p,Q(2))→ H1(GQ,p, E(2))→ H1(GQ,p,R(2))→ H2(GQ,p,Q(2))

where the final map is given by

Λθ/(ξ)→ Xθω−1(1), 1 7→ {p, 1− ζp∞}

so it is an isomorphism by (Cyc-b). Therefore, H1(GQ,p, E(2)) ' H1(GQ,p,Q(2)) ' Xθω−1(1). The image
of z{0,∞} under this composite is {p, 1− ζp∞}. To see this, consider the following approximate commutative
triangle from [FK12, Theorem 3.3.9]

H H1(GQ,p, H(2))

X

“z”

$ ev. at ∞
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We did not give a definition of z, and the “z” in the above diagram has a different normalization. In fact,
(1− T ∗(p)){0,∞} is sent to z{0,∞}. From Gyujin’s talks, evaluation at ∞ is closely related to the boundary

map identifying H1(GQ,p,Q(2)) with X(1), so the claim holds. Now, by (Cyc-b), {p, 1− ζp∞} is a generator,

so we have shown that z{0,∞} is a generator of H1(GQ,p, H̃θ,E(1)).
We now have an isomorphism

X̃θ,E
∼−→ H1(Gp, H̃quo,θ,E(1))/(z{0,∞})

As in the proofs of Theorem 2.3 and Theorem 3.1, there is a Coleman map

Col : H1(Gp, H̃quo)
∼−→MΛ,DM [[G∞]]

Recall that Fukaya–Kato defined Col(zγ) = L̃(γ), and Kato’s explicit reciprocity law shows that this is a
p-adic L-function interpolating classical L-values. This gives an isomorphism.(

H1(Gp, H̃quo(1))/(z{0,∞})
)
θ,θ′,E

'
(
MΛ,DM (1)[[G∞]]/(L̃({0,∞}))

)
θ,θ′,E

It remains to compare this to H/(L). We have a map H−E
∼−→ SΛ,E given by pairing with (1−T ∗(p)){0,∞}.

By the comparison between L and L̃, this sends L to (1− T ∗(p))L̃({0,∞}), so

(H/(L))+,E
∼−→ SΛ,E(1)[[G∞]]/((1− T ∗(p))L̃({0,∞})) 'MΛ,DM,E(1)[[G∞]]/(L̃({0,∞}))

where the inverse of the last isomorphism is acting by 1 − T ∗(p), which is injective on SΛ by the purity of
H. Since (wt) assumes θ is even, we are done. �
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