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1 Introduction

In these notes we seek to understand the generalization of the results of Cole-
man that small slope overconvergent modular forms are classical. Specifically
Coleman proves the following result.

Theorem 1.1. (Coleman) Let f be an overconvergent p-adic Up-eigenform on
X1pNq of weight k with pN, pq “ 1, define the slope of f to be the vppλpq
where UP ¨ f “ λpf . If the slope of f for the action of the Up operator is
ă k ´ 1, then f is classical, i.e. it arises from a modular form on XΓpN ;pq,
where ΓpN ;pq :“ Γ1pNq X Γ0ppq.

In fact this bound is very nearly optimal: ignoring the nebentypus, if f is a
modular form for X0pN ¨pq then if f “

ř

n anq
n is old, then fpτq, fppτq generate

a Up stable subspace of the modular forms of weight k and level ΓpN ; pq, on this

subspace Up has the explicit form

ˆ

ap pk´1

´1 0

˙

, so we see that the slopes of f

must be bounded by k´1 and indeed that this bound is achieved by an ordinary
oldform. On the other hand if f is new then it must therefore be Steinberg at p,
an explicit computation with the Steinberg representation then shows us that

Up ¨ f should be, possibly up to a root of unity, just p
k´2

2 ¨ f .
Coleman also makes the following observation which handles the edge case

of slope k ´ 1.

Theorem 1.2. (Coleman) Let f as in Theorem 1.1, but assume that f is an
eigenform for the Hecke algebra and that its slope is k ´ 1. Then f is classical
as long as there is no overconvergent modular form g of weight 2´ k such that
θk´1g “ f .

In this study Coleman makes the following very beautiful observation, which
implies the above Theorems 1.1, 1.2 via an analysis of the commutation of the
Up and θ operators.

Theorem 1.3. (Coleman) Let f as in Theorem 1.1, but assume that f is an
eigenform for the Hecke algebra and that its weight is k ` 2 for k ě 0. Then f
is classical as long as there is no overconvergent modular form g of weight ´k
such that θk`1g “ f .
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These theorems are the historical and ideological starting point of our study of
classicality of Siegel modular forms.

2 A Prototype of Classicality

2.1 A Dual BGG Resolution

Here we will discuss the mainspring of the classicality arguments in AIP. We
formulate a ‘classicality’ result for analytic vectors in associated representations
of G “ Glg, and later we will show that this gives, in a precise sense, an etale
local model for the classicality argument of AIP, from which the full statement
will follow without much pain.

Let G “ GlgpQpq, fix once and for all B Ă G the Borel of upper triangular
matrices, and within it the maximal split torus T of diagonal matrices. We will
denote by N the unipotent radical of B, and by Uop its opposite with respect
to T . With respect to this datum denote by X˚pT q` the set of dominant
cocharacters of the torus T , and by ∆ the set of positive simple roots. Let I
denote the Iwahori subgroup associated to B, and let Nop “ IXUop. Let L{Qp
be some mostly irrelevant finite extension of Qp

Recall from Weibo’s talk that for k P X˚pT q` a dominant classical weight we
have defined the module Vk to be the classical algebraic induction of the weight k
from the Borel. We also defined, for w ą 0 the spaces V w´an

k , which we defined
to be the subset of the set of functions tf : I Ñ L | fpibq “ fpiq ¨ kpbq, b P
BpZpq, i P Iu, such that f is w-analytic, i.e. f |Nop is analytic on a tube of radius

p´w around Nop Ă A
gpg´1q

2 . We will denote by V l´an
k the co-limit of all the

V w´an
k , and by V ank the analytic version (with no restriction on the radius of

analyticity). All of these spaces clearly admit the natural left-regular action of
I.

We have, from the work of Jones, the following theorem.

Theorem 2.1. There exists an I-equivariant exact sequence:

0 Ñ Vk Ñ V ank Ñ ‘αP∆V
an
sα¨k

Where here sα is the reflection associated to the simple root α and ¨ denotes
the dotted Weyl group action sα ¨ k “ sαpk ` ρq ´ ρ, where ρ is the half sum of
positive roots. The same holds with the condition V ank replaced by a w-analytic
assumption.

Let us refer to the first map in this sequence by d0 (it is the obvious inclu-
sion), and refer to the second by d1. As our ‘classicality’ is simply lying in the
image of d0, this gives us an obvious path towards classicality: given an analytic
function in V ank we simply apply d1 to determine whether or not it is classical,
using the exactness of the sequence.

We can start by being a little more explicit about d1. Let ι : V ank ãÑ LI,an

be the embedding from V ank into all analtyic functions on I with values in L.



This embedding is clearly I-equivariant, and so we can differentiate the action
of I on V ank to obtain an action of g on LI,an, and thus an action of the universal
enveloping algebra ULpgq. We can now let elements of the universal enveloping

algebra act on V ank , viewed via its embedding ι. Let θα “ X
xk,α_y`1
´α be one

of these operators, where X´α is the infinitessmial generator of the ´α root
direction. It is our claim that d1 “ ‘αθα, but first we must make sure this is
well defined.

Proposition 2.1. The map θα : V ank Ñ V ansα¨k is well-defined.

Proof. First let v be highest weight for V ank , then we have that Xβθαv “
rXβ , θαsv because v is annihilated by Xβ , for any β P ∆. Now we note that
rXβ , θαs “ 0 unless α “ β, in which case

rXα, X
xk,α_y`1
´α s “ X

xk,α_y`1
´α Xα ´X

xk,α_y`1
´α Xα `

xk,α_y`1
ÿ

i“1

Xi´1
´α HαX

xk,α_y`1´i
´α

(1)

“

xk,α_y`1
ÿ

i“1

´2 pxk, α_y ` 1´ iqX
xk,α_y
´α (2)

“ pxk, α_y ` 1qX
xk,α_y
´α Hα ´

xk,α_y`1
ÿ

i“1

´2 pxk, α_y ` 1´ iqX
xk,α_y
´α

(3)

“ pxk, α_y ` 1qX
xk,α_y
´α pHα ´ xk, α

_yq (4)

where here Hα “ rXα, X´αs is the infinitesimal generator of the cartan subgroup
corresponding to α. As the last factor in the last line annihilates v, θαv is still
highest weight.

To check that it has the correct eigenvalue for a t P T , simply note that

Hαθαv “ xk, α
_yθαv ´ 2 pxk, α_y ` 1q θαv (5)

“ p´2´ xk, α_yqv (6)

“ xsα ¨ k, α
_yv (7)

as desired. For β ‰ α the action of Hβ is unchanged. Upon exponentiation we
are done.

2.2 Classicality

We introduce here operators δi for i “ 1, . . . , g ´ 1 on V ank which will, etale lo-

cally, play the role of the Up,i introduced in Weibo’s talk. Let δi “

ˆ

p´1Idg´i 0
0 Idi

˙

,

δi acts by conjugation on Glg and preserves the borel subgroup B (but not the
Iwahori!) so we have an induced action of δi on Vk. Using the isomorphism
induced by f Ñ f |Nop for f P V ank , we get V ank – LN

op,an. Note that δi acts on



the latter space, we use this isomorphism to pullback and obtain an action of δi
on V ank . The map d0 is equivariant for this action, and the operators induced
by δi are norm decreasing and compact on V ank .

We now need to investigate the action of δi on θαf , this follows in a manner
similar to our previous analysis of the θ operator. We have that: δi ¨ θαf “
αpδiq

xk,α_y`1θαδifpnq, using the fact that the right regular action of the torus
commutes with the left action of the Iwahori. Now we can prove our model
classicality theorem.

Proposition 2.2. Let k “ pk1, . . . , kgq P X
˚pT q` be a weight, and let v “

pv1, . . . , vg´1q be such that vg´i “ ki´ki`1` 1 for all 1 ď i ď g´ 1. Then if we
denote V an,ăvk the sum of the generalized eigenspaces of δi on which the slopes

of δi are bounded by vi, then V l-an,ăv
k Ă d0pVkq.

Proof. Because the δi are acting by nonzero eigenvalues, any v which is a mutual
eigenvector of the δi is automatically analytic if it is locally analytic, because
the contracting property of the δi allow us to analytically continue v to all of
Nop.

For simplicity let v be a mutual eigenvector of the δi, then for all i we have
that δiθαv “ αpδiq

xk,α_y`1θαδiv “ λiαpδiq
xk,α_y`1θαv for all α. But if we let

α be the simple root pg ´ i, g ´ i ` 1q then θαv is an eigenvector for δi with
eigenvalue λi ¨αpδiq

xk,α_y`1 “ λip
´pkg´i´kg´i`1`1q, which has negative valuation

by our bound on the valuation of λi. This is impossible unless θαv “ 0 as δi is
contracting, and thus has operator norm less than or equal to 1. Repeating this
for all i we see that θαv “ 0 for all α, and thus v is classical.

3 Sheaves of Overconvergent Modular Forms

Recall that for k a weight, w an analtyticity, and v an upper bound on the
Hodge invariant, satisfying natural restrictions, we have constructed ωk,:w a sheaf
on X ppqpvq consisting of overconvergent Siegel modular forms of weight k and
analyticity w. For the purposes of this talk k will be fixed and classical, and v
will also be fixed. We summarize what we know about this from Weibo’s talk.

Proposition 3.1. The following are true when k is classical and k1 is its op-
posite weight.

1. There is an embedding of sheaves ωk|XIppqpvq ãÑ ωk,:w .

2. The above is etale locally modeled by OXIppqpvqb̂Vk1 ãÑ OXIppqpvqb̂V
w´an
k1 .

We also have the following pseudo-theorem, which is a simplification of many
results in AIP, which is useful for the purpose of this talk.

Theorem 3.1. The following are true.

1. There is a larger sheaf X and an I-equivariant embedding of sheaves
ωk,:w ãÑ X, where X is a large sheaf with an action of g, it roughly plays the
role of all analytic functions on the Iwahori in this sheaf theoretic setting.



2. The action of Up,i on ωk,:w for 1 ď i ď g ´ 1 is modeled on stalks by the
action of δg´i b 1 on OXIppqpvqb̂V

w´an
k1 .

4 Classicality on the Level of Sheaves

From the above pseudo-theorems we get an action of Upgq such that X
xk,α_y`1
´α

takes ωk,:w to ωsα¨k,:w as before, where the second map is etale locally modeled
by 1b d1, and the first by 1b d0. So we can define a sequence:

0 Ñ ωk Ñ ω:,kw Ñ ‘αP∆ω
:,sα¨k
w .

Proposition 4.1. There is an exact sequence of sheaves.

Proof. Essentially this follows from the fact that this can be checked etale lo-
cally, and the fact that impd1q splits off inside of this sequence locally means
that we don’t have issues with completed tensor products.

We can show the following now, again it will follow formally from our pseudo-
theorems.

Proposition 4.2. Let v ď p´2
2p2´p , then we have a commutative diagram for all

1 ď i ď g ´ 1.

H0pXIppqpvq, ω:,kw q H0pXIppqpvq, ω:,sα¨kw q

H0pXIppqpvq, ω:,kw q H0pXIppqpvq, ω:,sα¨kw q

θα

Up,i αpδg´iq
xk,α_yUp,i

θα

Proof. Once again, this simply follows from computing locally, where it reduces
to what we’ve already done. The condition on the Hodge height simply ensures
that the appropriate comparison to the representation theory is permissible.

Proposition 4.3. Let M
:,k,ăv
w be the subspace of M :,k

w “ H0pX ppqpvq, ω:,kw q

where all the generalized eigenspaces of the Up,i have finite slope for Up,g and
have the slopes of the Up,i eigenvalues bounded by vi “ kg´i ´ kg´i`1 ` 1, then

M
:,k,ăv
w Ă H0pX ppqpvq, ωkq.

Proof. For simplicity we show the statement if f P M
:,k,ăv
w is a mutual Up,i

eigenform for all 1 ď i ď g. In this case f is analytic by using the contracting
property of Up “

ś

i Up,i and the analytic continuation implied by Upf “ Cf

with C ‰ 0. Define a norm on M
:,k,ăv
w by taking the sup norm on only the

ordinary locus X ord
I XXIppqpvq; it can be shown by comparison with Katz/Hida’s

space of overconvergent modular forms that the Up,i are norm-decreasing for this

norm, although M
:,k,ăv
w is no longer complete.

As before we have:

Up,g´iθαf “ pki`1´ki´1θαUp,if (8)

“ aip
ki`1´ki´1θαf (9)

which means that θαf must be 0 as Up,i must be contracting.



Classicality now follows from the following theorem of Bijakowski-Pilloni-
Stroh.

Theorem 4.1. Let vg “ kg ´
pg`1qg

2 , then H0pXIppqpvq, ωkqăvg Ă H0pXI , ω
kq.

The above results technically allows us to win, but it is the main result of a
very complex paper. We will spend the rest of these notes trying to explain this
type of analytic continuation result for small slope overconvergent eigenforms.

5 Analytic Continuation

5.1 Coordinates on the Modular Curve

The advantage, to me, of working the results in this section only for Gl2 is that
it is possible to be much more explicit with our coordinates and precisely how
they are effected by the Up-operator. In addition probably everyone is much
more familiar with the p-group schemes which occur inside of elliptic curves,
than those that occur in general abelian varieties.

For the purposes of this section let K{Qp be a finite extension, and X be the
rigid analytic space over K associated to the (usual integral model X of) the
compact modular curve at level Γ0ppq X Γ1pNq for pN, pq “ 1. The only thing
we will need to know specifically about our choice of integral/formal model
is that the special fiber XFp “ XΓ1pNq

š

Xss
Γ1pNq

XΓ1pNq is two copies of the

special fiber for the modular curve with only the tame level glued together
over the supersingular locus to make simple nodes. We will only use this fact
for illustrative purposes, but it adds a nice sense of geometric realism to the
argument.

5.1.1 The Degree of a P-Torsion Group Scheme

We will introduce some new coordinates on our modular curve; they are re-
lated to the coordinates given by the Hodge invariant, but carry a bit more
information at Iwahori level.

Definition 1. Let Λ{OK be a finite torsion module. By the standard structure
theorem Λ has a presentation Λ “ ‘iO{paiqO, define degpΛq :“

ř

i vppaiq, where
vpppq “ 1. If H{OK is a finite flat group scheme then define degpHq “ degpΩHq.

We have the following easy consequence of this definition.

Proposition 5.1. Let λ : AÑ A1 be a p-power isogeny over OK with kernel H,
then degpHq “ vppdetpλ˚qq, where λ˚ : ΩA1 Ñ ΩA. Note that while the value of
the determinant is not well-defined with this data, its valuation is. As a trivial
consequence we see that degpArpsq “ ng, where g “ dimpAq.

For instance Z{pZ{OK has no tangent space to begin with, whereas µp does,
but does not have a flat tangent space over Z{p2Z. These schemes have degree
0, 1 respectively, and these prototypical examples will be very important for us.



As a helpful point of comparison, if Hn is the level n canonical subgroup of
an Abelian variety A of dimension g, then we have degpHnq “ ng´ pn´1

p´1 HdgpAq.
This clarifies the relationship between our new coordinates and the coordinates
on the Siegel moduli space that we’ve been using in this seminar.

Definition 2. Let P “ pE,Hq1 be a point on X. Define degpP q “ degpHq if
E spreads out and reduces well modulo p. Otherwise let degpE,Hq “ 0 or 1
depending on whether E has additive or multiplicative reduction.

As is tradition, now that we have a new coordinate on the modular curve we
have to spend some time explaining the results of Katz-Lubin in our context.

Proposition 5.2. Let P “ pE,Hq be a point on X , then let AltpP q “ tpE,H 1q|H 1 ‰
Hu. We have the following statements, the first two of which are due to Katz-
Lubin, the third and fourth to Fargues.

1. If degpP q ą 1
p`1 then for any P ‰ P 1 P AltpP q we have degpP 1q “

1´degpP q
p ă 1

p`1 . Conversely if degpP q ă 1
p`1 then there is a unique sub-

group C1 such that degpE,C1q “ 1´ pdegpP q ą 1
p`1 , this is the canonical

subgroup.

2. If degpP q “ 1
p`1 then the same is true for all P 1 P AltpP q

3. If 0 Ñ G1 Ñ GÑ G2 Ñ 0 is an exact sequence of finite flat group schemes
then degpGq “ degpG1q ` degpG2q.

4. If φ : GÑ G1 is an morphism of finite flat group schemes which is gener-
ically an isomorphism, then degpG1q ě degpGq with equality if and only if
φ is an isomorphism.

Further if degpP q ă 1
pn´1pp`1q , then pE,Hq admits a first canonical subgroup

C1, taking degppE{C1, H̄qq “ 1´ degpC1q “ pdegpE,Hq ă 1
pn´2pp`1q so iterating

E admits an nth order canonical subgroup.

5.1.2 A Geometric Picture: The Key Strategy

Given all this information we can form quasicompact admissible open subsets,
for any I “ rp, qs Ă r0, 1s with p, q P Q, denote by X I the subset of X on which
the deg function takes values in I. We can now give the following nice description
of X : X r0, 0s,X r1, 1s are the ordinary-etale and ordinary-multiplicative loci
respectively, and they form two components which have the form of rigid tubes
over XΓ1pNq minus the supersingular discs. They are glued together across the
supersingular annuli X p0, 1q.

1Now, as always, we will suppress the tame level.



This geometric picture in hand, we can now sketch our strategy for analytic
continuation of overconvergent eigenforms. Let f be a finite slope over conver-
gent eigenform, then f will be defined on X r1 ´ ε, 1s for some ε ą 0. We will
show that the Up operator is contracting: i.e. on points it sends P P X to a sum
of points P 1 which are strictly ‘closer’ to X r1, 1s. As f is finite slope we can
define a new function F “ 1

ap
Uppfq with ap f ’s Up eigenvalue. On the domain

of definition of f F agrees with it, but because of the contracting property of
Up, F will be defined on a slightly larger region. Eventually we can get f to be
defined on all of X p0, 1s.

Now assuming f has small slope we will then construct a formula for the
value of f on all points of X r0, 0s which f will have to satisfy if it is a classical
Up eigenform of small slope. We use this to get an analytic function F on
X r0, 0s which we will “glue”, using a clever idea of Kassaei, to the extended
f on X p0, 1s, despite the fact that these opens have empty intersection on the
level of classical points.

5.2 Extending Finite Slope Eigenforms

To make the above ideas rigorous we will usually ignore what is happening
at the cusps: as the crux of the argument takes place over the very close to
the supersingular annuli or in their interior this will not cause us much harm.
So often we might define a procedure involving the moduli problem of Y, the
interior of the modular curve, and pretend that the construction goes through
on X .

Define the space X p “ tpE,H,Cq|H,X Ă Erps, H ‰ Cu. This space, as in
previous talks, carries an etale correspondence over X given by p1pE,H,Cq “
pE,Hq and p2pE,H,Cq “ pE{C, H̄q. On a given sheaf F this comes from the
morphism from p˚2F to p˚1F given by πC : E Ñ E{C, the natural universal
isogeny. A modular form, viewed as a section of the kth power of the Hodge
bundle, has the following natural action of an operator Up coming from this
correspondence:

Up ¨ f “
1

p

ÿ

pE,H,Cq

π˚CpfpE{C, H̄qq,

obtained by pulling back along p2 and taking the trace along p1. We can do
this with our overconvergent sheaves of modular forms, and for any U1, U2 Ă X
such that p´1

1 pU1q Ă p´1
2 pU2q we get a map ω:,kpU2q Ñ ω:,kpU1q.

To begin with: note that by part 4 of Proposition 5.2 Up weakly increases
degrees on the entire X , in the sense that for P P X we have the degpE{C, H̄q ě
degpP q for all P of good reduction, and any appropriate C which shows up in
the definition of Up. We will now show that this is strict on the supersingular
locus.

Proposition 5.3. This increase is strict and bounded below on any subset
X rα, 1´ εs, α, ε ą 0 of the supersingular locus.



Proof. Suppose it were not strict, then H̄ – H. This implies that Erps – H‘C,
this is impossible in the non-ordinary setting for all sorts of reasons: for one it
cannot be true on the special fiber as there is no splitting of 0 Ñ αp Ñ Erps Ñ
αp Ñ 0 when E is supersingular. For another reason it is known that the degree
of a truncated Barsotti-Tate group over OK is always an integer by a theorem
of Pilloni, and if H were a summand of Erps this would be true.

Now take λp the universal p-isogeny over X p, and τ to be the universal p-
isogeny over X . This τ gives a canonical section δ of L :“ ΩE b Ω´1

E{H over X .

This gives us a section δ0 “ p˚1 pδq b p
˚
2 pδq

´1 of p˚1 pLq b p˚2 pLq´1 over X prα, 1´
εs :“ p´1

1 pX rα, εsq with α, ε P Q. Because we know the degree increase induced
by λp is strict, we have that vppδ0q “ vppp

˚
1 δq ´ vppp

˚
2 pδqq which gives over any

fiber pE,H,Cq: degppE,Hqq´degppE{C, H̄q ă 0 for all pE,H,Cq P X prα, 1´εs,
over this quasicompact domain this function must attain a maximum value t by
the MMP, thus Up strictly increases degree by t over this domain.

Thus for any eigenform f of finite slope defined on X r1 ´ ε, 1s and any α ą 0
there is some n ą 0 such that Unp f is naturally defined on X rα, 1s, and thus so is
f . So we can define any overconvergent finite slope modular form over X p0, 1s.

5.3 A Formula for the Ordinary-Etale Locus

Now we need to understand how to construct f on X r0, 0s, for this a new idea
is required. We note the following.

Proposition 5.4. Let f be classical with Up eigenvalue ap of slope ă k´1, then
on pE,Hq P X r0, 0s, where we have all canonical subgroups, f can be represented
as

fpE,Hq “
8
ÿ

n“1

ÿ

Cn´1ĂDĂErp
n
s

D‰H,Cn

1

ppapqn
pr˚DpfpE{D, H̄qq.

Proof. Let f be a classical Up eigenform, and let pE,Hq ordinary etale, this
implies for instance that H is not the canonical subgroup. Then for all C1 ‰

D Ă Erps we have that pE{D, H̄q is in X r1, 1s, we can see this from the sequence
0 Ñ D Ñ Erps Ñ H̄ Ñ 0, which implies that degpH̄q “ 1. The case of C1 is
more complicated, which is why we separate it out. We thus get the expression
ap¨fpE,Hq “

1
p

ř

DĂErps,D‰H,C1
pr˚DfpE{D, H̄q`

1
ppr

˚
C1
fpE{C1, H̄q, continuing

this process we get the desired expression.
The only thing left to check is that this sum converges. But this is also fairly

clear: vppdetppr˚Cnqq “ degpCnq ¨k “ nk, thus pnk divides the term coming from
D which contain Cn. Thus the valuation of each term is nk ´ n ´ nvppapq “
nrpk ´ 1q ´ vppapqs so this series converges when vppapq ă k ´ 1.

Our statement of “Classicality on the level of Sheaves” gave us functions
which are defined on an analogue of X p0, 1s, to conclude we want to replicate
this procedure to obtain an expression for f on the locus X r0, 0s if f is non-
classical but defined on this region. The sum above requires arbitrarily deep



canonical subgroups to make sense, so a priori it only coheres on X r0, 0s and does
not overconverge, however each nth partial sum is well defined on X r0, 1

pnpp`1q s,

so we can define the entire sum modulo pnk on a small collared neighborhood
around X r0, 0s, and by a clever argument this will be enough to glue.

First note the following: if one has an etale correspondence X p, then if
p´1

1 pUq breaks up as p´1
1 pUq “ V1

š

V2 with Vi “ p´1
2 pUiq then we can decom-

pose our correspondence into a sum of two correspondences, each supported
on Vi. Carrying this out explicitly with U1 “ X r1, 1s, U2 “ X r0, 0s, with
U “ X r0, 0s. Using this we write Up|X r0,0s “ Uspp `U

nsp
p where Uspp is the isogeny

correspondence coming from the canonical subgroup, and Unspp corresponds to

the less interesting subgroups. Note that on sections Unsp : ωkpX r1, 1sq Ñ
ωkpX r0, 0sq whereas Usp : ωkpX r0, 0sq Ñ ωkpX r0, 0sq, and Up is the sum of
these two maps Up : ωkpX r0, 0sq ‘ ωkpX r1, 1sq Ñ ωkpX r0, 0sq.

Let f a slope ă k´1 overconvergent Up eigenform defined on X p0, 1s Define

F “
8
ÿ

n“1

1

ppapqn
pUspqn´1Unspf |X r1,1s,

this gives a well-defined expression for f on X r0, 0s, which converges for the
same reason as before. Let Fm denote its mth partial sum.

5.4 A Gluing Lemma of Kassaei

The following lemma is a first step on our journey towards gluing.

Proposition 5.5. We have the following analytic facts which will allow us to
glue.

1. Fm are uniformly bounded.

2. |f ´ Fm| goes to zero on X p0, 1
pmpp`1q s

3. As m goes to 8, |Fm`1 ´ Fm| Ñ 0.

Proof. We bound f successively and use the control of f to control the F and
Fm. Fix 1 ą ε ą 0 a very small rational number, let Un “ X r0, 1´ε

pp`1qpn s, and let

Vn “ Un´Un`1. Note that each Un is quasicompact and f is defined on Un, so
f can be bounded on any Un individually, note also that Fn overconverges to Un
for all n. Note that UppV0q is entirely contained in X r 1

p`1 , 1s from the equation

degpE{D, H̄q “ 1 ´ degpDq, and the fact that degpDq “ degpE,Hq unless D

is canonical. If D is canonical then degpDq “ 1´degpE,Hq
p ă 1

p p1 ´
1´ε

p2pp`1q q “

1
p`1 p1`

1
p´

1
p2 `

ε
p2 q ď

p
p`1 easily, whence degpE{D, H̄q ě 1

p`1 . For any U Ă U1

let dU be a uniform lower bound for the degree of the canonical subgroup on
this region.



By our understanding of the canonical subgroup, we know that if UspQ P

U Ă U1, then for a form f we have |UspfpQq| “ | 1ppr
˚
C1
fpUsppQqq| ď p1´kdUsp,´1pUq |f |U ,

this bound is the key input for our estimates.
First note that we can bound f on V0 by bounding f on UppV0q and using

1
ap
pUppfqq “ f . Further since F1 is defined on U1 which is quasicompact, we

can bound this as well. Let M be a mutual bound for these functions. So f is
bounded by M on V0 in particular.

Assume for induction that f is bounded on Vn´1 byMp
kp 1´ε
ppp`1q`¨¨¨`

1´ε

pn´1pp`1q
q
.

One can see by a variant of our above analysis that on Vn the degree of the
canonical subgroup is bounded below by 1 ´ 1

pp`1qpn , plugging this in to the

above bound we see that

|
1

ap
Uspf |Vn ď pvppapq`1´kp1´ 1´ε

pp`1qpn q|f |Vn´1 (10)

ďMpkp1´εqp
1

ppp`1q`¨¨¨`
1

pnpp`1q q (11)

Here we derive that |f |Vn ď Maxp|f´ 1
ap
Uspf |Vn , |

1
ap
Uspf |Vnq ďMpkp

1
ppp`1q`¨¨¨`

1
pn q

as desired. Whence |f | is bounded on X p0, 1
pp`1q s by Mp

k
pp`1qpp´1q , by writing

this region as
Ť

n Vn and using the bounds on each term of this coproduct.
Obviously since Fm “ f´ 1

anp
Usp,nf we can easily bound Fm by noticing2 that

| 1
anp
Usp,nf |X p0, p1´εq

pp`1qpn s
ď pnvppapq`n´kpn´

pp1´εq
pp`1qpp´1q q “ pnpvppapq´pk´1qqC, since

this goes to 0 in n we have our uniform bound on Un, by noting that the Fn
converge on X r0, 0s. Even more clearly this also bounds |f ´ Fn| on Un as
desired. The statement about the difference |Fn ´ Fn`1| clearly follows from
the above estimates in a similar fashion.

We now sketch the coup de grâce of Kassaei’s argument. Since everything
in sight is bounded we can restrict f, Fn to small open U around the boundary
of the supersingular annuli and perform the gluing there. By rescaling we can
assume that f, Fm are sections of the sheaf Oď1 of sections of the structure sheaf
with norm less than or equal to 1. Choosing a subsequence of Fn we can assume
that on pUn´X r0, 0sqXU that |f´Fn| ă

1
pn , and thus f, Fn glue to form a section

f̂n of Oď1{pn on U : :“ X r0, 1´ε
pp`1q s X U . A powerful theorem of Bartenwerfer

tells us that if Z is a smooth quasicompact rigid space then there is a constant c
with |c| ď 1 such that cH1pZ,Oď1q “ 0, thus cf̂n P Oď1pU :q{pnOď1pU :q gives
a compatible family, whence we obtain f P Oď1pU :q, this is our desired section.
So we obtain f P H0pX , ωkq and by rigid GAGA f is classical.

As near as I can tell this is exactly the same technique, modulo much more
elaborate bookkeeping, that Bijakowski-Pilloni-Stroh use to prove their afore-
mentioned theorem, so hopefully this summary does a good job of demystifying
the technique required.

2We can use induction and the same technique we used to bound | 1
ap

Uspf | above.
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