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We review geometric preliminaries regarding Shimura varieties before we dive into Pilloni’s

works. Topics are just loosely connected.

1. Siegel modular varieties, PEL Shimura varieties

For something like a modular form for higher dimensional groups, we would like an analogue

of modular curves. For example, an analogue for Sp2g(Q) is a Siegel modular form of genus n,

which is something like holomorphic function on the Siegel upper half space

Hg = {τ ∈ Matg(C) | τT = τ, Im(τ) positive de�nite}

satisfying transformation properties with respect to a congruence subgroup (using that Sp2g(R)
acts transitively onHg) like Sp2g(Z). Like modular curves, arithmetic quotients like Ug \ Sp2g(R)/ Sp2g(Z)
can be thought as a moduli space of principally polarized abelian varieties:

• The notion of polarization suddenly appeared because higher-dimensional complex torus

is not automatically algebraic (unlike 1-dimensional tori which are automatically alge-

braic), namely you need some kind of positivity to ensure algebraicity. To be more pre-

cise, a complex torus Cg/L is algebraic if and only if it admits a polarization. It can

be thought as a Hermitian form H on Cg
where Im(H) restricted to L is integer-valued,

Im(H) : L⊗ZL→ Z. It is called principal if Im(H)|L is a perfect pairing, or equivalently
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there is a basis of L such that Im(H) =

(
0 Ig
−Ig 0

)
. After thinking for a while one can

deduce that such data is parametrized by Ug \ Sp2g(R)/ Sp2g(Z). Also it seems clear that

algebraically a principal polarization of an abelian variety A, in algebraic language, is an

isomorphism λ : A → Â which is “symmetric” (λ̂ + double duality = λ) and “positive”

(Γλ : A→ A× Â pulls Poincare bundle PA×Â back to an ample bundle). Details are not

really important.

• There are deeper quotients, which can be also thought as parametrizing principally po-

larized abelian varieties with a level structure. For example, an analogue of Y (N) is a

full level N structure, which is a choice of symplectic basis of A[N ].

We know that such complex manifolds are algebraic. In general, Shimura proved that those are

de�ned over a number �eld by some indirect method, but in our case we can see this in a much

simpler way, because we have a moduli space and the moduli problem can be de�ned over a

certain number �eld. Such moduli interpretation can be used to even de�ne an integral model
of a Shimura variety, with an appropriate integral moduli problem. A Shimura variety that can be

de�ned as a moduli space of certain abelian varieties are called PEL Shimura varieties. We have

much better understanding of integral model etc. of such moduli spaces, because we have moduli

interpretation. P stands for polarization, L stands for level structure, and both seem completely

natural. E stands for endormorphism, which seems somewhat odd. We just provide an example

to justify it:

Example 1.1. As SL2(R) acts transitively onH, SL2(R)d acts transitively onHd
. For a totally real

�eld K of degree d, one can embed SL2(K) into SL2(R)d using d real embeddings of K . Using

this embedding, we can form a quotient SL2(OK)\Hd
, which is also a Shimura variety, a Hilbert

modular variety. It is an example of a PEL Shimura variety, where we need endomorphism

structure. Namely, SL2(OK)\Hd
is a moduli space parametrizing the following data.

• A g-dimensional abelian variety A with a polarization H on H1(A,Z).

• OK ⊂ End(A).

• A OK-module isomorphism H1(A,Z) ∼= O2
K , where the polarization H is sent to the

pairing Hstd : O2
K ×O2

K → Z, Hstd(α1, α2; β1, β2) = trK/Q(α1β2 − α2β1).

We have some data about endomorphism of A, and this is a typical “E part” of PEL datum.

2. Hasse invariants, canonical subgroups

We saw that canonical subgroups are important in overconvergence. As we are going to go

beyond modular curves, we need a similar notion for something more other than elliptic curves.
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2.1. Hasse invariant. Reference: [Fa]

Let S be an Fp-scheme, and let G/S be a truncated p-divisible group of level 1 (something

like E[p]). It has an easy de�nition that

G
F−→ G(p) V−→ G

is exact. Then G 7→ ωGD (sheaf of di�erentials on the Cartier dual GD = Hom(G,Gm); every-

thing is clear by thinking as fppf sheaves over S) is a covariant functor, so the Frobenius map

F : G→ G(p)
induces a map ψG : ωGD → ω(GD)(p) = (ωGD)(p)

.

De�nition 2.1. The Hasse invariant Ha(G) is

Ha(G) = detψG ∈ H0(S, (detωGD)−1 ⊗ (detωGD)(p)) = H0(S, (detωGD)⊗(p−1))

because pOS = 0.

Remark 2.1. One might wonder this is a correct de�nition because there is equally well-known

way of proceeding using Verschiebung and G. Fargues indeed proves that there is a canonical
isomorphism (detωG)⊗(p−1) ∼= (detωGD)⊗(p−1)

which gives an identi�cation of Hasse invari-

ants Ha(G) = Ha(GD) under this isomorphism.

Fixing a basis, one can take the p-adic valuation of Ha(G), the Hodge height Hdg(G) ∈ [0, 1],
which does not depend on the choice of basis.

2.2. Canonical subgroups. Let K be a complete valued �eld over Qp with v(p) = 1, and let

OK,w = OK/mw where mw = {x ∈ K | v(x) ≥ w}. For a (truncated) p-divisible group G/OK ,

we also de�ne the Hodge height Hdg(G) to be the Hodge height of G[p]⊗OK,1.

Theorem 2.1 (Fargues). Let G/OK is a (truncated) p-divisible group. If Hdg(G) < 1
2pn−1 , then

there is Hn ⊂ G[pn], the canonical subgroup of level n, which satis�es the following properties.

(1) Hn(K) ∼= (Z/pnZ)d where d is the dimension of G (=rank of ωG).

(2) Over G⊗OK,1−Hdg(G), H ⊗OK,1−Hdg(G) is the kernel of Frobenius.

(3) Hk for 1 ≤ k ≤ n is the canonical subgroup of level k for G.

(4) Hn/Hk for 1 ≤ k < n is the canonical subgroup of level n− k for G/Hk.

One could already see from the properties that canonical subgroups can be constructed in-

ductively, by showing that Hodge height doesn’t get too large by modding out by its canonical

subgroup (of level 1).

3. Generalized Hasse invariants

Reference: [Bo]

Whether Hasse invariant vanishes or not determines whether a given abelian variety/p-divisible

group/etc. is ordinary or not. Among non-ordinary things, one has �ner invariants that can de-

tect more things, usually referred as generalized Hasse invariant. It uses more structures of

p-divisible groups.
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Example 3.1. This is the case of [Pi]. For a �gsG over a characteristic p schemeS, the connected-

étale exact sequence 0 → G0 → G → Gét → 0 is one of the most basic things one learns about

�gs. On the other hand, one can also consider the connected-étale exact sequence for the Cartier

dual GD
:

0→ (GD)0 → GD → (GD)ét → 0

Taking the Cartier dual of this, one gets another �ltration ofG, which is called the multiplicative-
unipotent exact sequence

0→ Gmul → G→ Gun → 0

Indeed a �gs is called multiplicative if its Cartier dual is étale, etc. It is the same as locally being

of form SpecR[Γ] for a �nite abelian group Γ (e.g. µp when Γ = Z/pZ).

Now consider the case whenG is a truncated p-divisible group of level 1, dimension 2, height

4 (in this case, this means G is �nite of rank p4
over S). Suppose further that the étale rank

(=rank of Gét
) and the multiplicative rank (=rank of Gmul ∩ G0

) are both 1. This is de�nitely

not ordinary as ordinary p-divisible group should have étale rank = multiplicative rank = 2.

Example 3.2. For example, given a 2-dimensional principally polarized abelian variety A over a

characteristic p �eld which has p points of order p over Fp, A[p] will give rise to such an example

of �gs.

So the Hasse invariant is just zero over the whole base S. On the other hand, we have

something called the second Hasse invariant in this case. This uses both etale-connected and

multiplicative-unipotent exact sequence. We have a �ltration of G as follows.

G4 = G

G3 = G0
?�

étale

OO

G2 = kerF = imV
?�

OO

G1 = Gmul ∩G0
?�

OO

G0 = 0
?�

connected-étale

OO

Here each arrow has a description of corresponding subquotient, where connected-étale means

the �gs itself is connected and its Cartier dual is étale. Each successive subquotient Gi/Gi−1 is

of rank p, and ωGi/Gi−1
is rank 1 for i = 1, 2, 3 and ωG4/G3 = 0 because it’s etale. Through

elementary manipulations we see the following.

(1) detωG = ⊗3
i=1ωGi/Gi−1

.
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(2) V induces isomorphisms

V : (G1/G0)(p) ∼−→ G1/G0 (easy)

V : (G3/G2)(p) ∼−→ G2/G1

(dual to the below hard case)

(3) F induces isomorphisms

F : G3/G2
∼−→ (G2/G1)(p)

(connected means F nilpotent, so F : G3 → G
(p)
2 , and F = 0 on G2)

F : G4/G3
∼−→ (G4/G3)(p)

(easy)

(4) Taking determinants, we have isomorphisms

V ∗ : ωG1/G0

∼−→ ω⊗pG1/G0

V ∗ : ωG2/G1

∼−→ ω⊗pG3/G2

(F ∗)−1 : ωG3/G2

∼−→ ω⊗pG2/G1

So we can cook up maps

ωG1/G0

V ∗,∼−−−→ ω⊗pG1/G0

(V ∗)⊗p,∼−−−−−→ ω⊗p
2

G1/G0

ωG2/G1

V ∗,∼−−−→ ω⊗pG3/G2

((F ∗)−1)⊗p,∼−−−−−−−−→ ω⊗p
2

G2/G1

ωG3/G2

(F ∗)−1,∼−−−−−→ ω⊗pG2/G1

(V ∗)⊗p,∼−−−−−→ ω⊗p
2

G3/G2

Multiplying these together, we get a nowhere vanishing section

Ha′(G) ∈ H0(S, ω
⊗(p2−1)
G )

which is called the second Hasse invariant.

This seems like a cute trick but actually this works in general. For a truncated p-divisible

group of level 1 over a characteristic p base, we can construct the canonical filtration. In the case

of the above example, canonical �ltration is the 4-step �ltration we constructed. Using similar

combinatorics, one deduces the following.

Theorem 3.1 (Boxer, Goldring–Koskivirta). If G is a truncated p-divisible group of level 1 over
a characteristic p base S having constant canonical �ltration over it, meaning that each part of
canonical �ltration has constant rank over the whole base, then there is some integer N > 0 (de-
pending only on the combinatorics of canonical �ltration type) and a nowhere vanishing section
Ha ∈ H0(S, ω⊗NG ).
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4. Stratification of special fiber

Reference: [Oo]

The above section is slightly unsatisfactory because the classical Hasse invariant is de�ned

even for p-divisible groups of nonconstant type �ltration so that vanishing locus = nonordinary

locus. We want to do similar thing for generalized Hasse invariants.

One can think of de�ning moduli problem for integral model of Siegel modular variety over

p-adic dvr, and de�ning such is not so problematic as long as “the level is prime to p”. This enables

us to talk about mod p �ber of such Siegel modular varieties. The picture is like:

• Over the mod p �ber, we have a universal abelian variety, and we can stratify the mod p
�ber where over each stratum the canonical �ltration is of constant type.

• Each generalized Hasse invariant lives over a stratum, and it extends to the closure of
the stratum, so that nonzero locus of it is precisely the stratum over which the general-

ized Hasse invariant originally lives.

Such strati�cation is called Ekedahl–Oort stratification, and is parametrized by some set com-

ing from Weyl group datum (denoted
IW usually).

Theorem 4.1 (Boxer, Golding–Koskivirta). For eachw ∈ IW , some power of the generalized Hasse
invariant Ha⊗nw extends to the closure of the w-stratum, whose nonvanishing locus is precisely the
w-stratum.

Example 4.1. In the example of [Pi], G = (G) Sp4(Q), the Ekedahl–Oort stratum can be de-

scribed using a simpler invariant, multiplicative rank. Recall that the corresponding Shimura

variety is a moduli space of principally polarized abelian varieties of dimension 2.

• Multiplicative rank 2 truncated level 1 p-divisible groups are ordinary.

• The complement of ordinary locus can be further strati�ed into two parts, multiplicative

rank 1 and multiplicative rank 0. Using the theorem we can see that some power of the

second Hasse invariant, which lives over the multiplicative rank 1 locus, can be extended

to the whole nonordinary locus (the closure of multiplicative rank 1 locus contains the

multiplicative rank 0 locus). Pilloni proves that in fact you don’t need to take powers of

it.

5. Compactification of Shimura varieties

So far we only worked with open Shimura variety. This means that Shimura varieties we

worked are not proper. This is not good because open varieties lack �niteness etc. There are

two main ways of compactifying Shimura varieties, minimal compactification and toroidal
compactification. In general my feeling is that

• minimal compacti�cation is singular but re�ects open Shimura variety well,

• and toroidal compacti�cation is smooth but there are choices involved and something is

nontrivial.
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I won’t say much about how to construct minimal compacti�cation, except that it is taken as the

Proj of “graded ring of automorphic forms,” like

⊕∞
i=0H

0(Sh, ωi). It is singular, but it is minimal

in a sense that for any compacti�cation Sh ↪→ Sh with dense image and boundary a normal

crossings divisor, there is a unique morphism Sh → Sh
min

compatible with embeddings of Sh.

Note that the boundary of Sh
min

itself is in most cases not of codimension 1 (except the case of

modular curves where everything coincides).

We say a little more about toroidal compacti�cation. Still the boundary strata are parametrized

by the same set, denoted CuspK , which is a group-theoretic �nite set depending on level K .

Example 5.1. In the case of Siegel modular varieties with level 1 (Ag), the boundary of minimal

compacti�cation is strati�ed by integers 0 ≤ i < g where in fact i-th stratum is isomorphic to

Ai. In general, for a full level Γ(N), CuspΓ(N) = C/Γ(N), where C is, for V = ⊕2g
i=1Zei with the

standard symplectic form,

C = {totally isotropic direct factors V ′ ⊂ V }

Each boundary component is a Siegel modular variety (of smaller dimension) of appropriate level.

Now why toroidal compacti�cation? This is because it uses the theory of torus embeddings.

We will talk �rst about torus embeddings, and then about where the heck “torus” appears at the

boundary, and �nally some remarks about the relation between toroidal and minimal compacti-

�cations. We will just motivate so we will be extremely sketchy.

5.1. Torus embeddings.

(1) Given a split torus T over k, an a�ine torus embedding is an open embedding T ↪→
V into an a�ne k-variety V together with an action T × V → V which extends the

multiplication on T .

(2) It is determined by k[V ] ↪→ k[T ], and equivariance induces a grading k[V ] = ⊕χ∈X∗(T )k[V ]χ
where X∗(T ) = Hom(T,Gm).

(3) On the other hand, given a semigroup S ⊂ X∗(T ), one can consider k[S].

(4) Such operations give a bijection
Finitely generated

semigroups

S ⊂ X∗(T ) which

generate X∗(T ) as

an abelian group


↔

{
A�ne torus

embeddings of T

}

and, furthermore, k[S] is normal i� S is saturated, namely rn ∈ S implies r ∈ S.
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(5) Saturated semigroups appearing on the LHS arise from rational polyhedral cones, namely

intersection of a �nite set of rational half-spaces (passing through the origin). Given a ra-

tional polyhedral cone σ ⊂ X∗(T )R, the dual cone σ̌ is de�ned as

σ̌ = {λ ∈ X∗(T )R | 〈λ, x〉 ≥ 0 for all x ∈ σ}

Then, we have a bijective correspondence
Polyhedral cones

in X∗(T )R not

containing linear

subspaces


σ 7→k[σ̌∩X∗(T )]:=Vσ−−−−−−−−−−−→


A�ne torus

embeddings of T
into normal

varieties


Both can be thought as categories, in a sense that σ1 ⊂ σ2 induces a morphism Vσ1 → Vσ2 .

It induces an open immersion i� σ1 ⊂ σ2 is a face.

(6) Now if you have a decomposition of X∗(T )R into rational polyhedral cones, then you can

patch to get a T -equivariant embedding of T into a proper variety.

Such construction makes sense over general base; we just lose the bijectivity.

5.2. Structure at boundary. Why does torus embedding have anything to do with compacti-

�cation of Shimura varieties? It is because there is a torus torsor appearing at each boundary

stratum.

Theorem 5.1 (Lan). For each boundary component Z ∈ CuspK , there are:

• an abelian scheme C over a �nite étale covering of Z ,

• a torus torsor Ξ→ C ,

• given a choice of “decomposition into rational polyhedral cones”, one has a relative torus
embedding, and even formal scheme X describing the boundary,

• and for Γ ≤ K the parabolic subgroup �xing the boundary component Z , X admits a free
action byΓ, andX/Γ “is” the formal neighborhood of boundary divisor ofM tor corresponding
to Z .

It is this torus torsor that needs toroidal embedding.

Example 5.2. We just exhibit how it works for modular curveY (1), where we know the compact-

i�cation is just P1 = A1
∐
{∞}. At {∞}, the stabilizer of it inside SL2(R) isB(R) = {

(
1 R
0 1

)
},

and it intersected with SL2(Z) is B(Z) = {
(

1 Z
0 1

)
}. Consider B(Z)\H, which is via exponen-

tial map identi�ed with a punctured open disk {0 < |z| < 1}. Then one �ll the gap of puncture

to get open unit disk {|z| < 1}, and it is glued with Y (1).

Where is a torus here? It is re�ected at that B(Z)\H is a punctured open disk, in that there

is an obvious rotational action of S1
. What is this S1

? If you contemplate enough, you see that

S1 = R/Z = B(R)/B(Z). This shows that at some part of group structure there is a torus.
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Remark 5.1. Faltings–Chai showed that a toroidal compacti�cation of Ag has a property re-

lating to degeneration of abelian varieties. By degeneration of abelian varieties we mean a

semiabelian scheme, an abelian scheme extended by a torus, over a complete dvr, such that the

generic �ber is an abelian variety. Mumford’s theory of degeneration of abelian variety gives rise

to a combinatorial data, a quadratic form on the torus part of the semiabelian scheme over the

special point.

From this viewpoint, a toroidal compacti�cation Ag,Σ carries an extension of a universal

abelian scheme X → Ag, a universal semiabelian scheme XΣ → Ag,Σ. It also has a nice

universal/functorial property:

Theorem 5.2 (Faltings–Chai). Let G → S be a semiabelian scheme where S is an irreducible
normal scheme and over U ⊂ S an open subset GU is an abelian scheme. Let f : U → Ag be the
map representing GU/U . Then, it extends to f : S → Ag,Σ if and only if, for every s ∈ S, there
is a rational polyhedral cone Σα of the a priori �xed cone decomposition Σ of C(Zg) (Q-positive
semide�nite bilinear forms on Zg) and a certain surjection Zg → X∗(toric part of Gs) such that, for
any dvr SpecV → S where the special point is sent to s, the associated quadratic form is pulled
back via the map to Σα.

In words, each Ag,Σ is a moduli space parametrizing degenerations of abelian varieties of

certain kinds (given by Σ).

5.3. Vanishing of cohomology. We will probably need several properties of toroidal/minimal

compacti�cation as we need in the development/proofs, so I won’t dare to try to summarize what

will be needed. I will just exhibit a particular result that illustrates a feeling of how these are used.

We retain the following notation:

Sh �
� jtor //� p

jmin ""

Shtor
Σ

η

��

Shmin

and Dtor
Σ = Shtor

Σ − Sh.

Theorem 5.3 (Lan et al.). (1) For each automorphic vector bundle E over Sh, there are two
extensions, canonical extension Ecan and subcanonical extension E sub. It satis�es
E sub ⊂ Ecan and morally speaking Ecan is the “sheaf of modular forms” whereas E sub is
the “sheaf of cusp forms.”

(2) jtor
∗ E = lim−→n≥0

Ecan(nDtor
Σ ), Rijtor

∗ E = 0 for i > 0.

(3) Riη∗E sub = 0, for i > 0.

(4) Riη∗Ecan(−Dtor
Σ ) = 0, for i > 0.

These are di�cult results and have played important roles.

Remark 5.2. Over C, the canonical extension Ecan
coincides with the canonical extension of

Deligne (extension as a vector bundle with connection with log singularities at the boundary.
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