
TRIPLE PRODUCT p-ADIC L-FUNCTIONS

SHILIN LAI

This is the notes for a talk given at the student seminar on p-adic automorphic forms in Fall 2020. We will
follow [AI19] and construct a triple product p-adic L-function for Coleman families.

1. Automorphic background

In the first section, we will develop the archimedean theory of the triple product L-function, culminating
in Ichino’s formula expressing its central value as a period integral times explicit local terms. Many of the
details are taken from [Hsi20].

1.1. Triple product L-functions. Let f =
∑
n≥1 anq

n be a cuspidal eigenform of weight k, level N , and

character χ, then its L-function L(f, s) =
∑∞
n=1

an
ns has an Euler product

L(f, s) =
∏
p-N

1

1− app−s + χ(p)pk−1−2s

∏
p|N

Lp(f, s)

For p - N , let αf,p, βf,p be the two roots of T 2 − apT + pk−1. They are complex numbers of absolute value

p
k−1
2 by the Ramanujan conjecture.
Now suppose for each i = 1, 2, 3, we have an eigenform fi ∈ Ski(Ni, χi). Their triple product L-function

can be defined by the Euler product

L(f1 × f2 × f3, s) =
∏
p

Lp(f1 × f2 × f3, s)

where for p - NfNgNh, the local factor is

Lp(f1 × f2 × f3, s) =
∏

�∈{α,β}

(1− 1
1,p

2
2,p

3
3,p
p−s)−1

This defines a degree 8 L-function. On the Galois side, this is the L-function attached to the Galois repre-
sentation Vf1 ⊗ Vf2 ⊗ Vf3 . For this tensor product to be self-dual, we need the condition χ1χ2χ3 = 1.

Theorem 1.1 (Garrett, Piatetski-Shapiro–Ralis [PSR87]). The L-function L(f1 × f2 × f3, s) has a mero-
morphic continuation to C with a functional equation interchanging s and k1 + k1 + k3 − 2− s.

We are interested in the value of the L-function at its centre s = k1+k2+k3−2
2 . Following Deligne’s conjec-

ture, this point is critical if it is an integer. The nature of the Deligne period depends on the relative sizes
of the weights ki. More precisely, let

Ω∞ =

{
π2ki〈fi, fi〉2 if ki is at least the sum of the other two weights

πk1+k2+k3−1〈f1, f1〉2〈f2, f2〉2〈f3, f3〉2 otherwise

The first case is called the unbalanced, and the second case is called balanced. It is then conjectured that
L
(
f1 × f2 × f3,

k1+k2+k3−2
2

)
/Ω∞ is an algebraic number. We will later derive this conjecture from the works

of Harris–Kudla [HK91] and Ichino [Ich08].

1.2. Differential operator. Let H be the complex upper half plane. Let C∞k (N,χ) denote the set of smooth
slowly increasing functions on H which transforms like a modular form of level N , weight k, and character
χ. In other words, we replace holomorphy by smooth.

Definition 1.2. Let k ≥ 2. The Maass–Shimura differential operator of weight k is

δk =
1

2πi

(
∂

∂z
+

k

2iy

)
: C∞k (N,χ)→ C∞k+2(N,χ)

For m ≥ 0, let δmk = δk+2m−2 ◦ · · · ◦ δk+2m ◦ δk.
1
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Now consider the space

N
[m]
k (N,χ) =

m⋃
i=0

δmk−2mMk−2m(N,χ) ⊆ C∞k (N,χ)

It is easy to check that the union is disjoint. We let Nk(N,χ) :=
⋃
m≥0N

[m]
k (N,χ). This is the space of

nearly holomorphic modular forms. The classical theory of Hecke operators extend to them.

1.3. Ichino’s formula. We state Theorem 4.2 of [DR14], which is a consequence of the works of Harris–Kudla
and Ichino using the theta correspondence and the integral representation of the triple product L-function.

Theorem 1.3. Let f1, f2, f3 be three modular forms. Suppose their levels are divisible by N , their weights
k1, k2, k3 satisfy k1 = k2 + k3 + 2t for some t ∈ Z≥0, and their characters satisfying χ1χ2χ3 = 1, then∏

q|N∞ Cq

π2k〈f1, f1〉2N
· L
(
f1 × f2 × f3,

k1 + k2 + k3 − 2

2

)
=

( 〈f1, δ
t
k2
f2 × f3〉N

〈f1, f1〉N

)2

where 〈−,−〉N is the Petersson inner product of level Γ1(N), and Cq are explicit local constants.

The right hand side can be interpreted as the projection of δtk2f2× f3 onto the f1-isotypic subspace. If all
fi have algebraic Fourier expansions, then the right hand side is algebraic, and one can check that the local
constants are also algebraic, which proves Deligne’s algebraicity conjecture in the unbalanced case, provided
that all Cq are non-zero. However, in general, it is possible that Cq is zero for some q.

To remedy this, we need to modify f1, f2, f3 to become linear combinations of old forms in their respective
isotypic classes. Harris–Kudla [HK91] showed that there is always one combination which makes all local
constants non-zero, resolving a conjecture of Jacquet. For the purpose of p-adic interpolation, it is necessary
to know that such a modification process can be done in family. This is made explicit in Sections 3.4 and 3.5
of [Hsi20], and they depend only on the tame levels.

2. Interpolations

The goal of this section is to interpret δt acting on p-adic modular forms, where t is allowed to be a p-adic
weight. This was first used by [Kat78] to construct p-adic L-functions for Hecke characters over CM-fields,
then used by [BDP13] to construct p-adic L-functions for modular forms twisted by Hecke characters, and
finally by [DR14] to construct a triple product p-adic L-function in the ordinary case. We will begin by
following them but switch to the approach of [AI19] and [Liu19] for later applications.

2.1. Geometric differential operator. We start with some general construction. Let π : E → Y be a
proper smooth morphism of relative dimension 1. Associated to this data, we can construct

– the relative de Rham sheaf L = H1
dR(E/Y ) := R1π∗Ω

1
E/Y .

– a Hodge filtration 0→ ω → L → ω∗ → 0, where ω = π∗Ω
1
E/Y . This splits non-functorially.

– the Gauss–Manin connection ∇ : L → L⊗ Ω1
Y

– the Kodaira–Spencer map KS : ω⊗2 → Ω1
Y .

Concretely, the Gauss–Manin connection over C can be defined by requiring its flat sections to be R1π∗C.
Let Y = Y1(N) be the open modular curve, and let E be the universal elliptic curve over Y . The ω in the

above setting is exactly the modular sheaf. In this case, the Kodaira–Spencer map is an isomorphism and
corresponds to the familiar fact that modular forms of weight 2 correspond to differentials on the modular
curve. For k ≥ 1, let Lk = Symk L. It has a filtration

ω⊗k ⊆ L1 ⊗ ω⊗(r−1) ⊆ · · · ⊆ Lk−1 ⊗ ω ⊆ Lk
The Gauss–Manin connection and Kodaira–Spencer isomorphisms gives a weight raising map

∇ : Lk
∇−−→ Lk ⊗ Ω1

Y
KS−1

−−−−→ Lk ⊗ ω⊗2 → Lk+2

Now given a splitting Ψ : L → ω of the Hodge filtration, we can define

θΨ,k : ω⊗k → Lk
∇−−→ Lk+2

Ψ−→ ω⊗(k+2)

Taking global sections gives a map θΨ,k : H0(Y, ω⊗k)→ H0(Y, ω⊗(k+2)).
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Remark 2.1. We need to extend this picture to the closed modular curve X = X1(N). This can be done
by doing explicit computations over the Tate curve. The result is that in the Gauss–Manin connection and
the Kodaira–Spencer isomorphism, we need to replace Ω1

Y by Ω1
X(logZ), where Z = X − Y . Moreover,

KS(ω⊗2
can) = dq

q over a Tate curve.

In the analytic setting, the covering E → Y is a quotient of E → H, where the fibre above τ ∈ H is
Eτ = C/〈1, τ〉. Let z be the local coordinate on C, then ω has basis dz, and H1

dR(Eτ ) = Cdz ⊕ Cdz̄. The
Gauss–Manin connection is explicitly

∇dz =

(
dz − dz̄
τ − τ̄

)
⊗ dτ

The first term on the right hand side is the dual of τ ∈ H1(Eτ ,C) in H1
dR(Eτ ). It is flat as expected since ∇

is integrable. We call the resulting map ΨHodge : L → Cdz the Hodge splitting.

Definition 2.2. The space of (geometric) nearly holomorphic modular forms of weight k is the image of

ΨHodge : H0(Y,Lan
k )→ H0(Y, ω⊗kan )

Suppose f is an analytic function on H which is a nearly holomorphic modular form of weight k in the
classical sense, we can treat it in this framework as the section τ 7→ f(τ)(2πidz)k. The key property is the
following theorem, whose proof can be found in [BDP13, Lemma 1.5].

Theorem 2.3 (Shimura, Katz). Under this identification, we have θHodge,r = δr.

In the p-adic setting, the papers [Kat78, BDP13, DR14] used the unit-root splitting coming from the
slope filtration of the Frobenius action. This only works over the ordinary locus, which is enough for their
application since they only need to evaluate the p-adic modular forms and take ordinary projection. We will
need an overconvergent projector, which is a key part of [AI19].

2.2. Nearly overconvergent modular forms. Similarly to the transition from ω⊗k to ωκ, we will now
define a sheaf Wκ with an increasing filtration Fil•Wκ, which should interpolate Lk. This cannot be a
coherent sheaf since we need k →∞ in the archimedean topology in order for k → κ in the p-adic topology.
Eventually, we will see that truncation by slope produces makes it coherent.

We will recall some notations from my talk and Weibo’s talk. Let X(v) be a formal model of the rigid
space X(v) = {x ∈ Xrig |Hdg(x) < v}. Given n, for v sufficiently small, we have a partial Igusa tower
Ign,v → X(v) parametrizing trivializations of HD

n,E . We constructed a formal scheme Fn,v over Ign,v which

parametrizes sections of ω satisfying certain congruence conditions (this is IW+ from Weibo’s talk). The
sheaf wκ is then π∗OFn,v [κ]. The construction of Wκ replicates this using the rank 2 bundle L = H1

dR(E/X).

Theorem 2.4. There is a diagram of formal scheme π : Vn,v → Ign,v → X (v) characterized by the require-
ment that given a point x : Spf R→ X(v) corresponding to an elliptic curve E/R, the fibre of Vn,v above x is
in bijection with the set(ψ, ρ)

∣∣∣∣∣∣∣
ψ : Hn,E/R → µpn , ρ : H1

dR(E/R)→ Hdg−
p
p−1R

ψ/R[ 1p ] is an isomorphism

ρ(HT(ψ)) ≡ 1
(
mod pn−

pn−1
p−1 Hdg

)


It carries the action of the formal group I = Z×p
(
1 + pn−

pn−1
p−1 HdgGa

)
.

Hypothesis. In our construction of wκ, we needed n to grow as κ approaches the boundary of the weight
space, or equivalently that κ extends to an analytic character on I. We will call those κ compatible with
(n, v), and it will be a running hypothesis that this is satisfied.

Definition 2.5. Let W = π∗OVn,v
. For a weight κ

Wκ = W[κ] = π∗OVn,v [κ]

This is a formal Banach sheaf on X(v). As usual, it is compatible between changing n and v.

Theorem 2.6. There is an increasing filtration on Wκ such that

(1) Fil0Wκ ' wκ, grrWκ ' wκ ⊗Hdgrω−2r. Both are locally free of rank 1.
(2) Wκ is the p-adic completion of lim−→r

FilrWκ.
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(3) If κ = k is a classical weight, then FilkWk

[
1
p

]
' Symk L

[
1
p

]
About the proof. We will explain the above two theorems by giving a local description of Wκ. This requires

some more notation. Let δ = Hdg
1
p−1 . It essentially follows from [AIP15, Proposition 4.3.1] that it is an ideal

sheaf on X(v), and δω is locally free (δω = F from Weibo’s talk). Let H1,]
dR = δpH1

dR(E/X) + δω. This is still

locally free of rank 2 over X(v). Moreover, the Hodge–Tate map has image inside H1,]
dR with a free cokernel

of rank 1. This modification is required to invoke the formalism of vector bundles with marked sections.
Given a point y : Spf R → Ign,v, which determines a map ψ : Hn,E/R → µpn . Choose a basis {e, f} for

H1,]
dR such that e is a lift of HT(ψ), and let {e∨, f∨} be its dual basis. The fibre of Vn,v above y can be

identified with the set

{ae∨ + bf∨ | a ∈ 1 + pn−
pn−1
p−1 HdgR, b ∈ R}

Let βn be an element of R of valuation n − pn−1
p−1 Hdg. It always exists since the sheaf δ = Hdg

1
p−1 exists.

Then we have

y∗Vn,v ' Spf R〈Z, Y 〉, Z 7→ a− 1

βn
, Y 7→ b

This carries an action of 1 + βnR, given by t · (a, b) = (t−1a, t−1b). Let π1 be the projection to Ign,v, then it
is easy to check that

y∗((π1)∗OVn,v
[κ]) ' (1 + βnZ)κR

〈
Y

1 + βnZ

〉
The filtration is by degree on the Tate algebra part. One can check that y∗((π1)∗OFn,v [κ]) ' (1 + βnZ)κR,
so this explains Theorem 2.6 at the partial Igusa tower level. We needed to invert p for the third point to

account for the modification H1,]
dR.

To actually prove the theorem, we need to further descent down to X(v) using the Z×p -action. This is
much more subtle than the rational version proven in my Coleman theory talk, even in the wκ case. The
new input needed is a control of the ramification of the Igusa tower. The full proof can be found in [AIP18,
Section 5.3.2] for wκ and [AI19, Section 3.3.3] for Wκ. �

The ordinary locus is X(0) in our notation. Over it, the ideal δ is the unit ideal. Therefore, our modification

H1,]
dR is the same as the usual de Rham sheaf. Moreover, the unit root splitting gives a canonical decomposition

H1,]
dR ' ω ⊕ ω

−1

This induces a map Wκ → wκ over X(0). The sheaf used to define Katz p-adic modular forms are the same
as wκ, so all together we have a map

H0(X(v),Wκ)→ H0(X(0),Wκ)→ H0(X(0),wκ) = MKatz
κ

Definition 2.7. The image of this map is the nearly overconvergent modular forms.

Applying this theory to the Tate curve gives q-expansions of nearly overconvergent modular forms. There
are two such q-expansions, which fit into the following diagram

H0(X(v),Wκ) H0(X(0),wκ)

Zp[[q]](1 + pZ)κ〈V 〉 Zp[[q]]

Here, V = Y
1+pZ in the notation above. The bottom arrow is simply taking the constant term in V . The same

diagram also appeared in [Urb14], except there he restricted to polynomials in V . The sheaves he constructed
are essentially FilrWκ. Following him, we call the value in Zp[[q]]〈V 〉 the polynomial q-expansion, and the
other one simply q-expansion. We will often write Vκ,r = Y r(1 + pZ)κ−r, so the polynomial q-expansion is
written as

∑
r≥0 ar(q)Vκ,r.

As usual, the Hecke algebra acts on this space. The construction is similar to what we did for wκ, and
the result is an operator

Up : H0(X(v),Wκ)→ H0(X(v),Wκ)
[1

p

]
which preserves the filtration, is compatible with the classical Up-operator on the Fil0 piece, and has the
expected behaviour on q expansion. With more attention on integrality, we can show that the action of Up
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on the r-th graded piece is annihilated by (p/Hdgp+1)r. This is enough to apply Fredholm theory, which will
later give us a slope decomposition.

2.3. Gauss–Manin connection. The other ingredient is a connection ∇ on Wκ. This follows quite formally
from the corresponding objects on H1

dR(E/X). The main theorem is

Theorem 2.8. There is an integrable connection

∇κ : Wκ →Wκ⊗̂OX(v)
Ω1

X(v)

[1

p

]
It satisfies Griffith transversality, and the induced map

grr(Wκ)
[1

p

]
→ grr+1(Wκ)⊗̂OX(v)

Ω1
X(v)

[1

p

]
is an isomorphism times uκ − r, where uκ is the element in Q̄p such that κ(t) = tuκ for all t close to 1.

We can compose the rational version of this connection with the Kodaira–Spencer isomorphism Ω1
X ' ω⊗2

to get a map

∇κ : Wκ →Wκ+2

[1

p

]
The denominator grows as κ goes near the boundary, which will cause issue for p-adic iteration. In fact, a
finer analysis shows that the denomiator in the image is bounded above by Hdgcκ , where cκ is a constant
depending only on the valuation of uκ.

About the proof. Once again we do the calculations locally. For this, we will work with a further level of
trivialization. Since we are inverting p, descent does not cause problem. Let Ig′n,v be a normal formal

model of the rigid space which parametrizes trivializations E∨[pn] ' (Z/pnZ)2. Suppose we have a point

y : Spf R→ Ig′n,v. Fix a basis {ω, η} for H1
dR(E/R) such that ω generates ωE/R . If δ = Hdg

1
p−1 , then a basis

for H1,]
dR is {e = δω, f = δpη}, and it is of the type considered in the local description of Wκ.

The point y determines a map (Z/pnZ)2 → E∨/R[pn]. This can be used to show that the Gauss–Manin con-

nection restricts to a connection on H1,]
dR. To describe this more explicitly, we use Grothendieck’s description

of integrable connections. Briefly, given a formal scheme S, let PS be the first infinitessimal neighbourhood
of the diagonal ∆ : S ↪→ S × S, with two projections pri : PS → S. An integrable connection ∇ of a module
M over S is identified with the map

ε : pr∗2M → pr∗1M, 1⊗ x 7→ x⊗ 1 +∇(x)

Here, we are using Ω1
S ' I∆/I

2
∆ to identify ∇(x) as an element of pr∗1M . In our case, S = Spf R and

PS = Spf PR for PR = (R⊗̂R)/I2
∆. With respect to the bases induced from {e, f}, let

A =

(
a b
c d

)
∈ GL2(PR)

be the matrix of ε−1 for M = H1,]
dR, so a− 1, b, c, d− 1 ∈ I∆.

Using the notation of the local description for Wκ, we have

pr∗iWκ = (1 + βnZ)κPR〈V 〉, V =
Y

1 + βnZ

for i = 1, 2. Let εκ : pr∗2Wκ → pr∗1Wκ be defined by

Y 7→ b(1 + βnZ) + dY, 1 + βnZ 7→ a(1 + βnZ) + cY

One can check that this defines an integrable connection ∇κ on Wκ. A generator of grrWκ is V r(1 + βnZ)κ,
and we can compute

∇κ(V r(1 + βnZ)κ) = εκ(1⊗ V r(1 + βnZ)κ)− V r(1 + βn)κ ⊗ 1

= (1 + βnZ)κ((a+ cV )κ−r(b+ dV )r − V r)
= (1 + βnZ)κ((uκ − r)(a− 1 + cV ) · (V r + rV r−1(b+ (d− 1)V ))− V r)
= (1 + βnZ)κ(c(uκ − r)V r+1 + ((d− 1)r + (a− 1)(uκ − r))V r + brV r−1)
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Its image in grr+1Wκ ⊗ Ω1
R is therefore (uκ − r)V r+1(1 + βnZ)κ ⊗ c. Moreover, the description of the

classical Kodaira–Spencer isomorphism shows that δp−1c is a basis of y∗(Ω1
X), which is isomorphic to Ω1

R

after inverting p. This proves the second statement. �

The next theorem gives an explicit description of ∇κ on polynomial q-expansions. Recall that they have
the form

∑
r≥0 ar(q)Vκ,r, where Vκ,r = Y r(1 + pZ)κ−r in the notations we have been using.

Theorem 2.9. Let ∂ = q ddq be the Serre operator, then

∇κ(a(q)Vκ,r) = ∂(a(q))Vκ+2,r + a(uκ − r)Vκ+2,r+1

Proof. Over the Tate curve, we have a canonical differential ωcan such that KS(ω⊗2
can) = dq

q . The dual

derivation of dqq is ∂, and define ηcan = ∇(∂)(ωcan). This gives a canonical basis {ωcan, ηcan} of H1
dR(Tate(q)).

Using this basis, the matrix from the previous proof becomes

A =

(
1 0
dq
q 1

)
The expression for ∇κ from the previous proof gives the required expansion since c = dq

q ∈ Ω1
Zp((q)) is

identified with ω⊗2
can ∈W2, which is then identified with (1 + pZ)2 in our notation. �

2.4. p-adic iterations of differential operators. Let ∇ : W → W[ 1
p ] be the operator which restricts to

∇κ on the κ-isotypic part. We now consider the question of defining ∇s, where s is a general weight. We
would hope to have a morphism H0(X(v),Wκ) → H0(X(v) × Λs,Wκ+2s). On q-expansion, we saw that if
g =

∑∞
n=0 anq

n, then

∇κg =

∞∑
n=0

nanq
n

There is now the classical issue that ns does not interpolate in s if p|n. Therefore, we need to restrict the
domain to H0(X(v),Wκ)Up=0.

Now we run into some new issues, namely it is not clear that the tentative definition∇sg :=
∑∞
n=0 s(n)anq

n

is nearly overconvergent. This requires us to actually interpolate the connection∇s before taking q-expansion.

Definition 2.10. Let κ, κ′ : Z×p → Q̄×p be two weights. We say they are 1-close if there exists u ∈ pZp and
a finite order character χ such that κ = κ′χ exp(u log(−)).

Theorem 2.11. Suppose p is odd. Suppose κ and s are each 1-close to a classical weight, then for all
g ∈ H0(X(v),Wκ)Up=0, the expression

∇s(g) := exp

(
us
p− 1

log(∇p−1)

)
(g)

defines an element of Hdg−γH0(X(v′),Wκ+2s) for some explicit γ and v′ depending on v. Moreover, if g has
q-expansion

∑∞
n=0 anq

n, then ∇s(g) has q-expansion
∑∞
n=0 s(n)anq

n.

About the proof. If s has finite order, then what we are actually constructing is a twist operator, which is a
fairly classical object, constructed in this language in [AI19, Section 3.8]. Using this observation, it is easy to
reduce the theorem to the case where κ and s are themselves of the form exp(uκ log(−)) and exp(us log(−)),
i.e. close to the centre of the weight space.

By iterating theorem 2.9, we get that

∇N (a(q)Vκ,r) =

N∑
j=0

(
N

j

) j∏
i=0

(uκ − r +N − 1− i)∂N−j(a(q))Vκ+2N,r+j

The proof now has two components: (1) Show that (∇p−1 − 1)Np(a(q)Vκ,r) ∈ pNH0(X(0),W) by explicit
estimation of the coefficients of the polynomial q-expansion. (2) Show that “p-divisibility is overconvergent”.
Given these facts, we show that the definition above, viewed as a formal power series in∇p−1−1, is convergent
in H0(X(v′)⊗̂Λs,W). Considering the action of Z×p shows that the result lies in Wκ+2s. The q-expansion
formula follows from the formula at classical points.

We will now elaborate on point (2). The key statement is the following: suppose s ≥ 0 and we are given a
section w ∈ Hdg−sH0(X(v),Wκ). If its restriction to the ordinary locus is divisible by pN , then there exists
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v′ < v depending only on v, s, κ such that w|X(v′) ∈ H0(X(v′), pbN/2cWκ). For our purpose, we need to make
the dependency explicit. The statement can be proven locally, so let V = Spf S ⊆ X(v) be an affine open
subset, and let U = Spf R ⊆ Ign,v be the pre-image of V . Here, n is chosen based on κ, or more precisely
based on the valuation of uκ. For V small enough, Wκ(U) = R〈Z, Y 〉[κ]. Adding a superscript ord to indicate
restriction to the ordinary locus, we have similarly Word

κ (Uord) = Rord〈Zord, Y ord〉[κ], with restriction given
by Y 7→ Y ord and Z 7→ pnβ−1

n Zord. The factor on Z comes from the fact that over X(v), the congruence
condition is modulo βn, but over Xord, the n-th level of the Igusa tower is a congruence condition modulo pn.

The kernel of Wκ(U)/pNWκ(U) → Word
κ (U)/pnWord

κ (U) is therefore equal to a Tate algebra over the
kernel of R/pnR→ Rord/pnRord. By [AI19, Lemma 3.4], it is annihilated by

In,v,N = HdgNv
−1+ pn−p

p−1

Descending down to V ⊆ X(v) involves taking invariants, so the analogous result holds. It follows that
In,v,NHdgsw ∈ pNWκ(V ). To deduce the statement, we just need to choose v′ sufficiently small so that over

X(v′), the valuation of In,v,NHdgs is not too large. More precisely, we want (s+Nv−1 + pn−p
p−1 )v′ < N

2 . After

rearranging, this is implied by the bound

v′ <
1

2

(
s

N
+ v−1 +

pn − p
p− 1

)−1

The key point to note is that the dependency on s comes via s
N , so we are allowed to have growing denomi-

nators provided we can establish better congruence. This is exactly covered by point (1). �

3. p-adic L-function

3.1. Goal. Let W be the weight space, and let U = SpA be an affinoid open subset of W. Over U , we
have a universal weight κ : Z×p → A×. We can repeat the construction from before to produce a sheaf Wκ

on X(v) × U for v sufficiently small. A family of nearly overconvergent p-adic modular forms is a global
section f of Wκ. Given a Zp-point of U , we can specialize by pulling the section back along the inclusion
X(v)→ X(v)×U . Note that these families are not Coleman families, in the sense that the specializations need
not be eigenforms. This can be fixed by keeping track of a finite Hecke algebra action, cf. the construction of
the eigencurve. It has the effect of replacing Ai by some finite flat cover. We will not discuss this relatively
minor complication here.

Suppose for each i = 1, 2, 3, we have a family fi defined over SpAi ⊆ W. Ideally, a p-adic L-function
should be an element Lp ∈ A1⊗̂A2⊗̂A3 such that for each triple of classical weights (k1, k2, k3), we have

Lp(k1, k2, k3) = L
(
f1,k1 × f2,k2 × f3,k3 ,

k1 + k2 + k3 − 2

2

)
· Ω−1
∞ Ep(k1, k2, k3)

where the left hand side is defined to be (k1⊗k2⊗k3)(Lp). On the right hand side, we first divide the L-value
by a transcendental period to make it algebraic, and then we multiply by an interpolation factor (as usual,
we have chosen embeddings of Q̄ into C and Cp). However, this picture is too simplistic for many reasons:

– The behaviour of Ω∞ depends on the relative sizes of the weights, and we expect a different Lp to exist
for each separate regions.

– There could be denominators in Lp in general, and we will see some from our construction.
– If all f i are Hida families, then Coates and Perrin-Riou made detailed conjectures on the shape of Ep

[CPR89]. This has been verified by Hsieh [Hsi20]. However, in the generality of Coleman families, there is
no prediction on what Ep should be.

– The archimedean period Ω∞ is defined up to a rational multiple. For many arithmetic applications, it is
necessary to choose it correctly, which is also sometimes related to the issue of denominators. In the Hida
family case, there is the notion of Hida canonical period, which is essentially the Petersson norm divided
by the size of a congruence ideal. This does not yet have a good generalization to the finite slope case.

– One can sometimes remove the ambiguity in choosing Ω∞ by inserting a p-adic period Ωp.

In this talk, we will focus on the unbalanced case k1 ≥ k2 + k3. Using Ichino’s formula, one key component
is the interpolation of

〈f1, δ
t
k2
f2 × f3〉

〈f1, f1〉
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We know there are compatible modifications of fi such that this is non-zero if and only if the triple product
L-function is non-zero, so if we can interpolate this, then we get an Lp which vanishes exactly when the
central critical value vanishes. This is enough for some applications, as in [DR14].

3.2. Overconvergent projectors. We already have a good p-adic analogue for δtk2f2 × f3 as a nearly
overconvergent modular form. This section will be concerned with constructing the overconvergent projector,
which should be a section of

H0(X(v)× U , ωκ)→ H0(X(v)× U ,Wκ)

The construction is based on the following theorem.

Theorem 3.1.

(1) The groups H0(X(v)× U ,FilrWκ) for r ≤ ∞ admit slope decompositions with resepct to Up. More-
over, given a slope h, if r is sufficiently large, then the natural map

H0(X(v)× U ,FilrWκ)≤h → H0(X(v)× U ,Wκ)≤h

is an isomorphism.
(2) For each r, the map

H0(X(v)× U , ωκ)⊗A A′ →
H0(X(v)× U ,FilrWκ)

∇κ−2H0(X(v)× U ,Filr−1Wκ−2)
⊗A A′

is an isomorphism, where A′ = A[ 1
uκ−i | 0 ≤ i ≤ 2r].

Proofs. The first statement follows easily from the earlier remark that the action of Up on the r-th graded

piece is divisible by (p/Hdgp+1)r. The second is [Urb14, Proposition 3.5.4] written in our language. His proof
was based on defining the ε-operator on polynomial q-expansions. Section 3.9 of [AI19] presents a different
formulation of the proof. �

From these two isomorphisms, we get an overconvergent projector

H†,≤h : H0(X(v)× U ,Wκ)⊗A A′ → H0(X(v)× U , ωκ)≤h ⊗A A′

Remark 3.2. In [AI19], it is shown that Coleman’s analysis of the θ-operator can be used to explicitly identify
the error terms at the poles.

3.3. Interpolation properties. The final ingredient is something [Urb14] and [AI19] called “p-adic Peters-
son inner product”. Let M = M†,≤aκ be the space of overconvergent p-adic families of modular forms of slope
≤ a, where κ : Z×p → A× is a universal weight. Let T be the image of the Hecke algebra in End(M). We
have the classical pairing M × T → A sending (f , T ) to a1(f |T ), which defines an A-linear map M → T∨.
The space SpT defines a finite generically étale open subset of the eigencurve, so we have a trace map
T∨ → T⊗A d, where d is the ramification divisor of SpT→W. The map prf is defined to be the image of f
under the composite M → T∨ → T⊗A d→M∨⊗A d. By Coleman’s classicality theorem, d does not contain
classical points of large weight.

We are now ready for the construction. For i = 1, 2, 3, let

f i ∈ H0(X(v)× Ui, ωκi)

be a p-adic family of modular forms. We perform the modification procedure as described in [Hsi20] to each
of them and denote the results by f◦i . Moreover, let f◦,∗1 be the Atkin–Lehner involution applied to f1, and

let f
◦,[p]
2 be the p-depletion of f◦2. Let s = 1

2 (κ1 − κ2 − κ3), where we again assume p > 2 for simplicity.
Suppose f1 has slope at most h, then we will define

Lp = prf◦,∗1
(H†,≤h(∇sf◦,[p]2 × f◦3)) ∈ Frac(A1)⊗̂A2⊗̂A3

where Ai = O(Ui) and we will briefly talk about prf◦1 later. Recall that this is only defined if κ2 and s are

1-close to classical weights, so this can only interpolate near the centre of the weight space. There are two
types of poles in U1: the overconvergent projector gives simple poles at 0 ≤ i ≤ Nh for some Nh depending
on h, and the projector gives poles at certain ramification points. It would be interesting to understand if
the poles of the first type, corresponding to when k1 is not much bigger than k2 + k3, actually exists.
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The actual interpolation formula states that if (k1, k2, k3) are classical weights such that the above hy-
potheses are satisfied, and moreover k1 − (k2 + k3) is positive and even, then

Lp(k1, k2, k3)2 = (∗)E ·
L(fk1 × fk2 × fk3 , k1+k2+k3−2

2 )

〈fk1 , fk1〉2

where (∗) denotes some local terms which is non-zero, and E is some Euler factor coming from the p-depletion
procedure on f◦2. One should be able to write the local terms explicitly using the computations of [Hsi20].
The Euler factor is written down explicitly in [AI19]. It is different from the Euler factor from [DR14] and
[Hsi20] in the ordinary case, and we do not have a good framework to predict what the right form should be.
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