P-adic Modelar forms

1) Modali problems for Elliptic curves

2) Tate wow and the q-expansion frinciple.

3) The Gusa Eurve. 4) _ L - adic forms / families of ordinary p-adic modular forms.

1) In what follows 6 is inwertible.

U[16]-algebra.

 $F(R) := [(E, \omega)_R]$

then has a W. egn of the form:

 $E: y^2 = x^3 - g_2 x - g_3 - \Delta = g_2^3 - 27g_3^2 - \text{unit}$

(n,y) - (n2x, 113y) = (n),y').

 $\frac{dn'}{y'} = u \frac{dn}{y}$

I fixing we amount at fixing the Weierstran equi

 $P_{i}(R)$ is representable by $S_{poc}(R) = M_{4}$

 $\mathcal{A} = \mathbb{Z}\left[\frac{1}{6}, g_1 g_3, \frac{1}{\Delta}\right].$

My three is a universal E - C $E_{\gamma} \omega$ $(E_{\gamma} \omega) = Proj \left(\frac{R[X_{\gamma}, Z_{\gamma}]}{Y} \right)$

New let's add level structure: $I_{\ell}(N)$ $\mathcal{F}_{T_{i}(\omega)}(R) := \left[(E, \omega, \emptyset)_{R} \right].$ R 2/20/ D: MN COE[N]. 81 a point of order N in E[N], Giving a point P of order N in E. Spec R -> E -> Sper. $P_{7(N)}$ is represented by $M_{7(N)} = E[N] - \bigcup E[d]$. $M_{T_{i}(N)}$ and since N is invertible.

Mr(N) is a finite itale covering. M_{l} Spec (RPIN) We have an action of Com on Proposition. $G_{m}(R) \times \mathcal{F}_{7(m)}(R) \longrightarrow \mathcal{F}_{7(m)}(R)$ $(\lambda, (E, \phi, \omega)) \rightarrow (E, \phi, \lambda \omega)$

is a schematic sup of Gm. Sorgoa: Proposition $\mathcal{A}_{\Gamma_{i}(N)/R} = \bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k} \left(\Gamma_{i}(N); R \right)$ $\mathcal{A}_{\Gamma_{i}(N)/R} = \bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k} \left(\Gamma_{i}(N); R \right)$ $\mathcal{A}_{\Gamma_{i}(N)/R} = \bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k} \left(\Gamma_{i}(N); R \right)$ $\mathcal{A}_{\Gamma_{i}(N)/R} = \bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k} \left(\Gamma_{i}(N); R \right)$ $\mathcal{A}_{\Gamma_{i}(N)/R} = \bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k} \left(\Gamma_{i}(N); R \right)$ $\mathcal{A}_{\Gamma_{i}(N)/R} = \bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k} \left(\Gamma_{i}(N); R \right)$ fe R (T/W); R) $M_{C(N)}(R) \longrightarrow A_R$ frexifies the following properties: (0) $(E, p, w)_{R} \simeq (E, p', w')_{R}$ then f() = f()'(1) $f((E_1, E_1, \lambda \omega)_{IR}) = \lambda^{-k} f(E_1, E_1, \omega)$ (2) compatibility with base change - $G_{AM} \setminus M_{\Gamma_1(N)}(R) = \left[(E_1 \phi_N)_{/R} \right]$ $G_{m} \setminus M_{\Gamma_{1}(N)}(R) = P_{\pi_{0}j}(\mathcal{R}_{\Pi(N)/R})$ In general if I have $A = \bigoplus_{j \in \mathbb{Z}} A_j^j$ with compatible $\bigoplus_{j \in \mathbb{Z}} A_j^j$ and $A_j^j = A_j^j = A_j^j$ Sex A = Seto × Gm So we get that Proj (A) = Spec (G).

When
$$(A = R_{T_{i}(N)/R}$$
.

$$G_{NN} = R_{T_{i}(N)/R}$$

$$F_{i}(N) = Spec \left(R_{i}(T_{i}(N);R)\right) = f_{i}(N)_{i,R}$$

$$f_{i} = R_{i}(R) = P(f) - f_{i}(R)$$

$$G_{i}(N) = R_{i}(R) = P(f) - f_{i}(R)$$

$$G_{i}(N) = R_{i}(R) = R_{i}(N) / 2 f_{i}(N)$$

$$G_{i}(N) / 2 f_{i}(N) = integral closure G(2) in Side$$

$$G_{i}(N) / 2 f_{i}(N) = G_{i}(N) / 2 f_{i}(N)$$

$$X_{i}(N)_{R} = R_{i}(G) \cdot G_{i}(N) \cdot R$$

$$K_{i}(N)_{R} = R_{i}(G) \cdot G_{i}(N) \cdot R$$

How geometrically . $X_i(N)$ is the normalization of Proj (G) = P'(f) in $Y_i(N)$.

Cusps $(X_1(N)) = f^{-1}(\infty)$ rad. X (V) J j P'(j) ∞ How to describe this scheme: Next section -2) AME Katz-Magar. Facts: Cusps (X/N)) is finite étale over R. what we the moduli interpretation of the curps. (Deligne-Rapoport) Thuse augus correspond to generalized elliptic curves, specifically We ton u-goar. (with additional level NATional). what does $X_i(N)$ look like "very close" to the augu? Tate(9) = Proj (2[9][4][X17,2] 272= X3-9(9)X22-9(9)Z3 Ell9) at 9=0 it is a modal aurue i.e. a Wiros 1-gou.
But it is an E-C over V[19][9]. Tate (3ª) dut the special fiber will be a Wetou n-gou. So we can se Tate (qa) us a deformation of Nezon's agons.

A few properties of the Take- Eurene ? * As a formal group: $Tate(q) = G_{m}$ $\frac{dt}{t}$ Tate(q) W_{can} ; $= \int_{can}^{t} \left(\frac{dt}{t}\right)$ $0 \rightarrow \mu_{N} \xrightarrow{\alpha_{N}} Tatc(q) [N] \longrightarrow \frac{2}{N} = 0$ $3 \in \mathcal{J}_{\mathcal{K}}(R)$ $\varphi_{\text{can}}\left(Q_{\omega}(\xi)\right) = \xi$ $R \ni S_{\mathcal{N}} - \left(\operatorname{Tale}(q), \tilde{S}_{\mathcal{N}} \right) : S_{\operatorname{pec}} R[[q]] \longrightarrow X_{1}(\mathcal{N}) . (*).$ At the "00" cusp there is a 1-goa; In primitive in R. (9,5h) X · 00 : Spec R - X1(N) -(*) begets GX(N), 00 ->> R[9]. Thorem: This morphism is an isomorphism at least when Risa field. What happens at the other curps. A very similar story.

d-gons (with additional level structures.) Tate(ga), Functions on X1(b): X1(b) = Pouj (G71(b)(R)). $G_{\Gamma_i(\omega)}(R) = \bigoplus_{k \in \mathbb{Z}} G_{ik}(\Gamma_i(\omega); R)$.

 $f \in G_k(\Gamma_i(\omega), R)$ is the same as before on R_k but now we have also the augs to ess. $f(Tate(9), \emptyset, \omega)_{R[SN]} \in R[SN][[9]]$ The q-expansion of f. Kinh: It's subtle to see that this coverpouchs to the complex analytic picture of q-expansions. It needs GAGA & (E) an exception in function of the Take aure. Theorem: $f \in G_k(T_i(N);R)$ is uniquely determined by its g expansion when R is an O-algebra $O = Z \subseteq T_i \subseteq T_i \subseteq T_i$. $X := X_i(N)$ for simplicity $H^{\circ}(X_{R}, \omega_{R}^{\otimes k}) \longrightarrow R_{\otimes_{Z}} Z[[q]$ is injective. XR - XG this is affine. $H^{\circ}(X_{R}, \omega_{R}^{\circ k}) \cong H^{\circ}(X_{6}, f_{k}\omega_{R}^{\circ k}) \cong H^{\circ}(X_{6}, R|_{6} \omega_{6}^{\circ k}).$ We must show $H(X_0, M \otimes_{\mathcal{O}}^{\mathcal{O}^1}) \longrightarrow H \otimes \mathbb{Z}[[q]]$ is injective. Or can reduce to M finitely generated. (direct limits).

Since O is a Dedekird domain, we can we structure theorem of modules 10.

With some dinierage, M = O, O/F.
K=Frac (O)
We only need to prope that it is injective for fraction & revidue feld
But taking q-expression as taking the image of fir the completed stalk at coty.
XX is a smooth and connected variety so in particular integral.
This shows that the q-expansion may it injective.
$X_{1}(N)/Z[N]$ $G_{k}(T_{1}(N); Z_{p})$
sax change to To when ptn.
The reason this does not work is become we would like a topological
The reason this does not work is become we would like a topological ring whose topology is compatible with q-expansions.
The Hause invariant:
Let Eix an ellipsie werve char R = p.
Fabi: E/R - F/R. PE/R
HO(EIRITEIR) is naturally duel to HO(EIRI STEIR). Dw
$f(\omega)$ dual to ω .
$F_{abs}^{*} \gamma(\omega) = A(E_{i}\omega) \gamma(\omega)$

this is the Home invariant

$$I(\lambda \omega) = \lambda^{-1} I(\omega)$$

$$Id^{*} I(\lambda \omega) = A(E,\lambda \omega) I(\lambda \omega) = \lambda^{-1} A(E,\lambda \omega) I(\omega)$$

$$Id^{*} I(\lambda \omega) = \lambda^{-1} A(E,\lambda \omega) I(\omega)$$

$$A(E,\lambda \omega) = \lambda^{-1} I(E,\lambda \omega)$$

$$A(E,\lambda \omega) = \lambda^$$

it suffices to proce that the H'(-) is truival.

Sevre-duality:
The question it can we find an explicit lift? Tes:
$E_{k}(q) = 2^{-1} \frac{3(1-k)}{1-k} + \sum_{n\geq 1}^{\infty} q^{n} \nabla_{k-1}(n)$
Von-Staudt-Clauren Bernoulli compruences: p/denominator of a Bernoulle'
For $k = p-1$, we have that $p \mid denominator of B_{p-1}$
$ \frac{\xi_{p-1} = 1 + \frac{2}{3(2p)} \sum_{n>1} q^n \Gamma_{k-1}(u) = 1 \text{ and } p}{3(2p)} = 1 $
≡ 0 mod p -
E mode has the same q -expansion as A , E mode $=A$.
$X_{l}(N)_{\mathcal{U}_{p}}$
E = 1 modp. So E is closer and closer to 1 as a -100
Eph
But then $\xi^{p^n-1} \longrightarrow \xi^{-1}$, So ξ mod p commot vanish.
I.e. we need to cut out the superriagular, if we want to have any
I.e. we need to cut out the supersignelar, if we want to have any hope to define a good notion of p-adic modular form.

3) The Gusa wive. P > 5. $\mathcal{H} = X_1(N)_{\mathcal{X}_p} - S_0 = \mathcal{H} \left[\frac{1}{2} \right] = \text{now vanishing lows of a very anyle line}$ $= \text{offine} \quad \text{burstle} \quad w_{\mathcal{X}_p}^{\otimes p-1}$ $W = Z_p$ $W_m := Z_{pm}Z$ $M_m := X_1(\omega)_{\omega_m} - S_m := M_m [7/2].$ Sm= Spec (Vm,0). $\mathcal{E}_{\alpha}^{\text{ord}}(R) = \left[\left(\mathcal{E}_{1} \mathcal{M}_{p^{\alpha}} \longrightarrow \mathcal{E}[p^{\alpha}], \mathcal{P}_{\alpha} \right)_{/R} \right]$ R is a Wan algebra Sant like we did for $P_{P(N)}$, \mathcal{E}^{ord} it represented by $E[p^{\alpha}]^{et}$ $E[p^{\alpha}]^{et}$ where \mathcal{E}^{ord} where \mathcal{E}^{ord} \mathcal{E}^{ord} Def: The Igura curve $T_{m_1} \propto := (E[p^x]^e + E[p^x]^e + (E[p^x]^e + E[p^x]^e)$ Galais group $(E[p^x]^e + (E[p^x]^e)^e + (E[p^x]^e)^e$ Igura proved: $T_{m_1} \propto i^x$ irreducible $m_{i_1} i$.

Sur. Top, x is also reduced, so integral (itch port of E[]) Corollary; the q-expansion principle also holds on True a. Thura = Spec (Vmra) We have inclusions of Wm-algebras Vm. o = Vm. 1 = ---- $V_{nu}, \infty := \bigcup V_{m, \infty}$

Finally we define what a p-ash's modular form its.
V= VT(N) = lim Vm, 00 is taken with respect to reduction over the base
Vis the space of p-adic modular forms.
N = lim Vm, 00 is taken with respect to multiplication by p over the base Wm - Wm+1.
Op/2p - lign 7/2m2.
P-ordinary modular forms:
$O(p)$ - operator: $a(n; f \cdot O(p)) = a(np; f)$.
f is a Hecke eigen-form then. $Q(pif) = aigenvalue of U(p) fr f$ normalized = unif.
So U(p) on ordinary forms must be invertible.
Hide's trick: p-ordinary projecto e:= line ((p)".
U(P) (X) Then e exists (U(P) n's periodic). finite. and is an idempotent (i.e. projector).
and on the image of e, (Xp) is inwestible.
Vord = eV. Vord = eV

Galat action: They a has Galoce group (2/px Z) X . E[px] it. 2 € (Z/22)× . (E, p, p) is a point of Tm, 1x Apa en E [pa]. $\mathcal{L} \cdot (E_{1}, p_{1}, p_{2}) = (E_{1}, p_{1}, p_{2})$ V= lim Vm, 00 $V_{m,\infty}[k] = \left\{ \int \int \left\{ \left\{ \left\{ \mathcal{E}, \mathcal{E}^{-1} / \mathcal{P}_{p} \right\} \right\} \right\} = Z^{k} \mathcal{H}(\mathcal{E}, \mathcal{P}_{p}, \mathcal{P}_{m}) \right\}$ Caridor: fe HO(San, work.) Mps has a compared differential dt p:/pocetopojent. $(\mathcal{E}_{p}, \mathcal{P}_{p})$ I can see f as a function on (E, p, p) by just declaring $\begin{cases}
(E_1 p_1 p_2) := \begin{cases}
E_1 p_2 & p_1 * (\frac{dt}{\epsilon})
\end{cases}$ $f(E, Z', P_p, P_n) = f(E, P_n, (P_p, Z', Q_p)) - f(E, P_n, Z', Q_p, (Q_p)).$ $= 2^{k} \int \left(E_{1} p_{0} \right) p_{*} \left(\frac{dt}{t} \right) .$ $H'(S_{am}, \omega_{w_{am}}^{ok}) \subseteq V_{am,oo}[k]$ is an anclusion and also in the other direction.

Horab:
$$V_{m,\infty}[k] = H^{\circ}(S_{m}, W^{\circ k})$$
.

 $U[k] = \lim_{N \to \infty} V_{m,\infty}[k] = H^{\circ}(S_{n}, W^{\circ k})$.

 $= H^{\circ}(S_{n}, W^{\circ k}) \otimes G_{n}^{\circ}$.

4) Λ -abic formation $V^{\circ k}$ as the Pontryogin dual of $V^{\circ k}$.

 $V^{\circ k}$ as the Pontryogin dual of $V^{\circ k}$.

 $V^{\circ k}$ as the Pontryogin dual of $V^{\circ k}$.

 $V^{\circ k}$ and $V^{\circ k}$ are naturally $W[L^{\circ}V^{\circ}] - \text{module}$.

 $V^{\circ k}$ as $V^{\circ k}$ and $V^{\circ k}$ are $V^{\circ k}$ and $V^{\circ k}$ are $V^{\circ k}$.

 $V^{\circ k}$ as $V^{\circ k}$ as $V^{\circ k}$ as a fine $V^{\circ k}$ as a fine $V^{\circ k}$ and $V^{\circ k}$ are $V^{\circ k}$ as a fine $V^{\circ k}$ and $V^{\circ k}$ are $V^{\circ k}$ and $V^{\circ k}$ are $V^{\circ k}$ and $V^{\circ k}$ are $V^{\circ k}$ as a fine $V^{\circ k}$ and $V^{\circ k}$ are $V^{\circ k}$ and $V^{\circ k}$ and $V^{\circ k}$ are $V^{\circ k}$ ar

Theorem: diman (God (77/10), W) or ap) depends only on k modp-1.

A-adic forms: $G(\chi, -\Lambda) = Hom_{\Lambda} \left(V^{ord}[\chi], -\Lambda \right)$. $G(\chi, \Lambda) \boxtimes W \simeq G_k^{ord}(\eta, W)$ when $k \ge 3$. Consider V/ Lequitalent definition to V Tm, 00 × Spec_1. V/1 = V & - 1 -V/1 has two 1-module structures. & One comes from the Galois action. * The other is the natural one. $G(\Lambda) := \begin{cases} f \in V_{\Lambda} & : f(\lambda z) = v(z) f \end{cases} \qquad \begin{array}{c} v: 7 \to X \\ = 2 f(z) \end{cases}.$ $\Phi \in G(\Lambda)$ has a q-expansion of the form: $\Phi (T, 9) = \sum_{n \geq 0} a(u, \Phi)(T) 9^{n}$ $V_{A} \propto Z_{p} \longrightarrow V_{Z_{p}}$. $\mathcal{D}(y^{s}-1)$ a a p-adiè modular form.

This is true because the structures on _s-modele
and the Galoit with coincide.

 $\simeq e(G(A))$. $\bigoplus_{\chi \in \tilde{\mathcal{Z}}} G(\chi, \Lambda)$ \$\Pi(\gamma^{\sigma_{-1}})\right\} a family of p-adix modular forms-Tis in G(X/A) this is a Hide family. Recap: & Understood q-expansions determine the modular form. * p-adic modular forms! we need to act out the new ingular * Defined p-adic mod forms over the Igusa Currier CP q-expansion principle holds. - a notion of ordinary p-ashic modular forms. * Enjoy wie propurhier void is a A-module of finite rank. with a bounded name ?. * We can patch-up together p-adic form in a 1-adic one Les this gives the notion of a family of ordinary padic modular forms